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Theory of remote phonon scattering in top-gated single-layer graphene
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We extend the theory of interfacial plasmon-phonon scattering to top-gated single-layer graphene. As with
bottom-gated graphene, interfacial plasmon-phonon (IPP) modes are formed from the coupling between the
graphene plasmon and the surface polar phonon modes in the top and bottom oxides. We study the effect of
the top oxide thickness on dynamic screening and electron-IPP coupling. The remote phonon-limited electron
mobility μRP and electron scattering rates in a HfO2-covered, SiO2-supported single-layer graphene are computed
at various electron densities n for different dielectric thickness tox. We find that μRP is much more dependent
on tox at low n. They also agree with the experimentally estimated room temperature μRP from Zou et al.
[Phys. Rev. Lett. 105, 126601 (2010)]. The electron density dependent μRP is predicted to be between 5500 and
24 200 cm2V−1s−1 from n = 1012 to 1013 cm−2 at 300 K.
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I. INTRODUCTION

One of the more promising nanoelectronic applications for
graphene is in high frequency devices.1,2 Typically, graphene is
physically supported by an insulating dielectric substrate such
as SiO2, and a local top gate, consisting of a layer of high-κ
dielectric metal oxide such as HfO2 or Al2O3, can be overlayed
on the graphene.3–7 The top gate offers better electrostatic
control of the local carrier density than a bottom gate, and is
necessary for the integration of graphene into nanoelectronic
applications. However, the top gate must necessarily modify
the electrostatic environment of the graphene. For instance,
long-range Coulombic impurity scattering is weakened in the
presence of a high-κ top oxide,8 resulting in a possible increase
of the electron mobility. On the other hand, the top gate also
exposes the graphene to new scattering mechanisms that can
degrade electron transport. For example, additional defects
are formed when the dielectric is deposited on the graphene.
Another is remote scattering by the surface polar phonon (SPP)
modes in the top oxide.

Although the subject of remote phonon scattering of
electrons in single-layer graphene (SLG),9–13 including the
related carbon nanotubes,10,11 has been amply discussed
before, the basic approach used in the aforementioned works
does not deal adequately with the hybridization between
the bare SPP and graphene plasmon modes, a phenomenon
that has been observed experimentally.14–16 Neither can it
explain the dynamic screening of remote interaction with
the substrate phonons. More importantly, it is difficult to
generalize the method to describe remote phonon scattering in
a heterostructure such as a top-gated SLG where the thickness
of the top dielectric may affect the scattering processes. It
was shown experimentally17 that a higher-κ overlayer (ice
in Ref. 17) on the SLG can weaken Coulombic impurity
scattering and lead to a small improvement in the conductivity,
although Ponomarenko and co-workers were not able find any
significant improvement using a high-κ liquid overlayer. The
actual deposition of dielectric oxide material (HfO2 or Al2O3)
on the graphene has been found to lead to a degradation of the
electron mobility.3,6,7,18

In an earlier paper,19 we developed the theory of interfacial
plasmon phonons (IPPs) in supported graphene and showed

how the phenomenon of dynamic screening emerges from the
coupling between the graphene plasmons and the SPP modes
in the substrate.19,20 Using that theory, we studied the remote
IPP scattering of electrons in SLG supported by an insulating
substrate, and also applied it to heat transfer between graphene
and the substrate.21 It is not apparent that the model presented
in Ref. 19 has any advantage over other existing remote
phonon scattering models,22,23 apart from a more satisfactory
account of dynamic screening. Some form of a static screening
model22,23 can be used because the plasmon frequency is
usually greater than the frequency of the substrate dipole
excitation in supported graphene, except at long wavelengths.
However, in this paper, the necessity of dynamic screening
becomes manifest because the surrounding oxides modify the
dispersion of the plasmons. We extend our theory of interfacial
plasmon phonons to top-gated SLG, where oxide dielectrics
can be found above and under the SLG sheet. This structure is
also called a double-oxide structure24 in the literature. The top
and bottom oxides contain SPP modes which interact with the
SLG. This extension of the IPP theory is nontrivial because we
have to take into account the finite thickness of the top oxide
and also the coupling of the top and bottom dipole fields.

Let us give a foretaste of the remaining content by
describing the problem of dynamic screening in top-gated
SLG with an ultrathin top-gate dielectric. When tox is very
small (around 2 nm), the image charge distribution in the
metal substantially weakens the effective electron-electron
interaction and downshifts the plasmon frequencies, i.e., the
plasmons are “softened.”Given that the screening of a remote
excitation occurs when the corresponding plasmon frequency
is much higher than the remote excitation frequency, we
expect that the plasmon frequency downshift results in weaker
screening because the polarization charge would not be able
to keep up with the time-dependent excitation. In other words,
the plasmonic coupling is more strongly affected by Landau
damping. In simpler remote phonon scattering models,9–13,22,23

it is not possible to understand the effect of the metal layer
on dynamic screening. In our model, plasmonic coupling
with the SPPs is explicitly taken into account. Since dynamic
screening has been shown to be a consequence of plasmonic
coupling, we can model the effect of the top gate on dynamic
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screening. We find that screening by the top metal gate inhibits
electron-electron interaction and consequently reduces the
dynamic screening of remote phonon scattering.

In this paper, we demonstrate the advantages of our IPP
model by applying it to top-gated SLG. In an earlier paper,
we applied the model to the study of gate oxide scaling.25

The derivation of the model is first presented in some detail
in Sec. II. It follows very closely the treatment given in our
earlier paper,19,20 because it is nontrivial to adapt the model to
top-gated SLG. In Sec. III, we give the explicit formulas for the
electron-IPP coupling coefficient, the transport scattering rate,
the electrical conductivity, and the electron mobility. We use
the model to study electron transport in a model of top-gated
SLG. For simplicity, the SLG is assumed to be supported
by a semi-infinite SiO2 substrate and covered by a HfO2 top
dielectric of finite thickness, similar to that used by Zou et al.24

In Sec. IV, we calculate the electron-SPP and electron-IPP
coupling coefficients for different tox at different electron
densities. The tox scaling of the corresponding SPP-limited
and IPP-limited mobility (μSPP and μIPP), which give us
the upper bound for the total electron mobility, is studied
as well. In Sec. V, the electron density dependence of μSPP

and μIPP is calculated. We also compare our IPP-limited
mobility results to the estimates by Zou et al.24 We study the
temperature dependence of μIPP at different electron densities.
The contribution of interband transitions to scattering rates and
the electron mobility is also quantified. We use our results to
illustrate the effect of the top gate on plasmonic coupling and
electron momentum relaxation.

II. MODEL OF TOP-GATED SINGLE-LAYER GRAPHENE

The basic model consists of a planar SLG sheet sandwiched
between two oxide layers. Let z represent the coordinate along
the axis normal to the SLG sheet. The substrate consists of
the semi-infinite region z < 0 while the top oxide spans the
region h � z < h + tox, where h is the height of the empty
space between the two oxide layers, and tox is the thickness of
the top oxide layer. For z � h + tox, we have a semi-infinite
metal layer. Thus all field lines terminate at z = h + tox. For
simplicity, we assume that the graphene layer is positioned at
the height of z = d = h/2, halfway between the oxide layers.
The structure is shown in Fig. 1. The top and bottom oxides
do not necessarily have to be materially identical although
we assume that they each have only two transverse optical
(TO) phonon frequencies each. The dielectric response of the
bottom and top oxide can be written respectively as

εbox(ω) = ε∞
box + (ε0

box − εi
box

) ω2
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FIG. 1. Basic model used in our calculation. We assume that the
graphene is an infinitely thin layer suspended in the middle of the
vacuum gap between a semi-infinite bottom oxide layer and a top
oxide layer of thickness tox.

where ε0
tox, εi

tox, and ε∞
tox (ε0

box, εi
box, and ε∞

box) are respectively
the static, intermediate, and optical permittivity of the top (bot-
tom) oxide layer; ωtox,T 1 and ωtox,T 2 (ωbox,T 1 and ωbox,T 2) are
the first and second TO phonon frequency of the top (bottom)
oxide layer. More conveniently, the dielectric function for the
top and bottom oxide layers can be rewritten in the equivalent
generalized Lyddane-Sachs-Teller form26 as
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box

(
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)(
ω2 − ω2
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where ωtox,L1 and ωtox,L2 (ωbox,L1 and ωbox,L2) are respec-
tively the first and second longitudinal optical (LO) phonon
frequency of the top (bottom) oxide layer, and can be computed
from the parameters in Eq. (1).

A. Electrostatic field inside graphene

In this part of the paper, for completeness, we give a brief
but detailed derivation of the theory of coupled interfacial
plasmon-phonon (IPP) modes in top-gated SLG. A more
comprehensive derivation of the general theory can be found
in Ref. 19. Nevertheless, sufficient details are provided so that
the results of the paper and the model can be replicated.

The Poisson equation for the screened scalar potential �scr

that describes the electrostatic potential between the oxides is

−∇2�scr(R,z,t) = 1

ε0
[ρox(R,z,t) + ρscr(R,z,t)] , (3)

where ρox is the (periodic) polarization charge distribution at
the surface of the top and bottom oxides that are the source
of scattering, ρscr is the screening charge term inside the
graphene, and ε0 is the permittivity of vacuum. The integral
form of Eq. (3) is

�scr(R,z,t) = �(R,z,t) +
∫

dR′dz′G(Rz,R′z′)ρscr(R′z′,t),

(4)
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where G(Rz,R′z′) is the Green function that satisfies the
boundary conditions and the equation

−∇2[ε(R,z)G(Rz,R′z′)] = δ(R − R′,z − z′). (5)

The bare potential �(R,z,t) is defined as �(R,z,t) =∫
dR′dz′G(Rz,R′z′)ρox(R′z′,t). It represents the electrostatic

potential in the case where there is no polarization charge. The
second term on the right-hand side (RHS) of Eq. (4) represents
the screening charge distribution. The bare/screened potential
can be written as a sum of its Fourier components:

�(R,z,t) =
∑

Q

φQ,ω(z)e−iQ·Reiωt

and

�scr(R,z,t) =
∑

Q

φscr
Q,ω(z)e−iQ·Reiωt .

We perform the two-dimensional (2D) Fourier transform of
Eq. (4). The expression for the z-dependent part of the Fourier-
transformed screened potential is

φscr
Q,ω(z)eiωt = φQ,ω(z)eiωt +

∫
dz′GQ(z,z′)ρscr

Q,ω(z′,t). (6)

Equation (6) is solvable if we express the polarization charge
ρscr

Q,ω as a function of the screened scalar potential. Here, we
write the screening charge term as

ρscr
Q,ω(z,t) = e2	(Q,ω)f (z)φscr

Q,ω(z)eiωt , (7)

where 	(Q,ω) is the in-plane 2D polarization charge term
and f (z) governs the polarization charge distribution in the
perpendicular direction. We set f (z) to be normalizable to
unity, i.e.,

∫
dz f (z) = 1. For convenience, we choose f (z) =

δ(z − d). Physically, this implies that we model the graphene
as an infinitely thin sheet of polarized charge. Combining
Eqs. (6) and (7), we obtain the expression

φscr
Q,ω(z) = φQ,ω(z) + e2

∫
dz′GQ(z,z′)	(Q,ω)f (z′)φscr

Q,ω(z′)

(8)

which becomes

φscr
Q,ω(z) = φQ,ω(z) + e2GQ(z,d)	(Q,ω)

1 − e2GQ(d,d)	(Q,ω)
φQ,ω(d).

The corresponding E field perpendicular to the interface is
described by the expression

ẑ · EQ,ω = − ∂

∂z
φscr

Q,ω(z)

= −∂φQ,ω(z,t)

∂z
− ∂GQ(z,d)

∂z

× e2	(Q,ω)

1 − e2GQ(d,d)	(Q,ω)
φQ,ω(d). (9)

For notational simplicity, we write

φscr
Q,ω(z) = φQ,ω(z) + GQ(z,d)PQ,ωφQ,ω(d), (10a)

ẑ · EQ,ω = −∂φQ,ω(z,t)

∂z
− ∂GQ(z,d)

∂z
PQ,ωφQ,ω(d), (10b)

where PQ,ω = e2	(Q,ω)
1−e2GQ(d,d)	(Q,ω) . Here, we emphasize that

Eq. (10a) is the key to determining the dispersion relation
as we shall show later.

B. Electrostatic Green function

In order to solve Eq. (10a), we need to have an explicit
expression for the electrostatic Green function GQ(z,z′).
The Green function contains the details of the electrostatic
environment around the graphene sheet.

The Green function GQ(z,z′) for a source in the empty
space between the top and bottom oxide layers (0 < z′ � h)
satisfies

−
(

∂2

∂z2
− Q2

)
GQ(z,z′) = 1

ε0
δ(z − z′).

This implies that we can always express GQ(z,z′) as a linear
combination of eQz and e−Qz, or cosh(Qz) and sinh(Qz).
Following Eq. (1), we define the optical permittivity of the
top and bottom oxide layers to be ε∞

tox and ε∞
box, respectively.

The Green function has to satisfy the following continuity
conditions at the interfaces z = 0, z = h, and z = h + tox:

GQ(h + tox,z
′) = lim

z→−∞ GQ(z,z′) = 0, (11a)

GQ(h+,z′) = GQ(h−,z′), (11b)

GQ(0+,z′) = GQ(0−,z′), (11c)

ε∞
tox

∂GQ(z = h+,z′)
∂z

= ε0
∂GQ(z = h−,z′)

∂z
, (11d)

ε0
∂GQ(z = 0+,z′)

∂z
= ε∞

box
∂GQ(z = 0−,z′)

∂z
. (11e)

We use the optical permittivities (ε∞
tox and ε∞

box) in Eqs. (11d)
and (11e) instead of the frequency-dependent permittivities
[εtox(ω) and εbox(ω)] because the use of the latter would result
in the decoupling of the SPP modes to the plasmons when we
compute the plasmon-phonon dispersion later.

The expression for GQ(0 < z � h,0 < z′ � h) that satis-
fies these continuity conditions is

GQ(z,z′) = 1

2ε0Q

{
e−Q|z−z′ | + λtλbe

−2Qh

1 − λtλbe−2Qh

× [e−Q(z−z′) + eQ(z−z′)] − 1

1 − λtλbe−2Qh

× [λte
Q(z+z′−2h) + λbe

−Q(z+z′)]

}
, (12)

where

λt = ε∞
tox coth Qtox − ε0

ε∞
tox coth Qtox + ε0

, λb = ε∞
box − ε0

ε∞
box + ε0

.

The permittivity constants in Eq. (12) correspond to the optical
(ε∞

box and ε∞
tox), and not the static, dielectric response (ε0

box
and ε0

tox). In the region h � z < h + tox, making use of the
continuity of the Green function and the fact that it has
to terminate at z = h + tox, we can easily write the Green
function as

GQ(z > h,z′) = G(h,z′)
sinh Q(h + tox − z)

sinh Qtox
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and likewise, for z < 0, the Green function is

GQ(z < 0,z′) = G(0,z′)e+Qz.

C. Scattering field

The bare scalar potential φQ,ω(z) has to satisfy the equation(
d2

dz2
− Q2

)
φQ,ω(z) = 0.

This implies that φQ,ω can be written as a linear combination of
e+Qz and e−Qz. At the interfaces z = h and z = 0, we require

the continuity of φQ,ω, i.e.,

φQ,ω(h+) = φQ,ω(h−)

and

φQ,ω(0+) = φQ,ω(0−).

We also require that

lim
z→−∞ φQ,ω(z) = φQ,ω(h + tox) = 0.

This suggests that we can write φQ,ω(z) in a symmetric
way:

φQ,ω(z) =

⎧⎪⎪⎨
⎪⎪⎩

(Ae−Qh + B) sinh Q(h+tox−z)
sinh Qtox

, h < z � h + tox,

Ae−Qz + Be+Q(z−h), 0 < z � h,

(A + Be−Qh)e+Qz, z � 0,

where A and B are independent variables. Thus the screened potential φscr
Q,ω(z) is, according to Eq. (10a),

φscr
Q,ω(z) =

⎧⎪⎪⎨
⎪⎪⎩

(Ae−Qh + B) sinh Q(h+tox−z)
sinh Qtox

+ GQ(z,d)PQ,ω (A + B) e−Qd, h < z � h + tox,

Ae−Qz + Be+Q(z−h) + GQ(z,d)PQ,ω (A + B) e−Qd, 0 < z � h,

(A + Be−Qh)e+Qz + GQ(z,d)PQ,ω (A + B) e−Qd, z � 0.

(13)

The coefficients A and B can be regarded as the amplitude of the scattering fields localized at z = 0 and z = h, respectively. In
general, they are functions of Q and ω, with ω determined by the boundary conditions,

εtox(ω)
∂φscr

Q,ω(z = h+)

∂z
= ε0

∂φscr
Q,ω(z = h−)

∂z
, (14a)

ε0
∂φscr

Q,ω(z = 0+)

∂z
= εbox(ω)

∂φscr
Q,ω(z = 0−)

∂z
. (14b)

If we make use of the relations GQ(z > h,d) = GQ(h,d) sinh Q(h+tox−z)
sinh Qtox

and GQ(z < 0,d) = GQ(0,d)e+Qz, then Eq. (13) can be
written as

φscr
Q,ω(z) =

⎧⎪⎪⎨
⎪⎪⎩

[Ae−Qh + B + GQ(h,d)PQ,ω (A + B) e−Qd ] sinh Q(h+tox−z)
sinh Qtox

, h < z � h + tox,

Ae−Qz + Be+Q(z−h) + GQ(z,d)PQ,ω (A + B) e−Qd, 0 < z � h,

[A + Be−Qh + GQ(0,d)PQ,ω (A + B) e−Qd ]e+Qz, z � 0.

The derivative of φscr
Q,ω(z) is

dφscr
Q,ω(z)

dz
=

⎧⎪⎪⎨
⎪⎪⎩

−Q[Ae−Qh + B + GQ(h,d)PQ,ω (A + B) e−Qd ] cosh Q(h+tox−z)
sinh Qtox

, h < z � h + tox,

Q[−Ae−Qz + Be+Q(z−h)] + ∂
∂z

GQ(z,d)PQ,ω (A + B) e−Qd, 0 < z � h,

+Q[A + Be−Qh + GQ(0,d)PQ,ω (A + B) e−Qd ]e+Qz, z � 0.

From the continuity of ε(z) d
dz

φscr
Q,ω(z) at z = h, we obtain the equation

−εtox(ω) coth(Qtox)Q[Ae−Qh + B + GQ(h,d)PQ,ω (A + B) e−Qd ]

= ε0Q(−Ae−Qh + B) + ε0
∂

∂z
GQ(z = h−,d)PQ,ω (A + B) e−Qd

= Q[ε0(−Ae−Qh + B) − ε∞
tox coth(Qtox)GQ(h,d)PQ,ω (A + B) e−Qd ]

or, as a linear combination of A and B,{
[εtox(ω) coth(Qtox) − ε0]e−Qh + [εtox(ω) − ε∞

tox

]
coth(Qtox)GQ(h,d)PQ,ωe−Qd

}
A

+ {[εtox(ω) coth(Qtox) + ε0] + [εtox(ω) − ε∞
tox

]
coth(Qtox)GQ(h,d)PQ,ωe−Qd

}
B = 0. (15)
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Similarly, at z = 0, we have{
[εbox(ω) − ε0] e−Qh + [εbox(ω) − ε∞

box

]
GQ(0,d)PQ,ωe−Qd

}
B + {[εbox(ω) + ε0] + [εbox(ω) − ε∞

box

]
GQ(0,d)PQ,ωe−Qd

}
A

= 0. (16)

After combining Eqs. (15) and (16) into a matrix equation, we obtain the corresponding secular equation{
[εbox(ω) + ε0] + [εbox(ω) − ε∞

box

]
GQ(0,d)PQ,ωe−Qd

}
× { [εtox(ω) coth(Qtox) + ε0] + [εtox(ω) − ε∞

tox

]
coth(Qtox)GQ(h,d)PQ,ωe−Qd

}
− { [εbox(ω) − ε0] e−Qh + [εbox(ω) − ε∞

box

]
GQ(0,d)PQ,ωe−Qd

}
× { [εtox(ω) coth(Qtox) − ε0] e−Qh + [εtox(ω) − ε∞

tox

]
coth(Qtox)GQ(h,d)PQ,ωe−Qd

} = 0 (17)

from the determinant of the matrix. Solving Eq. (17) for each value of Q yields a set of five corresponding ωQ values (ω(IPP1)
Q ,

ω
(IPP2)
Q , ω

(IPP3)
Q , ω

(IPP4)
Q , and ω

(IPP5)
Q ), assuming that 	(Q,ω) ∝ 1/ω2. Once these ωQ values are found, the ratio of A to B can be

fixed. If we ignore the top oxide layer and set εtox(ω) = ε0, then we obtain the secular equation for the bottom oxide layer, i.e.,

[εbox(ω) + ε0] + [εbox(ω) − ε∞
box

]
GQ(0,d)PQ,ωe−Qd = 0. (18)

Here, our decision to not use εtox(ω) and εbox(ω) in Eqs. (11d)
and (11e) can be justified. Take the simple case where we have
only the bottom oxide layer. Suppose we had used εbox(ω)
instead of ε∞

box in Eq. (11e). Then the dispersion relation for
the coupled phonon-plasmon modes would be

εbox(ω) + ε0 = 0 (19)

instead of Eq. (18). The dispersion relation in Eq. (19) is
unphysical as it is independent of the plasmon dispersion.

Equation (17) can be simplified considerably if we set h =
2d = 0, i.e., the gap size is zero. The simplified version of
Eq. (17) is

εbox(ω) + εtox(ω) coth(Qtox) − e2	(Q,ω)

Q
. (20)

The second and third term in Eq. (20) can be interpreted as the
dielectric response of the top gate-plasmon composite system.

D. Scattering amplitude

To determine the scattering amplitude of the effective
scattering potential, we use the approach developed in Ref. 26,
in which the time-averaged total energy 〈WQ,ω〉 (the brackets
〈· · ·〉 denote time average) associated with a coupled phonon-
plasmon mode is set equal to its zero-point energy. The
time-averaged total energy is simply twice the time-averaged
potential energy 〈U scr

Q,ω〉, which can be evaluated from the
volume integral of 1

2 D · E, with D and E equal to the electric
displacement and field, respectively.

In determining 〈U scr
Q,ω〉, we will not evaluate the volume

integral of 1
2 D · E but simply take the sum of the product of the

surface charge density and the potential at the two interfaces.
Consideration of the charge density on the graphene is excised
from our calculation. The time-averaged potential energy can
be written as〈

U scr
Q,ω

〉 = 〈U scr
Q,ω(z = 0)

〉+ 〈U scr
Q,ω(z = h)

〉
,

where 〈
U scr

Q,ω(z = h)
〉

=
〈

− 1

2
�

[
ε̄tox(ω)

∂φQ,ω(z = h+)

∂z

− ε0
∂φQ,ω(z = h−)

∂z

]
φscr

Q,ω(z = h)

〉
(21)

is the contribution from the top interface and〈
U scr

Q,ω(z = 0)
〉

=
〈

− 1

2
�

[
ε̄box(ω)

∂φQ,ω(z = 0+)

∂z

− ε0
∂φQ,ω(z = h−)

∂z

]
φscr

Q,ω(z = 0)

〉
(22)

is the contribution from the bottom interface; � is the area of
the interface. The term ε̄box(ω) is not the dielectric function
of the bottom oxide but a distinct variable from εbox(ω).
The same is true of εtox(ω) and εtox(ω). The former can be
modified to contain the response of a specific excitation. Recall
from Eq. (2) that we can write the dielectric function in the
LST form:

εbox(ω) = ε∞
boxκ

(1)
box(ω)κ (2)

box(ω)

where the function

κ
(m)
box(ω) = ω2 − ω2

box,Lm

ω2 − ω2
box,T m

for m = 1,2 describes the dielectric response of the phonon in
the bottom oxide. The dielectric function for the top oxide can
be similarly written as εtox(ω) = ε∞

toxκ
(1)
tox(ω)κ (2)

tox(ω). To isolate
the optical dielectric response of the bottom oxide phonon 1
at frequency ω, we set

εbox(ω) = ε
HI,1
box (ω) ≡ ε∞

boxκ
(1)
box(∞)κ (2)

box(ω), (23)
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while to isolate the corresponding static dielectric response, we set

εbox(ω) = ε
LO,1
box (ω) ≡ ε∞

boxκ
(1)
box(0)κ (2)

box(ω) . (24)

The optical and static dielectric responses of the bottom oxide phonon 2 and the top oxide phonons can be similarly defined.
The explicit expression for Eq. (21) is〈

U scr
Q,ω(z = h)

〉 = 1

2
�Q

{{
[εtox(ω) coth(Qtox) − ε0] e−Qh + [εtox(ω) − ε∞

tox

]
coth(Qtox)GQ(h,d)PQ,ωe−Qd

}
A

+ { [εtox(ω) coth(Qtox) + ε0] + [εtox(ω) − ε∞
tox

]
coth(Qtox)GQ(h,d)PQ,ωe−Qd

}
B
}

× [Ae−Qh + B + GQ(h,d)PQ,ω (A + B) e−Qd ].

Using Eq. (15), the above expression becomes〈
U scr

Q,ω(z = h)
〉 = 1

2�Q [εtox(ω) − εtox(ω)] coth(Qtox)[Ae−Qh + B + GQ(h,d)PQ,ω (A + B) e−Qd ]2. (25)

Similarly, using Eq. (16), the explicit expression for Eq. (22) is〈
U scr

Q,ω(z = 0)
〉 = 1

2�Q[εbox(ω) − εbox(ω)][A + Be−Qh + GQ(0,d)PQ,ω (A + B) e−Qd ]2. (26)

Once the secular equation (17) has been solved, the variables A and B are no longer independent. Hence, for each set of values
of Q and ω = ωQ, using Eq. (15) or (16), we can set B = αQ,ωA, where

αQ,ω = − [εtox(ω) coth(Qtox) − ε0] e−Qh + [εtox(ω) − ε∞
tox

]
coth(Qtox)GQ(h,d)PQ,ωe−Qd

[εtox(ω) coth(Qtox) + ε0] + [εtox(ω) − ε∞
tox

]
coth(Qtox)GQ(h,d)PQ,ωe−Qd

= − [εbox(ω) + ε0] + [εbox(ω) − ε∞
box

]
GQ(0,d)PQ,ωe−Qd

[εbox(ω) − ε0] e−Qh + [εbox(ω) − ε∞
box

]
GQ(0,d)PQ,ωe−Qd

.

Note that if we set εtox(ω) = ε∞
tox = ε0, then αQ,ω = 0 as it should be since we expect B (the amplitude of the field localized at

the top interface) to equal zero in the absence of a top oxide layer. Thus B can be eliminated from Eqs. (25) and (26), and we
obtain 〈

U scr
Q,ω(z = h)

〉 = 1
2�Q[εtox(ω) − εtox(ω)] coth(Qtox)[e−Qh + αQ,ω + GQ(h,d)PQ,ω(1 + αQ,ω)e−Qd ]2A2 (27)

and 〈
U scr

Q,ω(z = 0)
〉 = 1

2�Q[εbox(ω) − εbox(ω)][e−Qh + αQ,ω + GQ(0,d)PQ,ω(A + B)e−Qd ]2A2. (28)

There is a convenient interpretation of the square-bracketed factors on the RHS of Eqs. (27) and (28). The first [· · ·] is the
coupling strength determined by the polarization charges in the top/bottom oxide; the second [· · ·] is related to the electrostatics
and geometry of the system. Next, to find the expression for A, we assume 〈WQ,ω〉 = 2〈U scr

Q,ω〉, which relates the time-averaged
total energy to the time-averaged potential energy, to obtain

〈WQ,ω〉 = �QA2{[εtox(ω) − εtox(ω)] coth(Qtox)[e−Qh + αQ,ω + GQ(h,d)PQ,ω(1 + αQ,ω)e−Qd ]2

+ [εbox(ω) − εbox(ω)][e−Qh + αQ,ω + GQ(0,d)PQ,ω(1 + αQ,ω)e−Qd ]2}.
From the zero-point relation 〈WQ,ω〉 = 1

2h̄ωQ, the expression for the amplitude can be determined:

A2 = h̄ωQ

2�Q
{[εtox(ω) − εtox(ω)] coth(Qtox)[e−Qh + αQ,ω + GQ(h,d)PQ,ω(1 + αQ,ω)e−Qd ]2

+ [εbox(ω) − εbox(ω)][e−Qh + αQ,ω + GQ(0,d)PQ,ω(1 + αQ,ω)e−Qd ]2}−1.

Hence, by taking the square amplitude difference between the optical and static dielectric response, the scattering potential
φscr

Q,ω(d) = [1 + GQ(d,d)PQ,ω] (A + B) e−Qd can be expressed, say for the top oxide phonon mode 1, as

φscr
Q,ω(d) =

[
h̄ωQ

2�Q

(
1

ε
HI,1
tox (ω) − εtox(ω)

− 1

ε
LO,1
tox (ω) − εtox(ω)

)] 1
2

F (top)
Q,ω , (29)

where ε
HI,1
tox (ω) and ε

LO,1
tox (ω) are defined as in Eqs. (23) and (24), and

F (top)
Q,ω = [1 + GQ(d,d)PQ,ω](1 + αQ,ω)e−Qd

e−Qh + αQ,ω + GQ(h,d)PQ,ω(1 + αQ,ω)e−Qd

[
1

coth(Qtox)

]1/2

= (1 + αQ,ω)e−Qd

(e−Qh + αQ,ω)[1 − GQ(d,d)e2	(Q,ω)] + GQ(h,d)e2	(Q,ω)(1 + αQ,ω)e−Qd

[
1

coth(Qtox)

]1/2

.
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Similarly, for the bottom oxide phonon mode 1,

φscr
Q,ω(d) =

[
h̄ωQ

2�Q
(

1

ε
HI,1
box (ω) − εbox(ω)

− 1

ε
LO,1
box (ω) − εbox(ω)

)

] 1
2

F (bot)
Q,ω ,

where

F (bot)
Q,ω = [1 + GQ(d,d)PQ,ω](1 + αQ,ω)e−Qd

1 + αQ,ωe−Qh + GQ(0,d)PQ,ω(1 + αQ,ω)e−Qd

= (1 + αQ,ω)e−Qd

(1 + αQ,ωe−Qh)[1 − GQ(d,d)e2	(Q,ω)] + GQ(0,d)e2	(Q,ω)(1 + αQ,ω)e−Qd
.

In the long wavelength limit (Q → 0), we have F (top)
Q,ω → 1 and F (bot)

Q,ω → 1.

If we set the graphene-oxide gap equal to zero (i.e., h = 2d = 0), F (top)
Q,ω and F (bot)

Q,ω also simplify to F (top)
Q,ω = [coth(Qtox)]−1/2

and F (bot)
Q,ω = 1, respectively. The scattering potential for the top oxide phonon mode 1 in Eq. (29) also becomes

φscr
Q,ω =

[
h̄ω

2�Q

(
1

ε
HI,1
tox (ω) coth(Qtox) + εbox(ω) − e2

Q
	(Q,ω)

− 1

ε
LO,1
tox (ω) coth(Qtox) + εbox(ω) − e2

Q
	(Q,ω)

)] 1
2

. (30)

Likewise, the scattering potential for the bottom oxide phonon mode 1 is

φscr
Q,ω =

[
h̄ω

2�Q

(
1

εtox(ω) coth(Qtox) + ε
HI,1
box (ω) − e2

Q
	(Q,ω)

− 1

εtox(ω) coth(Qtox) + ε
LO,1
box (ω) − e2

Q
	(Q,ω)

)] 1
2

. (31)

The expression in Eqs. (30) and (31) is analogous to the one derived by Wang and Mahan27 for surface potential scattering of
electrons, which is

φQ,ω =
[

h̄ω

2�Q

(
1

εbox(∞) + ε0
− 1

εbox(0) + ε0

)] 1
2

. (32)

The expression by Wang and Mahan in Eq. (32) is simpler than ours because there are no plasmons and top gate in their model.
Nonetheless, the strong analogy between our expression and theirs supports the soundness of our derivation.

E. Phonon content

From Eq. (17), we can determine five values of ω for each
value of Q. Thus, in the IPP dispersion relation, there are
five distinct branches (ω(i)

Q , i = IPP1 to IPP5). Each branch
represents excitations of the coupled phonon-plasmon system.
However, the effective scattering amplitude of a particular
mode may not be significant if it is plasmonlike. Scattering
with a plasmonlike excitation does not necessarily lead to the
loss of momentum since the momentum is simply transferred
to the constituent electrons of the plasmon excitation and there
is no change in the total momentum of all the electrons. On the
other hand, scattering with a phononlike excitation can lead to
the loss of momentum since phonons belong to a different set
of degrees of freedom.

Therefore, as in Refs. 26 and 19, it is necessary to define
the phonon content of each mode. In the uncoupled system,
there are four SPP phonon branches (ω(SPP1)

Q , ω
(SPP2)
Q , ω

(SPP3)
Q ,

and ω
(SPP4)
Q )—two from the top oxide and two from the bot-

tom. We enumerate the former pair ω
(−g,1)
Q = ωtox,S1(Q) and

ω
(−g,2)
Q = ωtox,S2(Q), and the latter pair ω

(−g,3)
Q = ωbox,S1(Q)

and ω
(−g,4)
Q = ωbox,S2(Q). They can be computed from Eq. (17)

but with e2 set to zero, i.e.,
[εbox(ω) + ε0] [εtox(ω) coth(Qtox) + ε0]

− [εbox(ω) − ε0] [εtox(ω) coth(Qtox) − ε0] e−2Qh = 0. (33)

First of all, we determine the plasmon content of each IPP
mode ω

(i)
Q . As in Ref. 19, this is accomplished by setting

�(g)(ω(i)
Q ) =

∣∣∣∣∣	
4
n=1

(
ω

(i)2
Q − ω

(−g,n)2
Q

)
	5

j=1,i 
=j

(
ω

(i)2
Q − ω

(j )2
Q

)
∣∣∣∣∣ . (34)

The numerator and denominator in Eq. (34) are quartic in ω2.
The expression in Eq. (34) approaches zero (unity) whenever
ω

(i)
Q moves towards (away from) one of the SPP frequencies.

Note that the expected “sum rule,”26

5∑
i=1

�(g)
(
ω

(i)
Q

) = 1, (35)

holds for each value of Q. Equation (35) implies that the
total plasmon weight of the given solutions is equal to one
(as it would be without hybridization). The (nonplasmon)
phonon content is then defined as 1 − �(g)(ω(i)

Q ). In order
to distinguish the phonon parts of the nonplasmon content,
we need to define the relative individual phonon content.
For top oxide TO1 phonon, the content is computed by
ignoring its response and replacing εtox(ω) in Eq. (17) with
ε∞

tox(ω2
tox,L2 − ω2)/(ω2

tox,T 2 − ω2). From the solutions of the

modified secular equation (ω(−tox1,1)
Q , ω

(−tox1,2)
Q , ω

(−tox1,3)
Q , and

ω
(−tox1,4)
Q ) the relative top oxide TO1-phonon content of mode
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i is

R(tox,1)
(
ω

(i)
Q

) =
∣∣∣∣∣	

4
n=1

(
ω

(i)2
Q − ω

(−tox1,n)2
Q

)
	5

j=1,i 
=j

(
ω

(i)2
Q − ω

(j )2
Q

)
∣∣∣∣∣ . (36)

Like Eq. (34), the numerator and denominator are also quartic in ω2. The relative top oxide TO2-phonon, bottom oxide
TO1-phonon, and bottom oxide TO2-phonon contents (R(tox,2), R(box,1), and R(box,2)) can be similarly defined. Hence the top
oxide TO1-phonon content is

�(tox,1)
(
ω

(i)
Q

) = R(tox,1)
(
ω

(i)
Q

)[
1 − �(g)

(
ω

(i)
Q

)]
R(tox,1)

(
ω

(i)
Q

)+ R(tox,2)
(
ω

(i)
Q

)+ R(box,1)
(
ω

(i)
Q

)+ R(box,2)
(
ω

(i)
Q

) . (37)

The top oxide TO2-phonon, bottom oxide TO1-phonon, and bottom oxide TO2-phonon contents (�(tox,2), �(box,1), and �(box,2))
can be similarly defined. Given Eqs. (34) and (37), the following sum rules have been numerically verified:

5∑
i=1

�(tox,1)
(
ω

(i)
Q

) =
5∑

i=1

�(tox,2)
(
ω

(i)
Q

) =
5∑

i=1

�(box,1)
(
ω

(i)
Q

) =
5∑

i=1

�(box,2)
(
ω

(i)
Q

) = 1, (38a)

�(g)
(
ω

(i)
Q

)+ �(tox,1)
(
ω

(i)
Q

)+ �(tox,2)
(
ω

(i)
Q

)+ �(box,1)
(
ω

(i)
Q

)+ �(box,2)
(
ω

(i)
Q

) = 1, (38b)

for each mode ω
(i)
Q .

F. Electron-IPP interaction

The effective scattering field of the top oxide TO1 phonon at frequency ω
(l)
Q can be obtained by combining Eqs. (29) and (37).

We have

φscr
Q,ω(d)|

ω=ω
(l)
Q

=
[

h̄ω
(l)
Q

2�Q

(
1

ε
HI,1
tox

(
ω

(l)
Q

)− εtox
(
ω

(l)
Q

) − 1

ε
LO,1
tox

(
ω

(l)
Q

)− εtox
(
ω

(l)
Q

)
)

�(tox,1)
(
ω

(l)
Q

)] 1
2

F (top)
Q,ω

∣∣
ω=ω

(l)
Q

. (39)

This is only a part of the scattering field associated with mode ω
(l)
Q . When we include the TO phonons of the top and bottom

oxides, the total scattering field is

φscr
Q,ω(d)

∣∣
ω=ω

(l)
Q

=
(

h̄ω
(l)
Q

2�Q

) 1
2
[

2∑
μ=1

(
1

ε
HI,μ
tox (ω) − εtox(ω)

− 1

ε
LO,μ
tox (ω) − εtox(ω)

)
�(tox,μ)(ω)

∣∣F (top)
Q,ω

∣∣2

+
2∑

μ=1

(
1

ε
HI,μ
box (ω) − εbox(ω)

− 1

ε
LO,μ

box (ω) − εbox(ω)

)
�(box,μ)(ω)

∣∣F (bot)
Q,ω

∣∣2]
1
2

ω=ω
(l)
Q

. (40)

Generally, the graphene field operator can be written in the spinorial form as

�(R,z) = 1√
2�

∑
s=±1

∑
K

[(
1

seiθK

)
csK

K +
(

eiθK

s

)
csK′

K

]
eiK·R√δ(z − d), (41)

where K (K′) denotes the K (K′) valley, and the + (−) sign corresponds to the π (π∗) band; csK
K (csK†

K ) is the annihilation
(creation) operator of the s-band K electron state at the K valley. Therefore, the interaction term is

Hint =
∫

dz

∫
dR�†(R,z)V (R,z)�(R,z)

and, if we neglect the intervalley terms, simplifies to

Hint ≈
3∑

l=1

∑
s1,s2

∑
K,Q

M
(l)
Q αs1K+Q,s2K

(
c
s1K†
K+Qc

s2K
K + s1s2c

s1K′†
K+Qc

s2K′
K

)(
a

(l)
Q + a

(l)†
−Q

)
, (42)

where a
(l)
Q (a(l)†

Q ) is the annihilation (creation) operator for the mode corresponding to Q and ω
(l)
Q , and

αs1K1,s2K2 = 1 + s1s2e
−i(θK1 −θK2 )

2
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is the overlap integral that comes from the inner product of the spinors; the electron-IPP coupling coefficient is

M
(l)
Q =

(
e2h̄ω

(l)
Q

2�Q

) 1
2
[

2∑
μ=1

(
1

ε
HI,μ
tox (ω) − εtox(ω)

− 1

ε
LO,μ
tox (ω) − εtox(ω)

)
�(tox,μ)(ω)

∣∣F (top)
Q,ω

∣∣2

+
2∑

μ=1

(
1

ε
HI,μ
box (ω) − εbox(ω)

− 1

ε
LO,μ

box (ω) − εbox(ω)

)
�(box,μ)(ω)

∣∣F (bot)
Q,ω

∣∣2]
1
2

ω=ω
(l)
Q

. (43)

G. Landau damping

At sufficiently short wavelengths, plasmons cease to be
proper quasiparticle excitations because of Landau damping.28

To model this phenomenon, albeit approximately, we take that
to be the case when the pure graphene plasmon excitation,
of which the dispersion ω = ωp(Q) is determined by the
expression 1 − e2GQ(d,d)	>(Q,ω) = 0, enters the intraband
single-particle excitation (SPE) continuum.29 This happens
when the plasmon branch crosses the electron dispersion
curve, i.e., when ωp = vF Q, and the wave vector at which
this happens is Qc. A common cutoff Qc is used for all five
IPP branches because we are constrained by the necessity to
maintain the sum rule in Eq. (35). Thus, although the top
IPP branch may undergo Landau damping from interband
transitions, we assume that the IPP5 branch modes are still well
defined and do not undergo significant broadening. Selective
omission of the top IPP branch while still retaining the lower
four coupled plasmon-phonon branches would violate the sum
rules in Eq. (38). If we set Qc to be the point where the
plasmonlike IPP5 branch undergoes interband SPE Landau
damping, then the lower branches would have to be replaced

by SPP branches. This approximation is unreasonable because
it assumes that the modes are broadened when they are not. On
the other hand, it is less severe to assume that interband SPE
Landau damping does not lead to significant broadening of the
plasmonlike IPP modes. Admittedly, this is not a perfect way
of handling the issue of Landau damping, and is a limitation
of our theory, which assumes the spectral weight of the modes
to be sharp δ function in frequency space.

When Q < Qc, the electron-phonon coupling coefficient
in Eq. (42) is that of Eq. (43). Although the lower-frequency
IPP branches may undergo Landau damping from intraband
SPE as ω

(l)
Q < vF Q, we still retain them because the sum

rules in Eqs. (35) and (38) require us to maintain charge
conservation.28 On the other hand, when Q > Qc, Landau
damping is assumed to dominate all the IPP modes, and the
coupling between the substrate SPP modes and the graphene
plasmons can be ignored. Instead of scattering with five IPP
modes for each given wave vector, we revert to using only
four SPP modes. This allows us to satisfy the sum rules in
Eq. (38). In this case, the electron-phonon coupling coefficient
in Eq. (43) can be written as

M
(l)
Q =

(
e2h̄ω

(l)
Q

2�Q

) 1
2
[

2∑
μ=1

(
1

ε
HI,μ
tox (ω) − εtox(ω)

− 1

ε
LO,μ
tox (ω) − εtox(ω)

)
�(tox,μ)(ω)

∣∣F (top)
Q,ω

∣∣2

+
2∑

μ=1

(
1

ε
HI,μ
box (ω) − εbox(ω)

− 1

ε
LO,μ

box (ω) − εbox(ω)

)
�(box,μ)(ω)

∣∣F (bot)
Q,ω

∣∣2]
1
2

ω=ω
(l)
Q

, (44)

where l = SPP1 to SPP4 indexes the four SPP branches. Although Eq. (44) looks identical to Eq. (43), the individual terms in the
former expression are different. For instance, the plasmonless secular equation in Eq. (33) is used to determine ω

(SPP1)
Q , ω

(SPP2)
Q ,

ω
(SPP3)
Q , and ω

(SPP4)
Q . The phonon content in Eq. (44) is defined slightly differently. For example, because �(g)(ω) = 0, we write

�(tox,1)(ω) as

�(tox,1)(ω) = R(tox,1)(ω)

R(tox,1)(ω) + R(tox,2)(ω) + R(box,1)(ω) + R(box,2)(ω)
, (45)

where

R(tox,1)
(
ω

(i)
Q

) =
∣∣∣∣∣	

3
n=1

(
ω

(i)2
Q − ω

(−tox1,n)2
Q

)
	4

j=1,i 
=j

(
ω

(i)2
Q − ω

(j )2
Q

)
∣∣∣∣∣ . (46)

The frequencies ω
(−tox1,1)
Q , ω

(−tox1,2)
Q , and ω

(−tox1,3)
Q are fre-

quencies calculated with Eq. (33) but with εtox(ω) replaced
with ε∞

tox(ω2
tox,L2 − ω2)/(ω2

tox,T 2 − ω2). Unlike Eq. (36), the
denominator and numerator in Eq. (46) are cubic in
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FIG. 2. (Color online) Dispersion relation of coupled interfacial
plasmon-phonon system with n = 1012 cm−2 for a substrate of SiO2

and 20 nm of HfO2 top dielectric. The five IPP branches are drawn
in thick lines, while the SPP branches are shown in dotted lines. The
graphene plasmon dispersion (ωp) is plotted with a dot-dashed line.
The cutoff Q = Qc is determined from the crossing of ω = vF Q and
the plasma branch ωp(Q). In the limits Q → 0 and Q → ∞, the
IPP branches converge to the pure phonon and plasmon branches. In
between, they are a mix of the pure branches.

ω2. �(tox,2)(ω), �(box,1)(ω), and �(box,2)(ω) are similarly
defined.

III. NUMERICAL METHODOLOGY

Having set up the theoretical framework for the electron-
IPP interaction, we discuss in this section the details of
the calculation of the dispersion of the coupled interfacial
plasmon-phonon modes, the electron-IPP coupling coefficient,
the momentum relaxation rate, and the remote-phonon-limited
electron mobility.

A. Interfacial plasmon-phonon dispersion

In this section, we compute the dispersion relation (ω(l)
Q ) by

solving Eq. (17). For simplicity, we use the zero-temperature,
long-wavelength approximation for 	(Q,ω) in the random
phase approximation:29,30

	(Q,ω) = �(ω − vF Q)	>(Q,ω) + �(vF Q− ω)	<(Q,ω),

(47)

where

	>(Q,ω) = Q2vF (πn)
1
2

πh̄ω2
, 	<(Q,ω) = −2(πn)

1
2

πh̄vF

,

and n is the electron density.
In Fig. 2, we show the dispersion relation for an SiO2

substrate with a 20 nm HfO2 top dielectric at n = 1012 cm−2,
with the parameters taken from Table I. The five coupled
IPP branches are drawn with solid lines, while the four SPP
branches are plotted in dotted lines. The SPP branches are
determined from Eq. (33), while the plasmon branch (ωp) is

TABLE I. Parameters [see Eq. (1)] used in computing the
dispersion relation and scattering rates. They are taken from Refs. 26
and 19.

SiO2 HfO2

ε0
ox (ε0) 3.90 22.00

εi
ox (ε0) 3.05 6.58

ε∞
ox (ε0) 2.50 5.03

ωTO1 (meV) 55.60 12.40
ωTO2 (meV) 138.10 48.35

d (nm) 0.35

determined from the zeros of the equation,

1 − GQ(d,d)e2	>(Q,ω), (48)

which gives the dispersion of the pure graphene plasmons
when the frequency dependence of the substrate dielectric
function is neglected and only the effect of the image charges
is taken into account.

Given the discontinuity of 	(Q,ω) in the long wavelength
approximation, the dispersion of the IPP branches is also
discontinuous, and this can be seen in Fig. 2. To work around
this, we first calculate the IPP branches (ω>

Q) using Eqs. (17)
but with 	(Q,ω) = 	>(Q,ω). We also calculate the IPP
branches (ω<

Q) with 	(Q,ω) = 	<(Q,ω). The absence of any
ω dependence in 	<(Q,ω) means that there are only four ω<

Q

solutions for each Q. The final solution is obtained by setting

ω(Q) = �(ω>
Q − vF Q)ω>

Q + �(vF Q − ω>
Q)ω<

Q,

where �(· · ·) is the Heaviside function. In other words, we
“stitch” the four lowest ω>

Q and ω<
Q solutions together. This

method allows us to define an IPP branch that is defined for
all values of Q. We also introduce a Landau damping cutoff
Q = Qc, which is the root of the equation ωp(Q) = vF Q.
Beyond the Landau damping cutoff, Q > Qc, the four SPP
solutions are used instead.

In Fig. 2, we observe that in the long and short wavelength
limits (Q → 0 and Q → ∞), the IPP branches converge
asymptotically to the “pure” plasmon and SPP branches, i.e.,

lim
Q→0

⎛
⎜⎜⎜⎜⎜⎜⎝

ω
(IPP1)
Q

ω
(IPP2)
Q

...

ω
(IPP5)
Q

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

ωp

ω
(SPP1)
Q

...

ω
(SPP4)
Q

⎞
⎟⎟⎟⎟⎟⎠

and

lim
Q→∞

⎛
⎜⎜⎜⎜⎜⎝

ω
(IPP1)
Q

...

ω
(IPP4)
Q

ω
(IPP5)
Q

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

ω
(SPP1)
Q

...

ω
(SPP4)
Q

ωp

⎞
⎟⎟⎟⎟⎟⎠ .
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At intermediate values of Q, the IPP branches are a mixture
of the pure branches.

B. Electron-phonon coupling

Here, the electron-phonon coupling coefficients M
(l)
Q of

the IPP and the SPP modes corresponding to the phonon
dispersion in Fig. 2 are compared. Recall that the IPP
modes are formed through the hybridization of the SPP and
graphene plasmon modes, and their coupling to the graphene
electrons are different to that of the SPP modes. We plot
M

(l)
Q (�/A)1/2, where A is the area of the primitive unit cell

in SLG, for the SPP and IPP modes in Fig. 3(a). At longer
wavelengths in the limit Q → 0 [Fig. 3(b)], the strength of
the antiscreening diminishes, and the electron-IPP coupling
coefficients converge to those of the electron-SPP coupling
coefficients, i.e.,

lim
Q→0

⎛
⎜⎜⎜⎝

M
(IPP2)
Q

...

M
(IPP5)
Q

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

M
(SPP1)
Q

...

M
(SPP4)
Q

⎞
⎟⎟⎟⎠ ,

because limQ→0 	(Q,ω) = 0 and the effects of screening di-
minish at small Q. This is expected because the corresponding

excitation frequencies also converge, i.e.,

lim
Q→0

⎛
⎜⎜⎜⎝

ω
(IPP2)
Q

...

ω
(IPP5)
Q

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ω
(SPP1)
Q

...

ω
(SPP4)
Q

⎞
⎟⎟⎟⎠ .

This can be seen in Fig. 2.
We observe in Fig. 2 discontinuities in the IPP dispersion,

which in turn lead to discontinuities in the electron-IPP
coupling coefficient M

(l)
Q (Fig. 3) as we will see later.

The appearance of these discontinuities follow from the
discontinuous 	(Q,ω) in Eq. (47). In Fig. 2, IPP excitations
in the region ω < vF Q correspond to intraband transitions
between electron states in the linear dispersion approximation.
Conversely, excitations in the region ω > vF Q correspond to
interband transitions. When ω < vF Q, 	(Q,ω) = 	<(Q,ω)
in Eq. (47) has no ω dependence, giving us a static screening;
when ω > vF Q, the ω dependence of 	(Q,ω) = 	>(Q,ω)
gives us dynamic screening. This means that the effects of
dynamic screening are more important at low electron densities
where interband transitions are more probable.

C. Scattering rate and remote phonon-limited
mobility formulas

The momentum relaxation rate for an electron in band s

with wave vector K can be written as

�RP(s,K) = 2π

h̄

∑
l

∑
s ′

∑
Q

∣∣M (l)
Q αsK+Q,s ′K

∣∣2[1 − ss ′ cos(θK+Q − θK)]
{[

1 + NB

(
ω

(l)
Q

)][
1 − f (Es ′K+Q)

]
× δ
(
EsK − Es ′K+Q − h̄ω

(l)
Q

)+ NB

(
ω

(l)
Q

) [
1 − f (Es ′K+Q)

]
δ
(
EsK − Es ′K+Q + h̄ω

(l)
Q

)}
, (49)

where NB(ω) = (eh̄ω/kBT − 1)−1, f (E) = [e(E−EF )/kBT +
1]−1, and EsK = sh̄vF |K|. In assuming the latter expression,
we use the Dirac-conical approximation. Equation (49) au-
tomatically includes the Fermi-Dirac distribution and Pauli
blocking of the final states, and remains applicable when the
doping level is high.

The expression for the IPP/SPP-limited part of the electrical
conductivity is

σRP = gsgve
2

4πh̄2kBT

∫ ∞

0
f (E − EF )

× [1 − f (E − EF )]�tr (E)−1E dE, (50)

where gs = 2 and gv = 2 are the spin and valley degeneracies,
respectively. Only the contribution from the conduction band
is included in Eq. (50). We use Eqs. (49) and (50) to compute
the IPP- or SPP-limited electrical conductivity by setting

�tr(E) = �RP(s,K). (51)

In making this approximation, we ignore the other effects
(ripples, charged impurity, acoustic phonons, optical phonons,
etc). The scattering rates from the acoustic and optical phonons
tend to be significantly smaller and are not the limiting
factor in electrical transport in supported graphene.31 Impurity

scattering tends to be the dominant limiting factor, but its
effects can be reduced by varying fabrication conditions. Thus
the conductivity using Eq. (51) gives us its upper bound. We
calculate the remote phonon-limited mobility as

μRP = σRP

en
, (52)

where n = gsgv

2πh̄2v2
F

∫∞
0 f (E − EF )E dE is the electron density.

We compute the remote phonon-limited mobility numerically,
using the well-known Gilat-Raubenheimer method32 to dis-
cretize the sum in Eq. (49).

IV. EFFECT OF TOP-GATE THICKNESS ON
ELECTRON MOBILITY

In this section, we look at the effects of the top oxide
thickness on the electron-IPP and electron-SPP coupling. The
latter case corresponds to the case without plasmonic coupling
and serves as a basis of comparison when we consider electron-
IPP interaction. We use the computed electron-remote phonon
coupling to determine the top oxide thickness dependence of
μIPP.
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FIG. 3. (Color online) (a) Plot of M
(l)
Q (�/A)1/2 for n = 1012 cm−2

in SiO2-supported graphene with 20 nm HfO2 top dielectric. (b) The
same plot but at small Q. M

(SPP1)
Q (solid square) and M

(IPP2)
Q (open

diamond) are highlighted. As Q → 0, the two converge. Similarly,
M

(SPP3)
Q (solid circle) and M

(IPP4)
Q (open triangle) converge as Q → 0.

A. Without plasmonic coupling

We first look at the case where the coupling with graphene
plasmons is neglected. This allows us to isolate the effects
of the top oxide thickness and the coupling between the
dipoles in the top and bottom oxides. In a SLG sheet with
no HfO2 top dielectric and a semi-infinite SiO2 substrate,
the excitation energies of the substrate are determined by
Eq. (19), i.e., εbox(ω) + ε0 = 0, which follows from the
continuity of the electric field and displacement across the
substrate-air interface, and are independent of the wave vector
Q (ω(SiO2,1) = 61 meV and ω(SiO2,2) = 149 meV). Likewise,
for a SLG sheet supported on a semi-infinite HfO2 substrate,
the excitation energies computed from the equation εtox(ω) +
ε0 = 0 are also Q independent (ω(HfO2,1) = 21.3 meV and
ω(HfO2,2) = 55.1 meV). However, in SLG supported on a
semi-infinite SiO2 substrate with a HfO2 top dielectric of finite
thickness (tox), the dipole excitations in the HfO2 top dielectric
and the SiO2 substrate are coupled, altering the dispersion of
the SPP excitations. We compute the SPP dispersion using
Eq. (33) for tox = 2 and 200 nm, and plot them in Fig. 4.
Figure 4(a) shows the SPP dispersion for tox = 2 nm. The SPP
energy is Q dependent for all four branches. The coupled SPP
branches diverge from the uncoupled SPP branches as Q → 0.
On the other hand, in the short wavelength limit, they converge
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FIG. 4. (Color online) Surface polar phonon dispersion in SiO2-
supported SLG with (a) 2 nm of and (b) 200 nm of HfO2 top dielectric
at n = 1012 cm−2. The SPP modes (ω(SPP1)

Q , ω
(SPP2)
Q , ω

(SPP3)
Q , and

ω
(SPP4)
Q ) are drawn with solid lines. The dispersion of SiO2-supported

and HfO2-supported SLG with no top dielectric are plotted in dashed
lines. KF is the Fermi wave vector.

towards the uncoupled SPP energies, i.e.,

lim
Q→∞

⎛
⎜⎜⎜⎜⎜⎝

ω
(SPP1)
Q

ω
(SPP2)
Q

ω
(SPP3)
Q

ω
(SPP4)
Q

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ω(HfO2,1)

ω(HfO2,2)

ω(SiO2,1)

ω(SiO2,2)

⎞
⎟⎟⎟⎠ ,

as expected. In either limit, the excitation energy of the coupled
SPP modes are close to that of the uncoupled SPP modes.
This suggests that even with an ultrathin top oxide, the SPP
dispersion does not change significantly.

Although the dispersion of the coupled SPP modes is
similar to that of the uncoupled SPP modes, the same cannot
be said of the electron-SPP coupling. We plot the electron-SPP
coupling coefficients in Fig. 5 for (a) tox = 200 nm, (b)
20 nm, and (c) 2 nm at n = 1012 cm−2. In Fig. 5(a), the
coupling coefficients MQ in top-gated and bottom-gated SLG
scale as Q−1/2 in the long wavelength limit (Q → 0). The
electron-SPP coupling in top-gated SLG is smaller than that
in bottom-gated SLG because of mutual screening by the top
and bottom oxides in top-gated SLG. When tox = 20 nm, the
long wavelength limit of MQ does not scale as Q−1/2. This is
because the top oxide thickness provides a natural wave vector
cutoff. When tox = 20 nm, Q = t−1

ox is around 0.28KF , given
that the Fermi wave vector is KF = √

πn. In Fig. 5(b), we
observe that MQ starts to deviate significantly from the Q−1/2

behavior at around Q = t−1
ox . With ultrathin top oxide (tox = 2

nm), the cutoff (t−1
ox = 2.8KF ) is even larger. Therefore, in

Fig. 5(c), the coupling coefficient deviates from the Q−1/2

behavior over the entire range of Q values. From the plots in
Fig. 5, we see that the electron-SPP coupling becomes weaker
with decreasing tox. At small tox, the metal layer is closer
to the bottom and top oxide-air interfaces, and screens more
effectively the scattering charge distribution.
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FIG. 5. (Color online) Electron-SPP coupling coefficients in
SiO2-supported SLG with (a) 200 nm, (b) 20 nm, and (c) 2 nm of
HfO2 top dielectric at n = 1012 cm−2. The uncoupled electron-SPP
coupling coefficients (M (SPP1)

Q , M
(SPP2)
Q , M

(SPP3)
Q , and M

(SPP4)
Q ) are

drawn with dashed lines and solid symbols. The dispersion of
SiO2-supported and HfO2-supported SLG with no top dielectric are
plotted in solid lines and open symbols. KF is the Fermi wave vector.

B. With plasmonic coupling

Next, we take plasmonic coupling to the SPP modes into
account. In order to understand the effects of plasmonic
coupling, we first look at the energy dispersion ωp(Q) of
the plasmons. It is important because Landau damping sets
in when Q > Qc, where Qc is the cutoff wave vector
and determined by the equation Qc = ωp(Qc)/vF . Where
there is Landau damping, the plasmons are no longer good
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FIG. 6. (Color online) Plasmon dispersion at (a) n = 1011 cm−2,
(b) 1012 cm−2, and (c) 1013 cm−2 for tox = 2, 5, 10, 20, and
200 nm plotted in solid lines. In each subfigure, the lowest (highest)
branch corresponds to tox = 2 nm (tox = 2 nm). The electron energy
dispersion is drawn with dotted lines. The dashed lines show the
Landau cutoff (Qc) at the intersection of the different plasmon
dispersion curves and the electron energy dispersion. The leftmost
(rightmost) line corresponds to tox = 2 nm (tox = 200 nm).

quasiparticle excitations and cannot couple to the SPP modes.
Thus, at such large wave vectors, plasmonic coupling and
screening cannot take place.

In SLG, the plasmon dispersion is determined by Eq. (48).
Physically, the energy of the plasmon modes depends on the
electron-electron interaction strength, which is proportional to
the GQ(d,d) term in Eq. (48). Hence, when the interaction
strength is weaker, the energy of the plasmon excitation also
decreases. Figure 6 shows the plasmon dispersion computed
for different tox at various electron densities (a) n = 1011 cm−2,
(b) 1012 cm−2, and (c) 1013 cm−2. In Fig. 6(a), the plas-
mon dispersion curves at n = 1011 cm−2 are plotted. As
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FIG. 7. (Color online) Plot of (a) electron-SPP and (b) electron-
IPP coupling coefficients at n = 1011 cm−2 for tox = 2 nm. The
corresponding electron-SPP and electron-IPP coupling coefficients
plots for tox = 200 nm are shown in (c) and (d), respectively. The
coupling coefficients without Landau damping are plotted in dashed
lines in (b) and (d). The dotted line in (b) and (d) indicates the position
of the cutoff wave vector Qc.

tox decreases, ωp(Q) also decreases because a thinner top oxide
increases the image charge screening effect of the metal layer
and thus weakens electron-electron interaction in the SLG.
The energy dispersion of the SLG electron is also shown.
Given that Qc is determined by the intersection of ωp and
vF Q (plotted in dotted lines in Fig. 6), we find that Qc

shifts further to the right as tox increases. In other words,
plasmonic coupling and screening become weaker as the top
oxide becomes thinner. Figure 6(a) shows that the Qc for
tox = 2 and 5 nm is essentially zero when n = 1011 cm−2.
In other words, there is no plasmonic coupling. At larger tox

values, Qc moves away from the origin. Figure 6(b) shows the
plasmon dispersion for n = 1012 cm−2. The larger electron
density also implies a higher ωp and larger Qc. Except for
tox = 2 nm, the plasmonic coupling and screening for other
tox are also significant. In Fig. 6(c), the large electron density
(n = 1013 cm−2) results in essentially the same Qc for all
tox values because the plasmon dispersion curves converge at
large Q.

Given the difference in the plasmon dispersion and the
concomitant onset of Landau damping, we look next at how the
difference in tox and plasmonic coupling affects electron-IPP
coupling. Figure 7 shows the electron-SPP and electron-IPP

coupling coefficients at n = 1011 cm−2 for tox = 2 and 200 nm.
For tox = 2 nm, the electron-SPP [Fig. 7(a)] and electron-
IPP [Fig. 7(b)] coupling coefficients are essentially the same,
because Qc is set at the origin. Hence all the IPP modes do not
couple to the plasmons and are heavily damped. The electron-
IPP coupling coefficients without Landau damping are also
drawn in dashed lines in Fig. 7(b) for comparison.

At tox = 200 nm, the screening effect of the metal layer
becomes much weaker. Hence the electron-SPP [Fig. 7(c)] and
electron-IPP [Fig. 7(d)] coupling coefficients are different at
long wavelengths, because Qc is not at the origin. Nonetheless,
when Q < Qc, the undamped electron-IPP coupling coeffi-
cients are similar to the electron-SPP coupling coefficients
because of the weak plasmonic coupling. For example, we
notice that M

(IPP5)
Q [right-pointing triangles in Fig. 7(d)] is

close to M
(SPP4)
Q [left-pointing triangles in Fig. 7(c)].

At n = 1012 cm−2, the effects of the top oxide thickness are
different. The higher electron density implies higher plasmon
energies and, thus, a rightward shift in Qc and the onset of
Landau damping. The undamped IPP modes are also more
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FIG. 8. (Color online) Plot of (a) electron-SPP and (b) electron-
IPP coupling coefficients at n = 1012 cm−2 for tox = 2 nm. Only
a small fraction of the IPP modes are not Landau damped. The
corresponding electron-SPP and electron-IPP coupling coefficients
plots for tox = 200 nm are shown in (c) and (d), respectively. The
coupling coefficients without Landau damping are plotted in dashed
lines in (b) and (d). The dotted line in (b) and (d) indicates the
position of the cutoff wave vector Qc. In (d), a large fraction of the
IPP modes are coupled to the plasmons because the onset of Landau
is significantly delayed.
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FIG. 9. (Color online) Plot of (a) electron-SPP and (b) electron-
IPP coupling coefficients at n = 1013 cm−2 for tox = 2 nm. The
corresponding electron-SPP and electron-IPP coupling coefficients
plots for tox = 200 nm are shown in (c) and (d), respectively. The
coupling coefficients without Landau damping are plotted in dashed
lines in (b) and (d). The dotted line in (b) and (d) indicates the position
of the cutoff wave vector Qc.

strongly coupled to the plasmons. Figures 8(a) and 8(b) show
the electron-SPP and electron-IPP coupling coefficients at n =
1012 cm−2 for tox = 2 nm. Unlike Fig. 7(b), Qc is no longer
at the origin. Thus a small but significant fraction of the IPP
modes are not Landau damped, as we can see in Fig. 8(b). For
tox = 200 nm, the electron-SPP and electron-IPP coefficients
are plotted in Figs. 8(c) and 8(d). Landau damping is shifted
to the right of Q = KF because of the much thicker top oxide.
Hence a significant fraction of the IPP modes are coupled to
the plasmons and are not Landau damped.

At n = 1013 cm−2, the effects of the top oxide thickness
on electron-IPP coupling are similar. In Fig. 6(c), we see that
Qc is essentially the same for all tox values, i.e., Qc ∼ 3KF .
This implies that the effect of Landau damping is negligible
for electron-IPP coupling. Figures 9(a) and 9(b) show the
electron-SPP and electron-IPP coupling coefficients at n =
1013 cm−2 for tox = 2 nm, while Figs. 9(c) and 9(d) show
the electron-SPP and electron-IPP coupling coefficients for
tox = 200 nm. Although the electron-SPP coupling coefficients
for tox = 2 nm [Fig. 9(a)] and tox = 200 nm [Fig. 9(c)] are very
different, the electron-IPP coefficients in Figs. 9(b) and 9(d)
are very similar because of the strong plasmonic coupling.

C. Mobility dependence on top oxide thickness

We use Eq. (52) to compute the SPP/IPP-limited mobility
for different tox at different electron densities (n = 1011, 1012,
and 1013 cm−2). Figure 10 shows the remote phonon-limited
mobility. In Fig. 10(a), we ignore plasmonic coupling and
the electron-SPP coupling coefficients are used to compute
the mobility μSPP. In Fig. 10(b), the mobility from electron-
IPP scattering μIPP is calculated instead. Without plasmonic
coupling, μSPP decreases with increasing electron density
and top oxide thickness because a thicker tox reduces the
screening effect of the metal gate on electron-SPP coupling.
The increase of μSPP with decreasing tox also becomes smaller
at larger n because a smaller proportion of electron-SPP
scattering events are affected by the heavily screened long
wavelength SPP modes. These two results parallel those found
for charged impurity scattering in top-gated SLG8: a thinner
top oxide improves the mobility as a result of screening by
the metal gate but this mobility improvement is smaller at
higher electron densities. A similar gate screening effect was
reported by Laikhtman and Solomon,33 who found that a
thinner HfO2 leads to an increase in remote-phonon-limited
channel mobility in Si.

Figure 10(b) shows the plot of μIPP versus tox. At n =
1011 cm−2, plasmonic coupling and dynamic screening is
weak. The Landau damping is also substantial. Thus the
dependence of μIPP on tox is similar to the dependence of
μSPP. For tox = 200 nm, we have μIPP ≈ 1500 cm2V−1s−1.
At n = 1012 cm−2 and tox = 2 nm, μSPP and μIPP are the
same because of the lack of plasmonic screening. However,
as tox increases, μIPP also increases because the plasmons are
screened less and plasmonic coupling is larger. This highlights
two screening phenomena by the top metal gate. First, the
top metal gate directly screens the interaction between the
electrons and the SPP modes in the oxides. Secondly, it also
screens the plasmons which screen the interaction between
electrons and the SPP modes. This screening of, not by, the
plasmons results in a stronger interaction between the electrons
and the SPP modes. Therefore, at low electron densities,
the decrease in μIPP with a thicker tox at n = 1011 cm−2

can be explained by the dominance of the first screening
phenomenon. On the other hand, the increase in μIPP with tox at
n = 1012 cm−2 is a consequence of the dominance of the latter

10
0

10
2

10
3

10
4

t
ox

 (nm)

μ 
(c

m
2 V

−
1 s−

1 )

(SPP) (IPP)

(a)

10
0

10
2

(b)

t
ox

 (nm)

1011 cm−2

1012 cm−2

1013 cm−2

1011 cm−2

1012 cm−2

1013 cm−2

FIG. 10. (Color online) Plot of (a) μSPP and (b) μIPP at n = 1011,
1012, and 1013 cm−2 for different tox values.
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screening phenomenon. At n = 1012 cm−2 and tox = 200 nm,
we have μIPP ≈ 5500 cm2V−1s−1.

At n = 1013 cm−2, μSPP and μIPP do not change much
with tox, because the electron-SPP and electron-IPP coupling
coefficients are very similar over the relevant range of wave
vectors (0 < Q < 2KF ) except at long wavelengths, as can be
seen in Fig. 9. We also find that μIPP � μSPP because there
is little Landau damping and the effects of screening are very
strong.

V. OTHER FACTORS AFFECTING ELECTRON MOBILITY

A. Electron density

We also calculate the conductance (σIPP and σSPP) and
electron mobility (μIPP and μSPP) from n = 1011 to 1013 cm−2

at tox = 5 and 30 nm, and plot the results in Fig. 11. The
tox of 30 nm is chosen so that we can compare our results
to the experimental data from a top-gated SLG structure in
Ref. 24. The tox of 5 nm allows us to model the effects of
a realistic ultrathin HfO2 top gate. In Fig. 11(b), the μIPP

for tox = 30 nm (solid line) and tox = 5 nm (dash-dot line)
converge except at low densities (n < 3 × 1011 cm−2), which
we can see in the inset. This suggests that the μIPP does not
vary significantly with the top oxide thickness. As n → 0, μIPP

and μSPP naturally converge as expected for either tox because
the effects of plasmonic coupling and dynamic screening
diminish.

At very low n, we have limn→0 μIPP = μSPP ≈
1500 cm2V−1s−1 for tox = 30 nm. Likewise, as the electron
density increases and dynamic screening becomes stronger,
μIPP increases and diverges from μSPP. A similar electron-
density dependence on remote-phonon-limited channel mo-
bility in Si was reported by Laikhtman and Solomon33 and by
Ren and co-workers.34 In contrast, in simpler remote phonon
scattering models,9,12 the remote phonon-limited mobility μRP

in graphene scales approximately as n−α , where α ≈ 0.3 to
0.5, i.e., the μRP decreases with electron density. We can fit
the room temperature (300 K) electron density dependence of
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FIG. 11. (Color online) Plot of the (a) conductance and (b)
mobility for the SPP and IPP remote phonon models. For tox = 30 nm,
σIPP and μIPP (σSPP and μSPP) are drawn in solid (dashed) lines. For
tox = 5 nm, σIPP and μIPP (σSPP and μSPP) are drawn in dash-dot
(dotted) lines. The inset in (b) shows a zoomed-in plot of the
mobility (μSPP and μIPP) for tox = 5 and 30 nm between n = 0 to
2 × 1012 cm−2.

μIPP for tox = 30 nm with a simple empirical formula:

μIPP(n) = μ0
SPP +

(
μ∞

IPP − μ0
SPP

)
n√

n2 + n2
0

, (53)

where μ0
SPP = 1500 cm2V−1s−1 is the low electron density

limit of μSPP, and μ∞
IPP = 28 000 cm2V−1s−1 is the maximum

μIPP value; n0 is a fitting parameter which we set equal to
6 × 1012 cm−2. The formula in Eq. (53) yields a maximum μIPP

value of 28 000 cm2V−1s−1, which sets the upper bound to the
electron mobility. At the technologically relevant density of
n = 1012 cm−2, we find μIPP = 5500 cm2V−1s−1 and μSPP =
1600 cm2V−1s−1.

We compare our mobility calculations to the experimental
results in Ref. 24, where Zou et al. reported the data from
transport measurements of very high quality HfO2-covered,
SiO2-supported SLG. Using Matthiessen’s rule, they estimate
that remote phonons from the HfO2 top gate set a maximum
field-effect mobility of μFE ∼ 20 000 cm2V−1s−1 at room
temperature, based on their resistivity data over the electron
density range of n = 1012 to 3 × 1012 cm−2. When the remote
phonon contribution from the SiO2 substrate is included,
they obtain μFE ∼ 17 000 cm2V−1s−1. Remarkably, this falls
within our range of calculated μIPP values between n = 1012

and 1013 cm−2: μIPP = 5500 to 24 200 cm2V−1s−1. Since
μFE � μSPP ≈ 1500 cm2V−1s−1, it implies that plasmonic
coupling and dynamic screening must be included in a realistic
theory of remote phonon scattering.

Our mobility results between n = 1012 and 3 × 1012 cm−2

are significantly lower (μIPP = 5500 to 13 800 cm2V−1s−1 at
300 K) than their estimate because the dominant TO phonon
frequency ωTO1 of HfO2 in our model is 12.40 meV, whereas
the Fourier transform infrared (FTIR) spectroscopy measure-
ment of amorphous HfO2 in Ref. 24 suggests a TO phonon fre-
quency of around 40 meV. Using this value (ωTO1 = 40 meV),
we obtain instead μIPP = 7100 to 15 100 cm2V−1s−1, which
is closer to the experimental estimate, for n = 1012 to
3 × 1012 cm−2. From this, we estimate that the oxides in
HfO2-covered, SiO2-supported SLG set an electron mobility
upper bound of 7100 cm2V−1s−1 at n = 1012 cm−2. We also
fit the calculated data (with ωTO1 = 40 meV) to Eq. (53), and
find that it yields a maximum IPP-limited electron mobility of
μ∞

IPP = 31 000 cm2V−1s−1.
The temperature dependence of the different scattering

processes can be used to determine their role in limiting elec-
tron mobility. Using a deformation potential approximation,
Hwang and Das Sarma35 estimate that the acoustic phonon-
limited mobility31 in SLG scales as T −α , where α = 1 in the
high temperature limit. This is supported by the DFT-based
study by Kaasbjerg, Thygesen, and Jacobsen.36 The temper-
ature dependence of optical phonon-limited mobility is less
clear. Fratini and Guinea suggest that it scales approximately
as μ ∝ eh̄ωop/(kBT ), where ωop is the characteristic frequency of
the optical phonon (intrinsic or remote). In the HfO2-covered,
SiO2-supported SLG, there are four remote excitation or
SPP frequencies in the surrounding oxides. Furthermore, the
coupling with the graphene plasmons alters the dispersion of
the SPP modes to give us wavelength-dependent excitation
frequencies, as seen in Fig. 2. Hence it would be interesting to
determine the temperature dependence of μIPP.
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We calculate μIPP from T = 80 to 400 K for n = 1012 to
1013 cm−2 at intervals of �T = 20 K and �n = 1012 cm−2.
The results are shown in Fig. 12. The first thing we notice is that
μIPP scales as T −α , where α is between 1.8 and 2. At the high
electron density of n = 1013 cm−2, we have a well-defined
power law μIPP ∝ T −α , where α ≈ 1.8. On the other hand,
at the much lower electron density of n = 1012 cm−2, μIPP

scales as T −2 for T < 200 K. As T increases beyond 200 K,
interband transitions become more probable and μIPP deviates
from this power law, as can be seen in Fig. 12. Our results
suggest that at high temperatures and low electron densities,
electron-IPP scattering may be the limiting factor in electron
transport.

B. Interband transitions

When a electron in n-doped graphene is scattered by an
IPP excitation of energy ω and wave vector Q, it can undergo
either an intraband transition (s,K → s,K + Q) within the
conduction band (s = 1) or an interband transition (s,K →
s ′,K + Q, s 
= s ′) between the conduction (s = 1) and valence
(s = −1) bands. In intraband transitions, the IPP excitation
energy is ω < vF Q. In this case, the polarizability is ω

independent, i.e., 	(Q,ω) = 	<(Q). On the other hand, the
IPP excitation energy in interband transitions is ω > vF Q, and
the polarizability is ω dependent, i.e., 	(Q,ω) = 	>(Q,ω).
Figure 2 shows that the IPP excitations that can produce in-
traband transitions are almost dispersionless. However, where
ω > vF Q and the IPP excitations are more Q dependent, i.e.,
more dispersive, the IPP excitations can be emitted or absorbed
via interband transitions.

To understand the effect of the interband transitions, we
compute μIPP with and without interband transitions between
n = 0 and 1013 cm−2 at 300 K. The results are shown in
Fig. 13(a) and suggest that the electron-IPP scattering is
dominated by intraband processes. We find that there is a small
but significant increase in μIPP when interband transitions are
omitted. We plot in Fig. 13(b) �μIPP, the increase in μIPP.
�μIPP appears to be maximum at around n = 1012 cm−2 and
then decreases as n becomes larger, as expected because the
higher chemical potential prohibits more interband transitions.
Given that μIPP is only around a few thousand cm2V−1s−1 and
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with (solid) and without (dot-dash) interband transitions for tox =
30 nm. Without interband transition, μIPP is higher. (b) Plot of the
increase in μIPP (�μIPP) with respect to the electron density n. The
increase is maximum at around n = 1012 cm−2.

comparable to �μIPP at low n, this suggests that the interband
contribution to the electron mobility is much more important
at low n and that the omission of interband processes can
significantly overestimate the electron mobility.

VI. SUMMARY AND CONCLUSION

We have developed a theory of remote phonon scattering
in top-gated oxide that takes into account the thickness of the
top dielectric and the plasmonic coupling to the surface polar
phonon modes. We find that image charge screening by the top
gate reduces the bare interaction between the SLG electrons
and the SPPs as well as plasmonic coupling to SPP modes. The
effect of the top gate screening on electron-IPP interaction is
reduced at higher electron densities. We use our model to
estimate the remote phonon-limited mobility μRP in HfO2-
covered, SiO2-supported SLG. Our result agrees well with
those estimated in experiments. Without dynamic screening,
μRP is much lower than experimental estimates. At very
low electron densities (n = 1011 cm−2), dynamic screening
is unimportant and a thinner top oxide leads to a higher
μRP. In contrast, at higher electron densities (n = 1012 cm−2),
plasmonic coupling and dynamic screening become important,
and a thinner top oxide reduces dynamic screening and leads
to a lower μRP. However, at very high electron densities
(n � 1012 cm−2), the top oxide thickness dependence of μRP

vanishes. Based on the HfO2 phonon parameters in Ref. 24, we
estimate that the oxides in HfO2-covered, SiO2-supported SLG
set an electron mobility upper bound of 7100 cm−2V−1s−1 at
n = 1012 cm−2 and an overall maximum IPP-limited electron
mobility of μ∞

IPP = 31 000 cm2V−1s−1. Scattering by IPPs also
leads to an approximate power law temperature dependence
(μIPP ∝ T −α , where α = 1.8 to 2). We also show that electron-
IPP scattering is dominated by intraband processes except at
low electron densities.
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