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Starting from a general N -band Hamiltonian with weak spatial and temporal variations, we derive a low-
energy effective theory for transport within one or several overlapping bands. To this end, we use the Wigner
representation that allows us to systematically construct the unitary transformation that brings the Hamiltonian
into band-diagonal form. We address the issue of gauge invariance and discuss the necessity of using kinetic
variables in order to obtain a low-energy effective description that is consistent with the original theory. Essentially,
our analysis is a semiclassical one and quantum corrections appear as Berry curvatures in addition to quantities
that are related to the appearance of persistent currents. We develop a transport framework, which is manifestly
gauge invariant, and it is based on a quantum Boltzmann formulation along with suitable definitions of current
density operators such that Liouville’s theorem is satisfied. Finally, we incorporate the effects of an external
electromagnetic field into our theory.
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I. INTRODUCTION

When performing a semiclassical analysis, one naturally
encounters Berry phases1 and meanwhile, the importance
of these so-called geometrical phases in condensed matter
physics is beyond question.2–5 For example, not long ago,
it was realized that the electric polarizability can be defined
in terms of a Berry curvature, for the first time a consistent
formulation of this subject.6 Furthermore, research in the
field of the anomalous Hall effect (AHE) has shown that the
intrinsic contribution is related to a Berry curvature, which
is a quantum-mechanical property of a perfect crystal.7–9

Also, magnetic monopoles appearing in the definition of
a momentum space effective magnetic field give important
modifications to universal conductance fluctuations.5 Finally,
topological interference effects arise from spin Berry phases
in single molecular magnets.10

There are different ways to obtain semiclassical transport
equations (see Refs. 3 and 4, and references therein), like wave-
packet analysis,11–13 or the systematic diagonalization method
developed by Gosselin and coworkers,14–16 which, however,
does not include the possibility of time-dependent perturba-
tions. Furthermore, there are various works treating semiclas-
sical quantum transport equations that incorporate Berry phase
effects: the scenario of a general two-band model is considered
by Wong and Tserkovnyak,17 and spin-orbit coupled systems18

as well as a non-Abelian gauge-field formulation19 is investi-
gated. The Löwdin partitioning, or quasidegenerate perturba-
tion theory, used in the book of Winkler20 to derive effective
models for certain bands in spin-orbit coupled semiconductors
can also be related to a semiclassical treatment, however, there
focus is only put on the Hamiltonian, not on the dynamical
variables or other aspects of the system.

In this work, we present a self-contained derivation of
the semiclassical dynamics, which is based on the Wigner
representation21—or phase-space representation of quantum
mechanics—which is a natural starting point for a semi-
classical analysis. One big advantage is that one can obtain
corrections systematically to arbitrary order in h̄. Also, a
requantization of the effective theory is not necessary, which

is a big drawback of the wave-packet analysis, which derives a
Lagrangian from the equations of motion for the wave-packet
center of mass coordinates, and it is not always clear what the
canonical conjugate variables are. The relation between canon-
ical and kinetic pairs of conjugate variables, however, emerges
naturally in our formalism. We adopt a 4-component vector
notation, which allows us to incorporate spatial inhomogeneity
as well as temporal variation on an equal basis. In the course of
our treatment, we will find how fictitious electric and magnetic
fields (real space and its momentum space pendants) appear in
effective theories, and we complete our work by developing a
low-energy effective quantum transport theory, which is man-
ifestly gauge invariant and consistent with a description in the
original frame. Finally, we address the interesting question of
how an external electromagnetic field modifies the formalism.

Approaches related to ours have been considered before,
albeit from a somewhat different perspective and mainly
focused on stationary situations. The early work of Blount
employs an approach (termed mixed representation therein)
similar to the phase-space method used in our work.22 Even
though the concept of Berry phase was not known at that time,
Blount’s paper shares many results with the present work, aside
from using different terminology. Furthermore, Littlejohn
et al. elaborate in some detail the subtle issues related to the
multicomponent WKB analysis.23,24 Their proposed idea of
reducing the problem of multi-component WKB analysis to a
single-component one is strongly related to the idea presented
in this article. More specifically, analyzing the general spin-
orbit problem,24 they perform an approximate diagonalization
to find the quantities restricted to the subspace of a single po-
larization, and subsequently employ the results of scalar WKB
theory, at the expense of a noncanonical treatment. Within their
work, they too come to the conclusion that without apprecia-
tion of the role of Berry’s phase, a proper semiclassical descrip-
tion of a multiband system seems difficult, if not impossible.

We have several scenarios in mind of applying our for-
malism to studying the electron dynamics in the presence
of an arbitrary inhomogeneous and time-dependent ferro-
magnetic exchange field, which exhibits many interesting
phenomena.25–27 One can make various generalizations like
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adding a spin-orbit coupling term, which would give rise to an
even much broader range of new effects such as the anomalous
Hall effect, and the latter would be additionally modified
by the inhomogeneous magnetization. Studying spin-transport
phenomena and/or adding thermal gradients delivers a whole
new range of possibilities.28 Furthermore, there is a recently
discovered class of materials called topological insulators, in
which the quasiparticle momentum is intimately coupled to the
spin-degree of freedom and thus behaves similar to a relativis-
tic Dirac fermion.29,30 Now, adding an additional coupling be-
tween spatial and spin degrees-of-freedom leads to a physically
rich system already subject to various studies.31–35 Considering
the effects of mechanical rotation of these systems36,37 is
another interesting application for our formalism.

Approaches that diagonalize band space in order to obtain
an effective low-energy description have been performed
in the case of quasifree electrons in ferromagnetic metals
with spatiotemporally varying exchange field. There, one can
come up with a position-dependent unitary matrix U (r) that
diagonalizes spin space, which maps the problem on that of
a free particle in an (fictitious) electromagnetic field.38 The
converse situation of coupling between spin and momentum
as given by the spin-orbit interaction can equally be treated by
a momentum-dependent unitary matrix U ( p), for example, the
Foldy-Wouthuysen transformation in the case of the relativistic
Dirac equation.39

It is clear that the full quantum-mechanical problem of
surface Dirac fermions coupled to a general inhomogeneous
and time-dependent magnetization texture will, in general, be
very complex due to the locking of spin and momentum as well
as coupling between spin and spatial degrees of freedom. If
one wants to diagonalize spin space, the unitary transformation
has to involve the pair of canonical operators r and p, which
is rather difficult due to noncommutation of r and p. Our
approach relies on the fact that, if r and p are classical
variables, such a unitary transformation is much more simple
to find, and then, we resort to quantum corrections, which
are of the order h̄. Despite the fact that we are performing
formally an expansion in h̄, it does not necessarily need to
be restricted to the semiclassical regime. In fact, as pointed
out later, our actual expansion parameter might be a different
one, depending on the physical system and the regime under
investigation. For example, in the case of the Dirac theory, as
we will discuss thoroughly in Sec. VI, the actual scale relevant
for our expansion is the Compton wavelength λc = h̄

mc
so the

resulting Pauli equation still correctly describes the quantum
regime for scalar potentials smooth on the scale of λc.

The outline of this work is as follows. In Sec. II, we will
introduce the unitary transformation that performs a rotation
within band space such that the Hamiltonian becomes band
diagonal. Since this transformation is not uniquely defined,
we will discuss the implications of this additional gauge
degree of freedom. This motivates a description in terms of
kinetic variables, which leads to the appearance of Berry
curvatures, which is discussed in some detail in Sec. III. We
will also investigate how observables change in the course of
the diagonalization and we discuss the electronic spectrum as
well as energy corrections appearing therein. Subsequently, in
Sec. IV, we develop a manifestly gauge invariant description
of the physical system restricted to a certain band, i.e., we

seek a projected theory without the necessity to refer back to
the original Hamiltonian. To this end, we find equations of
motion for the quasiprobability density, essentially a quantum
Boltzmann equation applicable to a nonequilibrium scenario.
We also find current densities that obey a conservation law
corresponding to Liouville’s theorem in classical mechanics.
Our quantum-mechanical equations of motion are formally
similar to the equations of motion for the center-of-mass
motion of a wave packet and, in fact, the latter is just a
special case of our formulation. Finally, in Sec. V, we illustrate
how to treat the external electromagnetic field, which can be
done in the spirit of a hierarchy of effective theories. After
concluding the discussion of general systems, in Sec. VI,
we apply the apparatus developed to the Dirac equation and
readily find a relativistic version of the Pauli Hamiltonian,
thereby gaining some interesting insights into the structure of
the Dirac equation. For a concise summary of this work, the
reader might want to go to Sec. VI where all central results are
being referenced and find immediate application.

II. THE QUEST FOR A BAND-DIAGONAL HAMILTONIAN

We now consider a Hamiltonian that consists of N bands
and which is almost diagonal in momentum space p, but has
some additional spatial- and/or temporal variation imprinted
on it. In the usual quantum representation, it is expressed in
terms of the canonical pair of operators [r̂i ,p̂j ] = ih̄δij and
additionally carries the N × N dimensional matrix structure.
Prominent examples that fall into this category are the Dirac
equation to be studied in more detail in Sec. VI as well as the
aforementioned system of surface Dirac fermions coupled to
a spatially dependent magnetization.

For practical reasons, we resort to a description in terms
of single-particle Greens functions, or more specifically the
inverse thereof, � ≡ ih̄∂t1N − H(r̂, p̂,t). One reason is that
only � represents the complete equation of motion, i.e., all
kinetic equations involve this operator, and not H alone, for
example, we can generally write quantum kinetic equations in
the compact form

[�, D] = 0, (1)

where D represents any dynamical variable like the usual
retarded or Keldysh Greens functions, density of states, or the
density matrix for which Eq. (1) reduces to the well-known
von Neumann equation

ih̄∂tρ = [H,ρ] . (2)

The properties of D (the type of Greens function, etc.) enter
through appropriate boundary conditions in our parameter
space. For the example just given, we need to fix our density
matrix at some initial time ρ(t0) = ρ0.

We now transform everything into the Wigner
representation,40 so that our Hamiltonian and our observables
are a function of the variables r, p, t and energy ε so that (see
Appendix A for more details)

�(r,t, p,ε) ≡ ε1N − H(r,t, p). (3)
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Multiplication of operators is now performed by virtue of the
Moyal product,41

∗ ≡ exp
ih̄

2
�, (4)

where the differential operator � is given by

� = ←−
∂ r

−→
∂ p − ←−

∂ t

−→
∂ ε − ←−

∂ p
−→
∂ r + ←−

∂ ε

−→
∂ t

= −←−
∂ x

−→
∂ π + ←−

∂ π

−→
∂ x (5)

and we introduced the compact 4-component vector notation
x = (t,r) and π = (ε,− p). Note that we always use x, ∂x =
(∂t ,∂r ) and Ax = (At ,Ar ) in contravariant notation, whereas
we implicitly assume covariant notation for the symbols π ,
∂π = (∂ε,−∂ p) and Aπ = (Aε,−A p). Since contraction will
always be between pairs of x and π , there is no need to indicate
covariant vectors. This provides us a symmetric and compact
notation in the following treatment. The kinetic equation (1)
is straightforwardly transformed into the Wigner picture:

[�
∗, D] = 0. (6)

We are now looking for a unitary matrix U(x,π ) that trans-
forms our initial Hamiltonian �(x,π ) into a band-diagonal
Hamiltonian, denoted by �̄(x,π ) in the following, i.e.,

U ∗ U† = U† ∗ U = 1, (7)

U ∗ � ∗ U† = �̄. (8)

Let us note that upon this transformation, U ∗ ε ∗ U† can
acquire off-diagonal elements when U depends on time,
thus requiring the diagonalization of the combination � =
ε1N − H rather than H alone. This is one major difference to
previous semiclassical schemes.15 For diagonalizations that do
not require explicit dependency on the time parameter, treating
H and � is equivalent, and in the following, we will use the
term Hamiltonian equally for both objects. Note that another
advantage of using � instead of H is the form invariance of
the kinetic equation (6) under unitary transformations.

In the classical limit, the operators r̂i and p̂j commute,
while in the Wigner representation, the Moyal product (4)
becomes trivial as h̄ → 0; after all, in this formulation, the
Moyal product encodes the noncommutativity of the canonical
variables. Then, we essentially have to diagonalize an N × N

matrix H, whose elements are functions of r , t , and p. We call
the unitary matrix associated with this rotation in band space
U0(r, p,t), so that

U0 �U†
0 = �̄0 ⇔ U0HU†

0 = H̄0, (9)

and the diagonal elements of �̄0 constitute the classical
energies of the N bands described by our initial Hamiltonian.
At any rate, we assume from now on that we know the
diagonalization matrix U0 analytically. Note that all our
matrices parametrically depend on x and π , so we essentially
diagonalize locally at every point in 2 × (3 + 1)-dimensional
parameter space (see Fig. 1 for an illustration), which becomes
meaningful in the semiclassical limit, as position r , momentum
p, time t , and energy ε are well defined in this limit. Also note
that U0(r, p,t) is not uniquely defined, which brings up the
problem of gauge invariance as discussed in detail later.

x

y

z
|ξ(r, p, t)|σz

ξ(r, p, t)

U0(r, p, t)

FIG. 1. (Color online) Illustration of the band-diagonalization
scheme: Bloch-sphere representation for a simple two-band model
H = �ξ (r, p,t) · �σ = ξxσx + ξyσy + ξzσz where the vector is rotated
by U0(r, p,t) such that it aligns along the z axis at each point in phase
space.

Furthermore, if the band degrees-of-freedom couple to
only either x or π , then we already found the exact
expression U = U0. For example, treating metallic ferro-
magnets with inhomogeneous magnetization and neglecting
spin-orbit interactions,27 it is just necessary to only diagonalize
m(r)σ , since the energy dispersion is diagonal in spin space.
Then, the effect of U is that p acquires an additional vector
potential: p → p − ih̄U(∂rU†).

The general situation, where the degrees-of-freedom couple
to both spatial and momentum coordinates simultaneously,
is much more involved and chances that we can come up
with an exact solution for U(x,π ) are slim. Therefore we
adopt a gradient expansion approach where we expand the
Moyal product ∗ in powers of h̄ and calculate corrections
systematically order by order. The fact that we are performing
formally an expansion in h̄ does not necessarily imply that we
are restricted to the semiclassical regime. Our actual expansion
parameter might be a different one, depending on the physical
system and the regime under investigation. Typically, the
expansion parameter is the ratio of the energy associated with
band-dependent spatiotemporal variations and the interband
energy distance �, as illustrated in Fig. 2, and therefore, the
larger the band separations (or weaker coupling), the better
the approximation becomes. To emphasize this fact, we will
introduce the notation of �̄h in this paper to indicate that the
expansion is not necessarily a semiclassical one.

We assume that we already solved the zeroth-order problem
that yields the unitary matrix U0, so that now, we can introduce

E

Ef
Pi

Δ

FIG. 2. Illustration of the bands described by the Hamiltonian H
and � is a typical energy scale for interband distances. The projection
operator on the ith band is denoted by Pi . For low-energy processes
around the Fermi energy Ef , only one or few overlapping bands are
relevant and thus contribute to, e.g., transport properties. Corrections
due to the influence of other bands enter as Berry curvatures and are
∝1/�.
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gradient corrections to this matrix by writing

U = (1 + Ū1 + Ū2 + · · · )U0, (10)

which describes the matrix that diagonalizes our Hamiltonian
� to arbitrary order in �̄h. Ū1 is ∝ �̄h and will be specified
explicitly later. As a result of the expansion of the Moyal
product, we obtain the covariant derivatives

∂̄i = U0∂iU†
0 = ∂i − iAi , (11)

which acquire the Berry connections

Ai ≡ iU0(∂iU†
0 ), (12)

where ∂i is a placeholder for any of the possible derivatives
∂t ,∂ε,∂r , and ∂ p. Berry phases, or often called geometric
phases, are omnipresent in modern physics, and describe
phases picked up along a trajectory in curved geometries. Note
that Ai is an N × N matrix, which is Hermitian:

A†
i = −i(U0∂iU†

0 )† = −i(∂iU0)U†
0 = iU0(∂iU†

0 ) = Ai , (13)

where the last step is due to 0 = ∂i(U0U†
0 ) = (∂iU0)U†

0 +
U0(∂iU†

0 ) and the diagonal elements of Ai describe the usual
Berry connections arising from transport within a certain band.
The off-diagonal elements mix contributions from two bands
and thus describe effects due to interband coupling during
transport in a certain band. As we will see later, these interband
transitions will give rise to important corrections, for example,
the correction to the energy that appears to leading order in
�̄h. Transforming higher-order derivatives is straightforward,
except for the additional freedom of exchanging partial
derivatives, which leads to a general relation between Berry
connection matrices Ai . Starting from

U0∂j ∂iU†
0 = ∂̄j ∂̄i = (∂j − iAj )(∂i − iAi), (14)

and likewise,

U0∂i∂jU†
0 = ∂̄i ∂̄j = (∂i − iAi)(∂j − iAj ), (15)

and, if we assume symmetry of second derivatives ∂j ∂i = ∂i∂j ,
the following relation should hold:

∂iAj − ∂jAi = i[Ai ,Aj ]. (16)

In fact, this identity can be directly shown by using the
definition of A, see Eq. (12), and the exchange of partial
derivatives.

Now we have everything at hand to systematically calculate
�̄ = �̄0 + �̄1 + �̄2 . . . to arbitrary order in �̄h and to first
order, we explicitly obtain the following result for the
transformed expression:

�̄1 = Ū1�̄0 + �̄0Ū †
1 − h̄

2
{Aπ ,∂x�̄0} + h̄

2
{Ax,∂π �̄0}

+ ih̄

2
(Aπ �̄0Ax − Ax�̄0Aπ ). (17)

We obtain an additional constraint for Ūn from the condition
of unitarity (7), which to first order in �̄h reads

Ū1 + Ū †
1 + ih̄

2
[Aπ ,Ax]

!= 0, (18)

and is obtained by substituting 1 for �̄0 into the transformation
relation (17). Since this relation fixes the Hermitian part of Ū1,

we can make the ansatz

Ū1 = − ih̄

4
[Aπ ,Ax] + Y1,

with Y1 = −Y†
1 assumed to be antihermitian, such that

condition (18) is satisfied. Plugging Ū1 back into Eq. (17)
yields

�̄1 = [Y1,�̄0] − h̄

2

{
Aπ ,

[
∂x − i

2
Ax,�̄0

]}

+ h̄

2

{
Ax,

[
∂π − i

2
Aπ ,�̄0

]}
+ O(�̄h2). (19)

We observe that [Y1,�̄0] is completely off-diagonal and Y1 is
well suited to absorb the off-diagonal part of the last two terms
on the right-hand side of Eq. (19), in the following denoted
as Ro. After all, the objective is to diagonalize �̄, so we want
the off-diagonal part of �̄1 to vanish, which is achieved by the
condition

[Y1,�̄0] = Ro. (20)

The solution can be readily given as

⇒ (Y1)ij = (Ro)ij
εi − εj

(21)

in the case of a completely diagonalized (H̄0)ij = εiδij and
which is anti-Hermitian as desired. Here, we explicitly see
that corrections due to Y are inversely proportional to the
separation between bands, and thus are of the same order as
corrections due to Berry phases. In fact, the commutator on the
left side with the Hamiltonian H̄0 is exactly what also appears
in the von Neumann equation suggesting further that this
term describes corrections due to interband dynamics. From
Eq. (20), we also see that the expansion fails near mode conver-
sion points, so that explicit semiclassical diagonalization is not
possible. Instead, one can only perform block diagonalization
and, within the subspace of relevant bands, on has to resort to
other methods not subject of this work.

We remark that the difference between the diagonalization
of � and H is merely the modification of Y1 by that it acquires
an additional contribution from the off-diagonal elements of
the Berry connection At . However, this term is crucial when
our transformation U is time dependent and only then will the
formalism yield consistent results. Note that the definition (20)
does not fix the imaginary diagonal part of Y1, but without loss
of generality, we can set this part to zero. A nonzero imaginary
diagonal part corresponds to the linear order expansion of the
gauge phase factors eiχ(x,π ) [see Eq. (23)]. Essentially, the
freedom of choice here can be reduced to the problem of
gauge invariance, to be discussed in the next section.

Yet, we also want to capture the situation of degenerate
or overlapping bands, so the desired form of �̄ is in general
block diagonal. To formally express this matter, we introduce
the projectors Pi that define the bands (see Fig. 2) and
that, in the end, we want use for our effective theory. Of
course, the set of Pi has to be specified together with U0,
since the unitary transformation has a freedom of how we
distribute the bands amongst the entries of our matrix. For
example, a natural choice would be to sort the bands with
respect to their energies. Then, introducing the projected Berry

045308-4



EFFECTIVE QUANTUM THEORIES FOR BLOCH DYNAMICS . . . PHYSICAL REVIEW B 88, 045308 (2013)

connection A(d)
π ≡ PdAπPd ≡ ∑

i PiAπPi , we can write for
the Hamiltonian that is diagonalized up to first order in �̄h,

�̄ = �̄0 − h̄A(d)
π ∂x�̄0 + h̄A(d)

x ∂π �̄0

+ ih̄

4
Pd({Aπ ,[Ax,�̄0]} − {Ax,[Aπ ,�̄0]})Pd. (22)

As compared to expression (19), we can drop two anti-
commutators, since after truncation, A(d) and �̄0 commute.
As discussed more thoroughly below, this is even the case
when either �̄0 is block diagonal and/or the projected Berry
connections are non-Abelian.

Apart from the obvious term �̄0 = ε − H̄0, which can be
understood as the classical energy, the last term of Eq. (22)
can be thought of as correction to the energy due to interband
transitions and corresponds to the energy associated with
persistent circulating currents, as for example, the magnetic
Zeeman energy in the case of the Dirac equation (see
discussion in Sec. VI). The two middle terms in Eq. (22)
appear to be Berry phase corrections to this energy, however,
they are not unique in the sense that they depend on the specific
form of U0. The meaning will become more apparent later, but
before, we address the question of gauge invariance of the
effective Hamiltonian (22).

A. Gauge invariance

We mentioned previously that there is an additional degree
of freedom in the choice of unitary transformations U0 and
U ′

0, which all yield the same diagonal Hamiltonian, �̄ =
U0�U†

0 = U ′
0�U ′†

0 . These different unitary transformations
are related by local phase factors in 2 × (3 + 1)-dimensional
parameter space, so that we can formally connect two unitary
transformations U and U ′ by the (block-)diagonal N × N

phase matrix:

(x,π ) =

⎛
⎜⎜⎜⎜⎝

eiχ1(x,π ) 0 0

0 eiχ2(x,π ) 0 . . .

0 0 eiχ3(x,π )

...
. . .

⎞
⎟⎟⎟⎟⎠, (23)

where χn(x,π ) are arbitrary functions in our parameter space,
which are appropriately termed gauge fields. In fact,U ′

0 = U0

describes a gauge transformation and can be thought of as a
local phase transformation in an extended phase space that
includes time and energy. This gauge transformation changes
the Berry connection matrices according to

A′
k = iU ′

0∂kU ′†
0 = Ak

† + i∂k
† = Ak

† + Xk, (24)

where the field Xk = i∂k
† = ∂kdiag(χ1,χ2, . . . ,χN ) is a

(block-)diagonal matrix containing the partial derivatives of
the phases. Ak

† modifies the off-diagonal elements by
giving them additional phase factors, while the change in
diagonal elements is due to Xk . In principle, we have to
distinguish three different cases here, the first one being that
�̄0 is completely diagonalized with well-separated bands,
which corresponds to the situation just described. However,
when we keep part of �̄0 block-diagonal because bands are
overlapping or degenerate and we can distinguish the bands,
i.e., they have a physical meaning that we want to retain (for

example, we have spin-degenerate bands but want to describe
spin-dependent physics) then we have only a U(1) gauge
freedom within this subblock. Third and last, if we have M

degenerate bands, i.e., there is an M-dimensional subblock in
�̄0 that is proportional to the unit matrix, and furthermore, we
cannot or do not want to distinguish between the degenerate
bands, we have the additional degree of freedom to rotate
within this degenerate space giving us an additional SU(M)
gauge invariance. Contrary to the first two cases, this last
one describes a situation with the effective description of this
M-dimensional subspace being a non-Abelian gauge theory
with the symmetry group U(1) × SU(M) and consequently,
Xk constitutes a non-Abelian field. We do not differentiate
between these cases explicitly in the following because they
are straightforwardly treated in our formulas, thus requiring
us only to comment in situations where special care is
required.

According to the preceding discussion, the projected Berry
connection matrix is only modified due to X ,

A′(d)
x = PdA′

xPd = A(d)
x + Xx, (25)

and the alternative transformation due to U ′
0 leads to the

Hamiltonian

�̄′ = U ′ ∗ � ∗ U ′† = �̄0 − h̄

2

{
A′(d)

π ,∂x�̄0
} + h̄

2

{
A′(d)

x ,∂π �̄0
}

+ ih̄

4
Pd({Aπ ,[Ax,�̄0]} − {Ax,[Aπ ,�̄0]})Pd + O(�̄h2).

(26)

The last term, representing the interband transition corrections
to the energy, does not change, since the additional terms due
to Xx , Xπ are projected out by Pd and thus, as a consequence,
are absorbed by Y ′

1 viz. Ū ′
1, which of course does not need to

coincide with Ū1.
However, the other two terms linear in �̄h do explicitly

depend on the gauge, and therefore change the effective
Hamiltonian. Clearly, this shows that the effective Hamiltonian
alone is an incomplete description as it directly depends on this
additional degree of freedom. Therefore, in order to make any
sense out of this, we have to identify our physical observables,
because in the end, the physical results derived from our
effective theory should not depend on a specific gauge.

III. CANONICAL VERSUS KINETIC VARIABLES AND
GAUGE INVARIANT DESCRIPTION

The previous section showed us that there is still an
ingredient missing in our effective theories. In order to
investigate this matter, let us study the dynamics of our system,
and construct the effective theory such that the results obtained
within this description are consistent with what one would
obtain in the original frame. The question is now, whether one
can find a manifest gauge invariant formulation and, as we will
explain in the following, it is indeed possible.

A. Parameter transformation to kinetic variables

Let us consider the operator S that describes some physical
observable of our system and, in performing the rotation that
brings our Hamiltonian H into diagonal form, it transforms
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our observable S along with it. The observable in the rotated
frame S̄ is then related to the original operator S by virtue of
relation (48). We now consider the projected system, i.e., we
have in mind to develop an effective, yet exhaustive description
of the physics taking place within a certain band that is
sufficiently well separated from all other bands in order to
treat this band independently to a good approximation. For the
moment, let us assume that our observable S is band diagonal,
i.e., it is a scalar function of x and π , so that the last term in
relation (48) vanishes and we have

S̄ = S̄0 − h̄

2

{
A(d)

π ,∂xS̄0
} + h̄

2

{
A(d)

x ,∂π S̄0
} + O(�̄h2), (27)

where S̄0 = U0SU†
0 . Later, we will lift this restriction and

consider a matrix S with general structure in band space,
so that we will also get this additional term, giving rise to
important contributions. However, for the moment, Eq. (27) is
nothing but a Taylor expansion of S̄0 to first order in h̄,

S̄ = S̄0
[
x − h̄A(d)

π ,π + h̄A(d)
x

] + O(�̄h2), (28)

suggesting the parameter transformation to band projected
kinetic variables X and �,

X (d) = x − h̄A(d)
π , (29)

�(d) = π + h̄A(d)
x , (30)

so that we can write

S̄ = S̄0(X,�) + O(�̄h2). (31)

We note that to leading order in �̄h, we can equally write
A(x,π ) = A(X,�) + O(�̄h), since Berry connection terms are
already linear in �̄h.

P = p − h̄Ar is of course well known in the Hamilton
formulation of particles in an electromagnetic field. In an anal-
ogous way, the position R = r + h̄A p acquires an additional
Berry connection with its corresponding Berry curvature, or
momentum space magnetic field that gives rise to the so-called
anomalous velocity term. Furthermore, E = ε + h̄At attains
a contribution that gives rise to an electromotive force and
appears in the form of an effective electric field (see, for
example, Ref. 42). The same is true for the electromagnetic
field, where the electric field can be also rewritten in terms of a
time-dependent phase, effectively changing the gauge. Finally,
for reasons of symmetry, one would also have T = t − h̄Aε

but, at least in noninteracting Hamiltonian systems, Aε is zero,
since the energy dependency in � is trivial. However, the
situation is different if one considers an interacting system
and uses an effective noninteracting quasiparticle description,
because the self-energy that includes these interaction in
general carries a nontrivial energy dependence inherited by
the single-particle Greens function and thus by �.43

Let us have a look at the commutator relations between the
kinetic variables,14,16

[
R(d)

i

∗, P (d)
j

] = ih̄
(
δij + �

rp
ji

)
,[

R(d)
i

∗, R(d)
j

] = ih̄εijkB( p)
k , (32)[

P (d)
i

∗, P (d)
j

] = ih̄εijkB(r)
k ,

where we introduced

B(r) = h̄
(
∂r × A(d)

r

) − ih̄
(
A(d)

r × A(d)
r

)
, (33)

B( p) = h̄
(
∂ p × A(d)

p

) − ih̄
(
A(d)

p × A(d)
p

)
, (34)

which can be considered as a generalized magnetic field in real
space and reciprocal (or momentum) space. Such non-Abelian
Berry curvatures have been treated in Ref. 19. Furthermore,

�
rp
ij = h̄

(
∂A(d)

pj

∂ r i

− ∂A(d)
r i

∂ pj

− i
[
A(d)

r i
,A(d)

pj

])
. (35)

As we will also encounter later, the dimensionless tensor �rp

describes the change in the metric of the phase space due
to the parameter transformation from canonical to kinetic
variables (29). We can make this more apparent by relating
it to the change in differentials

dRi = (
δij + h̄∂rj

Api

)
drj , (36)

dPi = (
δij − h̄∂pj

Ari

)
dpj , (37)

so that

dR ·dP = dr
(
1 + �rp) d p + O(�̄h2). (38)

A more compact way to write these Berry curvatures is
to use the covariant derivative (11), projected onto our band-
diagonal space ∂̄

(d)
x = Pd∂̄xPd, for example,

�
rp
ij = h̄

(
∂̄

(d)
t i A

(d)
pj

− ∂̄ (d)
pj
A(d)

r i

)
. (39)

It is well known that the Berry curvatures are invariant with
respect to gauge transformations, and the commutator is
essential as it provides the full SU(M) gauge invariance in
the non-Abelian case.

In accordance with the effective magnetic fields (33)
and (34), we introduced the effective electric fields

E (r) = h̄
(
∂rA(d)

t − ∂tA(d)
r − i

[
A(d)

r ,A(d)
t

])
, (40)

E ( p) = h̄
(
∂ pA(d)

t − ∂tA(d)
p − i

[
A(d)

p ,A(d)
t

])
, (41)

which shows us indeed that At appears in the role of a
generalized electric potential, however, it can also depend on
momentum P . In the Abelian case (for non-Abelian fields, it
works if we take TrME and TrMB or when we take the covariant
derivatives (11) along with the full matrix structure of the
Berry connections), these fictitious fields obey homogeneous
Maxwell equations

∂ r/ p · B(r/ p) = 0, ∂ r/ p × E (r/ p) + ∂tB(r/ p) = 0, (42)

however, in order to determine these fields independently as
in classical electrodynamics, one would need two additional
inhomogeneous equations containing (effective) source terms
as inhomogeneities. Note that, in general, B(r/ p) and E (r/ p)

depend on r and p simultaneously. As in Eq. (32), the effective
magnetic fields can be also defined in terms of commutator
relations

E (r) = 1

ih̄
[E(d) ∗, P (d)], E ( p) = − 1

ih̄
[E(d) ∗, R(d)]. (43)

There exists a sum rule for the fictitious fields

TrNB( p) = 0, TrNB(r) = 0, TrN�rp = 0,
(44)

TrNE ( p) = 0, TrNE (r) = 0,
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which can be found by taking the trace over all bands (we
denote this sum over bands as TrN here and throughout this
work) and making use of the identity (16). This means that all
the effective forces for each band balance each other in total,
or in other words, if all bands are completely filled (and thus,
the density operator ρ is proportional to the unit matrix 1N ),
the system does not experience any net force.

The basis of all calculations within the Wigner representa-
tion of quantum theory is the Moyal bracket [S̄ ∗, T̄ ] between
two operators S̄ and T̄ . Now, we want to rewrite this in terms of
kinetic variables only, which is achieved by transforming the
derivatives in the Moyal product to act on kinetic variables. For
concise notation, we introduce the tensor of Berry curvatures
as [α, β denote indices with respect to (t,r, p)],

�α,β = h̄
(
∂αA(d)

β − ∂βA(d)
α − i

[
A(d)

α ,A(d)
β

])
, (45)

or explicitly, in terms of the fictitious fields used previously:

� =

⎛
⎜⎜⎝

0 −E (r) −E ( p)

E (r) εijkB(r)
k �rp

E ( p) −(�rp)T εijkB( p)
k

⎞
⎟⎟⎠, (46)

where we recognize the top-left part of � as being essentially
the electromagnetic field tensor.

Neglecting terms of order O(�̄h2), we find the explicit
form of the Moyal product after the transformation to kinetic
variables

∗ → exp

[
ih̄

2
(−←−

∂ X
−→
∂� + ←−

∂�

−→
∂ X )

+ ih̄

2
(
←−
∂�

←−
∂ R)�

(−→
∂�−→
∂ R

)]
. (47)

This is a central result of this section, since it shows that
expressing all quantities in terms of kinetic variables allows
us to deal solely with manifest gauge invariant expressions.
Essentially, the bottom line of this parameter transformation
is that it changes the metric of the Moyal product by the
appearance of the Berry curvatures �. Immediate conse-
quences of result (47) are the equations of motions to be
discussed in detail in Sec. IV.

B. Transformation of general operators

Let us briefly comment on observables with nontrivial
band matrix structure O(x,π ), and their transformation into
the rotated frame, which is performed analogously to the
transformation (19),

Ō = U ∗ O ∗ U† = Ō0 + [Y1,Ō0] − h̄

2

{
Aπ ,

[
∂x − i

2
Ax,Ō0

]}
+ h̄

2

{
Ax,

[
∂π − i

2
Aπ ,Ō0

]}
+ O(�̄h2), (48)

and the back transformation is given by

U0OU†
0 = U0(U† ∗ Ō ∗ U)U†

0 = Ō − h̄[Y1,Ō] + h̄

2

{
Aπ ,

[
∂x − i

2
Ax,Ō

]}
− h̄

2

{
Ax,

[
∂π − i

2
Aπ ,Ō

]}
+ O(�̄h2), (49)

which can be readily checked by plugging Eq. (48) into the back transformation (49) and dropping terms of order �̄h2. Now,
treating the diagonal and off-diagonal part of Ō0 = U0OU†

0 = Ō(d)
0 + Ō(o)

0 separately, we find

Ō(d)
0 (X,�) + ih̄

4
Pd

({
Aπ ,

[
Ax,Ō(d)

0

]} − ih̄

4

{
Ax,

[
Aπ ,Ō(d)

0

]})
Pd + O(�̄h2), (50)

and the contribution arising from the off-diagonal part of Ō(o)
0 ,

Pd

([
Y1,Ō(o)

0

] − h̄

2

{
Aπ ,

[
∂x − i

2
Ax,Ō(o)

0

]}
+ h̄

2

{
Ax,

[
∂π − i

2
Aπ ,Ō(o)

0

]})
Pd + O(�̄h2), (51)

which are both independently gauge invariant. While the gauge
invariance of the former is straightforward to show, the later
requires more work and we have to take into account that Y1

is modified under a gauge transformation as

Y1 → Y1 − ih̄

4
({χx,Aπ } − {χπ ,Ax}) , (52)

along with ∂αŌ → ∂αŌ + i[χα,Ō] and Aα → Aα + χα .

C. Expectation values in the rotated frame

Let us now go back to the initial question of the dynamics
of our system within the effective theory by studying the
expectation values of physical observables, which can be

obtained in the Wigner representation by the integration over
the complete phase space,

〈S〉 =
∫

ddr

∫
ddp

(2πh̄)d
TrN {ρ(x,π ) ∗ S(x,π )} , (53)

and the trace is with respect to the matrix structure. Note
that the factor 1/(2πh̄)d = 1/hd describes the proper quan-
tization of the phase space volume and thus is directly
obtained by transforming quantum averages into the Wigner
representation.

If we assume the integration over the whole phase space to
be unbounded and any surface contribution from the integrand
at infinity to vanish, we can perform partial integrations to
show that all the partial derivatives in the Moyal product ∗
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cancel each other, so that we can equally write

〈S〉 =
∫

ddr

∫
ddp

(2πh̄)d
TrN {ρ(x,π )S(x,π )} . (54)

By using the cyclic property of the trace and by partial
integration, we can easily show that

〈O〉 =
∫

ddr ddp

(2πh̄)d
TrN {U ∗ O ∗ U†} = 〈Ō〉, (55)

and we can write

〈S〉 = 〈S̄〉 =
∫

ddr

∫
ddp

(2πh̄)d
TrN {ρ̄(x,π )S̄(x,π )}. (56)

In equilibrium, the density operator is given by

ρ(x,π ) = fD(ε) δ(�̄) = fD(ε) δ[ε − H̄(x,π )], (57)

or, if we do not want our results to be energy resolved, we use
directly

ρ(x, p) =
∫

dε fD(ε)δ[ε − H̄(x,π )], (58)

which gives us the density in phase space and, as we will
discuss later, however, it is to be interpreted as a quasiproba-
bility. An explicitly time-dependent Hamiltonian H̄(x,π ) has
to be treated using Eq. (97) instead. If a band is completely
filled, it becomes 1 at the diagonal element corresponding
to that band. If energies are well separated, and we assume
excitations localized in energy space, we can assume any
off-diagonal elements in the density operator to vanish. In fact,
those off-diagonal entries correspond to coherent excitations
that are split amongst several bands. If the band splitting
is sufficiently large, this leads to rapid oscillations subject
to decoherence. In the end, the projection operation defined
by Pd is essentially enforced by the diagonal representation
of the Hamiltonian �̄, and by the density matrix ρ, which
gives us only those states that have coherences within bands
(or degenerate/overlapping bands so that, again, the energy
argument applies). In particular, this is certainly true for
low-energy transport, where physics takes place only in the
vicinity of the Fermi level.

In order to proceed, let us transform the integration variables
to kinetic ones, and in doing so, we also have to take into
account how the volume element in phase space changes,
which is given by the determinant of the Jacobian,

D−1 ≡ det
∂(R,P)

∂(r, p)
= det(1 + �rp)

= 1 + Tr�rp + O(�̄h2), (59)

or D(X,�) = 1 − Tr�rp + O(�̄h2). In non-Abelian situations,
the nontrivial matrix structure of the Berry curvature will be
inherited by D, which will be accounted for by performing the
integration before taking the trace, thus yielding

〈S〉 = TrN

{∫
ddR ddP

(2πh̄)d
D(X,�) ρ̄(X,�)S̄(X,�)

}
. (60)

D describes, for example, charge accumulation in the case of
a topological insulator with a magnetization structure induced
by ferromagnetic exchange. This effect of the Berry curvature
D on the density of states has been already discovered by Xiao
and coworkers.44

Let us look at this in another way by using Eq. (49) to
transform an observable Ō back into the original frame. In
addition, we let S be a general observable that can posses an
arbitrary matrix structure, so that contrary to relation (27), the
additional dipole term becomes relevant. In the end, we want
to establish the connection with Eq. (60), so we are interested
in expectation values or phase-space densities (which then are
quasiprobability distributions as discussed later),

s(x,π ) = TrN
(

1
2 {ρ ∗, S}) = TrNO. (61)

We identify Ō = 1
2 {ρ̄ ∗, S̄} and plug in the back transforma-

tion (49), so that

s(x,π ) = TrN {Ō + h̄Aπ∂xŌ − h̄Ax∂π Ō}
+ ih̄Tr{Ō[Ax,Aπ ]} + O(�̄h2).

According to the discussion above, it is reasonable to
assume that our observable is given as a function of the
kinetic variables, i.e., Ō(X,�) and it is instructive to treat
the interband and the intraband contributions separately by
splitting Ō = PdŌPd + Ō(o) ≡ Ō(d) + Ō(o) and likewise for
S̄ = S̄ (d) + S̄ (o), so that the contribution from the diagonal part
becomes45

s(d)(x,π ) = TrN
{
D(x,π ) Ō(d)

(
X + h̄A(d)

π ,� − h̄A(d)
x

)}
+O(�̄h2), (62)

which basically undoes the variable transformation so that we
go back to the canonical pair of variables and can write

s(d)(x,π ) = TrN {ρ̄(x,π ) D(x,π ) S̄ (d)(x,π )} + O(�̄h2). (63)

In addition, we rewrote the last term with the help of
identity (16), i [Ax,Aπ ] = ∂xAπ − ∂πAx and, according to
our previous discussion, we have �εt = 0, as U0 was assumed
to not explicitly depend on the energy parameter so we can
replace this term with Tr�rp. This contribution gives rise to the
correction factor D(x,π ) that we already encountered before,
and thus, the last result is consistent with relation (60).

The implications of the diagonal part of S̄ can be summa-
rized as undoing the parameter transformation together with
the appearance of the correction factor D(x, p), which locally
changes the density. However, it is not always possible to
ignore the off-diagonal part of the observable S̄ , one prominent
example will be the current density [see Eq. (85)]. With a series
of straightforward manipulations involving the cyclic property
of the trace along with identity (16), we eventually arrive at

s(o)(x,π ) = ∂xTrNρ̄
h̄

2
{Aπ ,S̄ (o)}

− ∂πTrNρ̄
h̄

2
{Ax,S̄ (o)} + O(�̄h2), (64)

so that both contributions to the expectation value, Eqs. (63)
and (64) together read

s = TrNρ̄ DS̄ (d) + ∂xTrNρ̄
h̄

2
{Aπ ,S̄ (o)}

− ∂πTrN ρ̄
h̄

2
{Ax,S̄ (o)} + O(�̄h2). (65)

The importance of these last two terms will become clearer in
Sec. IV A when discussing the kinetic equations of the effective
theory.
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To summarize this section, we have seen that when we
use the kinetic terms X and � as basic quantities for our
observables, we end up with expressions that are manifest
gauge invariant [c.f. Eqs. (47) and (60)]. In fact, these kinetic
variables appear consistently in virtually all equations of
physical relevance, and moreover, it is exactly these quantities
that we obtain, if we transform the canonical variables into the
rotated frame,

X = U ∗ x ∗ U† = x − ih̄U ∗ ∂πU†,

� = U ∗ π ∗ U† = π + ih̄U ∗ ∂xU†.

D. Is the diagonalization transformation canonical?

Before continuing, we would like to point out that without
the projection, X and � still obey the canonical commutation
relations, which can be easily seen by noting that the
set of unprojected Berry curvatures vanishes according to
identity (16) [for example, Eqs. (34) or (41) with A(d) replaced
by the N × N Berry connection A]. This is actually not
surprising, since then our unitary matrix U0 is connected by
SU (N ) gauge invariance to the identity transformation, which
clearly has vanishing Berry curvature, or in other words, U0

itself is a SU(N ) gauge transformation, which naturally keeps
the full SU(N ) Berry curvature invariant. This implies that
our unitary transformation is a canonical one, however, since
X and � now posses a complicated matrix structure in the
N -dimensional band space, they no longer commute with
nontrivial matrices within this band space. For example, in
a simple particle-hole symmetric two-band model,

H = E( p) · σ + V (r)12, (66)

our band-diagonalized Hamiltonian has the form

H̄ = E( p)σz + V (R)12, (67)

while R = r + h̄A p acquires a 2 × 2 Berry connection matrix,
so that [Ri ,Rj ] = 0 = [P i ,P j ] and [Ri ,P j ] = ih̄δij . Instead,
the commutator [R,σz] = h̄[A p,σz] = 0 now encodes the
complicated dynamics of interband scattering, making the
problem as a whole not easier tractable so, in the general
case, the only way out is the truncation scheme. And only
due to the restriction of the Berry connection matrices into a
certain subspace do the corresponding Berry curvatures yield
a nonvanishing value.

E. Electronic spectrum and magnetic dipole energy

In course of the preceding discussion, we have seen that
rewriting the Hamiltonian in terms of kinetic variables would
render it gauge invariant. However, in order to calculate the
electronic spectrum, one essentially has to fully diagonalize
it, and which has to be done in terms of canonical variables.
But it turns out that this remaining gauge-dependence of the
Hamiltonian in the canonical representation would only affect
the wave functions or quantities that build upon them like the
retarded Greens function or the density operator. These objects
will acquire local phase factors that depend on x and p, and
we will illustrate this point later by explicitly studying the
situation in the case of the Dirac equation. At this time, we

can conclude that the electronic spectrum of the system is also
gauge independent.

Let us briefly discuss the last term of the transformation
equations like Eq. (22), and that we ignored by now,

H̄M = ih̄

4
Pd({Ar ,[A p,H̄0] − {A p,[Ar ,H̄0]}})Pd, (68)

which gives rise to corrections due to virtual transitions to other
bands. The term “magnetic” comes from the fact that H̄M
corresponds to the energy of a magnetic dipole in an external
magnetic field, where the magnetic dipole is an intrinsic
property of the band. For example, in the case of the Dirac
equation, this term becomes essentially the magnetic Zeeman
term, though in other scenarios, one obtains generalizations
thereof, and even in the absence of external magnetic fields,
H̄M can be nonzero.

Since we will encounter terms like in H̄M later, let us define
the quantity [α,β are any combinations of (t,r, p)]

�α,β = ih̄

2
Pd{Aα,[Aβ,H̄0]}Pd, (69)

which is an antisymmetric tensor in (t,r, p) space, and in
addition, it is a band-diagonal matrix, or block diagonal
according to the structure defined by the projector Pd. The
explicit structure of � is

� =

⎛
⎜⎝

0 −�t r −�t p

�t r εijk�
rr
k �rp

�tp −(�rp)T εijk�
pp
k

⎞
⎟⎠, (70)

which has been defined in analogy to the Berry curvatures �

given in Eq. (46).
Now, we can express the energy term as

H̄M = Tr�rp, (71)

where the trace is only with respect to coordinates, and not
band indices, and we write explicitly

�
rp
ij = ih̄

2
Pd

{
Ari

,
[
Apj

,H̄0
]}

Pd. (72)

As will become more apparent later, terms involving the �

tensor are related to circular currents and give rise to important
terms that should not be ignored.

For the sake of completeness, and in order to establish
the link to other treatments in literature (for example, Ref. 3,
and references therein), let us express our quantities � and
� in terms of Bloch functions (A p)ij = 〈ui |i∂ p|uj 〉, with the
Bloch band indices i and j . We start by introducing the gauge-
invariant transition elements

�
(α,β)
ij ≡ −2h̄�{(Aα)ij (Aβ)ji}

= −2h̄�{〈ui |i∂α|uj 〉 〈uj |i∂β |ui〉}, (73)

which are anti-Hermitian, �
(α,β)
ij = −�

(α,β)
ji due to the Her-

miticity of A and, as the name suggests, they describe
corrections due to virtual transitions between band i and
j . Then the Berry curvatures projected onto band i can be
expressed as

�αβ = h̄
(
∂αA(d)

β − ∂βA(d)
α

)
ii

=
∑

j

�
(α,β)
ij , (74)
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and one can interpret the Berry connection as being corrections
to the kinetic variables x,π due to virtual transitions into all
other bands j . The sum rule (44) is then a direct consequence
of the anti-Hermiticity of �. In the same spirit, the dipole terms
projected on Bloch band i read

�αβ = 1

2

∑
j

(εi − εj )�(α,β)
ij , (75)

where the energies are εi ≡ (H̄0)ii .
As might be apparent from the above expressions, there

exists a direct link between � and � in the case of a two-
level system, and which we establish in the following. First, a
general diagonal 2-level Hamiltonian H̄0 can be divided into
a symmetric part ∝12, which consequently commutates out in
expression (69), and an antisymmetric part ∝σz responsible
for a finite contribution. After some simple algebra, we find
Tr2σz� = 0, which implies that � is band diagonal, and the
two bands get the same contribution, in particular the magnetic
dipole energy is the same for the two bands. The diagonal part
is obtained by taking the trace and using its cyclic properties,

Tr2�α,β = ih̄Tr2H̄0[Aα,Aβ]

= h̄Tr2H̄0
(
∂αA(d)

β − ∂βA(d)
α

) = Tr2(H̄0�α,β ), (76)

where in the last two steps, we used the identity (16) along
with definition (74) to replace the commutator. We can finally
cast the result into the form

� = 1
2 Tr2(H̄0�) 12, (77)

where in this expression, the diagonal contribution of H̄0 drops
out because of the sum rule Tr2� = 0.

In particular, we can express the magnetic dipole energy as

H̄M = 1
2 Tr2(H̄0Tr�rp) 12, (78)

where Tr�rp ≡ ∑
i �

rp
ii , whereas Tr2 denotes the trace with

respect to the two-level band space.

IV. EQUATIONS OF MOTION

We are now interested in the dynamics of the systems,
especially, in a consistent effective descriptions of the physics
within a certain band.

A. Quasiprobability distributions and currents

Within the Wigner framework, the basic quantity is the
quasiprobability distribution ρ(r, p), while the usual momen-
tum and position probability distributions can be generally
defined as marginals:

ρ(r) =
∫

ddp

(2πh̄)d
ρ( p,r), ρ( p) =

∫
ddr

(2πh̄)d
ρ( p,r),

which are linked to the probability interpretation of quantum
mechanics, i.e., ρ(r) = |ψ(r)|2 and ρ( p) = |ψ( p)|2. In the
rotated frame, however, one has to express them in terms of
kinetic variables instead, in order to obtain gauge invariant
results. Now the goal, which we want to pursue in the
following, is to find proper quantities in the rotated frame
that lead to a consistent physical description when projected
onto a certain band.

Since the velocity operator is given by

dR
dt

= 1

ih̄
[�̄

�, R], (79)

and inspired by Eq. (65) for the expectation values in the
rotated frame, we define the quasiprobability density n, current
density j , and force density q as follows:

n(R,P,t) ≡ TrN (ρ̄ D) , (80)

j (R,P,t) ≡ TrN

(
ρ̄ D

dR
dt

)
− ∇R × TrNρ̄� pp

− ∇P ·TrNρ̄�rp, (81)

q(R,P,t) ≡ TrN

(
ρ̄ D

dP
dt

)
− ∇P × TrNρ̄�rr

+∇R ·TrN ρ̄(�rp)T , (82)

where we used that � pr = −(�rp)T . These densities obey a
conservation law in phase space, or Liouville’s theorem that
states

∂tn(R,P,t) + ∇R j (R,P,t) + ∇P q(R,P,t) = 0. (83)

We substitute the definitions (80)–(82) into Liouville’s the-
orem and establish the identity (83) after some algebra,
using the kinetic equation (95) for ρ̄ and the equality of
second partial derivatives and dropping terms of order O(h̄2).
Furthermore, we need to use the following identities between
Berry curvatures:

∂tD − ∇RE ( p) + ∇P E (r) = 0,

∂Ri
D + ∂Rk

�
rp
ik − (∇P × B(r))i = 0, (84)

−∂Pi
D − ∂Pk

�
rp
ki − (∇R × B( p))i = 0,

which can be readily shown by plugging in the definitions (33)–
(35), (40), and (41). This result strongly emphasizes the
importance of including the correction factor D(R,P,t) into
the expectation values.

Here, it is important to realize that the current matrices
have an off-diagonal structure that one has to take into account
in the light of expression (65) and which eventually leads to
the last two terms in the current densities (81) and (82), and
constitute divergence-free, or circular currents. Explicitly, for
the 4-component current, this off-diagonal part takes the form(

dX
dt

)
o

= −i[H̄0,Aπ ] (85)

and is completely expressed in terms of quantities of the rotated
frame and arises due to the off-diagonal elements of the Berry
connection matrix.

Just like the Wigner function is a quasiprobability and can
be given physical sense only after taking expectation values,
the same applies to n, j , and q. In particular, physical meaning
can be given only to quantities like n(R) or j (R). This is related
to Heisenberg’s uncertainty, which states that momentum and
position uncertainty have to be larger than Plank’s constant h̄,
i.e., �P�R � h̄. The same is true for the conjugate variables
time and energy.

Liouville’s theorem constitutes a conservation law for the
quasiprobability densities, and one can, for example, integrate
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Eq. (83) over all momenta in order to find a continuity
equation for the probability densities of the particle and current
densities,

∂tn(R,t) + ∇R j (R,t) = −
∮

∂V

dd−1 P q(R,P,t), (86)

where the closed surface integral on the right-hand side has
been obtained by virtue of Gauss theorem, and it vanishes if
we assume that there is no net momentum current flow through
the surface at infinity. Explicitly, the particle density is

n(R,t) =
∫

ddP

(2πh̄)d
TrN (ρ̄ D) , (87)

and likewise for the current density,

j (R,t) =
∫

ddP

(2πh̄)d
TrN

(
ρ̄ D

dR
dt

)
− ∇R ×

∫
ddP

(2πh̄)d

× TrN ρ̄� pp −
∮

dd−1 SP

(2πh̄)d
TrN ρ̄�rp, (88)

while the previous discussion has shown that these definitions
are in fact meaningful physical quantities and constitute
the central result of this section. We will see interesting
implications of the additional dipole term in the current when
studying the examples of the Dirac equation.

For the sake of completeness, we use the result (65) to
define densities corresponding to the physical quantity S in
the diagonalized frame:

S(R,t) ≡
∫

ddP

(2πh̄)d
TrN

(
ρ̄ DS̄ − ∇R ρ̄

h̄

2
{AP ,S̄ (o)}

)

+
∮

dd−1 P
(2πh̄)d

TrN ρ̄
h̄

2
{AR,S̄ (o)}, (89)

and likewise for S(P). This expression is consistent with the
definition of a density operator δ(r − r0)S(r, p) which, when
transformed into the rotated frame yields the given result.
Furthermore, all the given expressions can still explicitly
depend on energy via the gauge invariant parameter E, which,
however, does not affect the discussion here.

B. Operator equations of motion

In order to calculate the densities (81) and (82), we need
to evaluate the equations of motion for kinetic position R and
momentum P . Using this result and Eq. (47), we can now
immediately write down the equations of motion:

dR
dt

= 1

ih̄
[�̄

∗, R] = ∂H̄
∂ P

(1 + �rp) − E ( p) + ∂H̄
∂ R

× B( p),

(90)

dP
dt

= 1

ih̄
[�̄

∗, P] = −(1 + �rp)
∂H̄
∂ R

+ E (r)+ ∂H̄
∂ P

× B(r),

(91)

or, to leading order in �̄h,

dR
dt

(1 − �rp) = ∂H̄
∂ P

− E ( p) − dP
dt

× B( p), (92)

(1 − �rp)
dP
dt

= −∂H̄
∂ R

+ E (r) + dR
dt

× B(r), (93)

where we see that the effect of �rp is related to a change
of phase-space in the course of the diagonalization transfor-
mation. The beauty of this result is the symmetry in which
effective magnetic and electric fields appear in these equations.

We are now performing a quantum average of the kinetic
equations (92) and (93) with respect to a density matrix that
is peaked around a certain value Pc and Rc, which in effect
corresponds to a Gaussian wave packet that is well beyond the
limits of the Heisenberg uncertainty. Then our equations of
motion (92) and (93) essentially become classical ones with
all kinetic variables replaced by Pc and Rc. These equations
of motion for the center of mass coordinates of a wave packet
have been directly obtained by Sundaram and coworkers.11

The circular current terms in Eqs. (81) and (82) vanish for
the wave packet, which is to be expected physically, since
this description reduces the electron to a point particle with
coordinates Pc and Rc, and which does not posses any internal
motion described by the circular currents. Mathematically,
after integration over the whole phase space, one can rewrite
them in terms of surface integrals, which vanish for the
well-localized wave packet.

C. Nonequilibrium description

Now, it is just a matter of finding the density matrix
ρ̄(R,P,t) in order to explicitly calculate anything within
this framework, in particular, when one is interested in
nonequilibrium phenomena. One way to proceed is within
Keldysh formalism and to consider the kinetic equation for
the lesser Greens function,40

[�
∗, G<] = 0, (94)

which, after transformation into the rotated frame, can be
evaluated to leading order correction in �̄h by using Eq. (47),
which by virtue of Eqs. (90) and (91) can be recast into[

∂t + dR
dt

∇R + dP
dt

∇P

+
(

∂H̄
∂t

+ E (r) ∂H̄
∂ P

− E ( p) ∂H̄
∂ R

)
∂E

]
Ḡ< = 0. (95)

When we integrate the lesser Greens function over energy,
we obtain the density matrix

ρ̄(R,P,t) =
∫

dE

2π
Ḡ<(X,�), (96)

and, since the terms proportional to ∂EḠ< vanish after
integrating Eq. (95) over all energies, we are left with the
following differential equation for the density matrix,(

∂t + dR
dt

∇R + dP
dt

∇P

)
ρ̄(R,P,t) = 0, (97)

which is nothing but a Boltzmann equation including quantum
corrections in terms of Berry curvatures. In the end, it is quite
analogous to the quantum Boltzmann equation along with the
gradient expansion we used Ref. 46. Of course, the major
difference is the absence of the collision integral in the present
formulation, however, it is possible to include it here as well,
which is, however, left for future investigations. Of course, ρ̄

can additionally include discrete quantum degrees of freedom
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like the spin, which means that our rotated frame is block
diagonal and so is ρ̄.

We now show how to obtain the distribution function,
when it is known at some initial time, ρ̄(R,P,t = 0). In
general, these problems can be formulated in terms of an
inhomogeneous Boltzmann equation with a source term
S(R,P,t),(

∂t + dR
dt

∇R + dP
dt

∇P

)
ρ̄(R,P,t) = S(R,P,t). (98)

To proceed in the usual way, we define the Greens function Gc,(
∂t + dR

dt
∇R + dP

dt
∇P

)
Gc(R,P,t,R′,P ′,t ′)

= δ(t − t ′)δ(R − R′)δ(P − P ′), (99)

for which we find the general solution

Gc(R,P,t,R′,P ′,t ′) = �(t − t ′) δ[R − Rc(t)] δ[P − Pc(t)],

(100)

where � is the Heaviside step function, and Rc(t) and Pc(t)
describe the classical orbits, which obey the equations of
motion:

Ṙc = dR
dt

, Rc(t ′) = R′,

Ṗc = dP
dt

, Pc(t ′) = P ′.

This solution describes ballistic trajectories given by the
kinetic equations (90) and (91) and which including the
effects of the Berry curvatures, while the particle being
initially at phase-space coordinates (R′,P ′,t ′). For example,
in the absence of any spatially dependent potential, one
simply has straight lines described by the Greens function
Gc = �(t − t0) δ(R − V (t − t0)) δ(P − P ′), where V = ∂H̄0

∂ P
is the group velocity. This is analogous to other quasiclassical
equations like the Eilenberger equation, which can be also
described in terms of classical trajectories.40,47

Now, the solution is readily given by

ρ̄(R,P,t) =
∫ +∞

−∞
dt ′

∫
ddR′

∫
ddP ′

×Gc(R,P,t,R′,P ′,t ′) S(R′,P ′,t ′), (101)

where, due to the delta functions in Gc, we get contributions
only from trajectories which end at (R,P) at time t . Since the
trajectory is well defined by the given pair (R,P) already, we
can find all corresponding points (R′,P ′) by going back in
time so we can eventually rewrite the above integral as

ρ̄(R,P,t) =
∫ t

−∞
dt ′ S[Rc(t ′),Pc(t ′),t ′], (102)

where now, the classical orbits are defined such that its position
in phase space at time t is Rc(t) = R and Pc(t) = P .

Let us now go back to the original initial value prob-
lem, which we can easily solve by using the source term
δ(t)ρ̄(R,P,t = 0), so that the general solution reads

ρ̄(R,P,t) = �(t) ρ̄[R′
c(0),P ′

c(0),0], (103)

which has the desired properties for t � 0. This indeed
corresponds to a motion in phase space as an incompressible
fluid, as stated by Liouville’s theorem.

D. Polarization

Another way to interpret the kinetic variables is obtained
by considering the electrical polarization which we pursue ac-
cording to the pioneering work of Vanderbilt and coworkers.6

They derive the polarization in terms of adiabatic transport,
where some perturbation that leads to a polarization in the
crystal is adiabatically turned on. The current due to adiabatic
transport is48

j =
∫

ddr ddp

(2πh̄)d
TrN

dR
dt

= −
∫

BZ

ddp

(2πh̄)d
TrNE ( p), (104)

where integration is only within the Brillouin zone. The electric
polarization is then obtained by integrating over time,

P(R) =
∫

dt j (R,t). (105)

The definition as an adiabatic transport process is necessary in
order to obtain a truly gauge invariant result.6 In the periodic
gauge, however,3 it is nevertheless possible to construct

P =
∫

ddp

(2πh̄)d
A p, (106)

but in the general case, it is required to consider the full Berry
connection structure (including in particular At ) in order to
obtain the correct result for the polarization. In the same spirit,
one could define a polarization in momentum space, which
can be thought of as a Doppler shift in the rotated frame or
also termed anomalous velocity.

In this sense, one could loosely interpret these Berry
connections as shifts that the canonical variables acquire and
which depend on full phase space, albeit these shifts are
not directly physically observable, only when one does an
integration with respect to either the position or the momentum
variable one obtains the observable electric polarization in real
space or reciprocal space, respectively. This is analogous to
the quasiprobability distribution ρ(r, p) in the Wigner picture,
which can be given only physical interpretation as probability
density when integrated either over whole momentum space
or real space. However, if we try to transfer this idea, we still
will have a shift that depends on the frame, i.e., it is still not
gauge invariant. Only for a very specific gauge, one obtains
the physical polarization.

E. Bulk-boundary correspondence

It is interesting to note that the circular current term

−∇R ×
∫

ddP

(2πh̄)d
TrN ρ̄� pp (107)

appearing in the current density (88) is a manifestation of the
bulk-boundary correspondence.49 In the homogeneous bulk,
these circular currents compensate each other and yield zero,
but at the edge of the system, there will be residual currents
flowing on the surface. Due to the circular nature of these edge
currents, the associated edge states are also of topological
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nature. Therefore a nontrivial (bulk) value of � pp indicates a
topological state of matter.

V. HIERARCHY OF EFFECTIVE THEORIES:
INCLUSION OF THE ELECTROMAGNETIC FIELD

In many cases, one starts from an effective theory which
requires dealing with gauge invariant momentum and/or posi-
tion operators in the original frame. This might happen if one
uses an effective theory derived from a more comprehensive
theory, or more commonly, one simply wishes to include an
external electromagnetic field. Qualitatively, one expects no
new concepts or phenomena to emerge in effective theories at
a lower level in the hierarchy, as one could also go directly
from the topmost theory to the lowest in a single step.

Here, our focus lies on the combined effect of the electro-
magnetic field and the Berry connections emerging from the
diagonalization of a band Hamiltonian. In this case, we are
starting from a theory which is gauge invariant in real space,
thus formulated in terms of the minimally coupled momentum
p − q A(x). Since all our derivations so far are only linear
in h̄, we treat the electromagnetic vector potential q A (q is
the charge of the particle, so we usually have q = −e) on
a different level than h̄A, thus formally taking h̄ and q as
independent expansion parameters. To begin with, we have
the usual canonical pair x and π and the kinetic pair x and
π + q A(x), where A = (−φ,Ar ) is the usual 4-component
vector potential of the electromagnetic field. In the following,
we denote B(r,t) = ∇r × Ar and E(r,t) = −∂t Ar + ∇r A0

(not to be confused with the energy E) as the external electric
and magnetic fields.

The Hamiltonian is specified as H[x, p − q Ar (x)] and
is diagonalized by an appropriate unitary matrix U[x, p −
q Ar (x)], so that in the diagonalized frame, we arrive at the
kinetic pair of variables

X = x − h̄Aπ (x, p − q Ar ),
(108)

� = π + q A(X) + h̄Ax(x, p − q Ar ).

Since derivatives now also act on Ar , we have

Axk
= AXk

− q
(
∂Xk

Al

)
APl

, (109)

so that we can write more explicitly

R = r + h̄AP , (110)

E = ε − qφ + h̄AR + h̄q E ·AP , (111)

P = p − q Ar (x) − h̄AR − h̄q B × AP . (112)

Note that AX , as well as AP still carry the full gauge invariant
momentum p − q Ar and for simplicity, all Berry connections
involved are assumed to be Abelian.

The fictitious fields in the presence of an electromagnetic
field can be derived by plugging these kinetic variables into
the commutator relations (32) and (43) and keeping all terms
up to order O(h̄) and quadratic in the fields O(q2). In order to
obtain manifest gauge invariant results, we express everything
in terms of kinetic variables by using ∂xj

= ∂Xj
− q(∂Xj

Al)∂Pl

and E(X) = E(x) + (AP∂r )E(x). Denoting primed quanti-
ties as the Berry curvatures describing the combined effect

of external electromagnetic and the diagonalization, we can
summarize the results as

B′(r) = q B(R) + B(r) + q[Tr(�rp)B − B�rp]

+ q2(B( p) · B)B, (113)

B′( p) = B( p), (114)

E ′(r) = q E(X) + E (r) + q�rp E + q B × E ( p)

+ q2 B × (E × B( p)), (115)

E ′( p) = E ( p) + q E × B( p), (116)

�
′rp
ij = �

rp
ij + q

[
(B( p) · B)δij − B( p)

i Bj

]
. (117)

Here, unprimed quantities B, E , � correspond to the Berry
curvatures of the system in the diagonalized frame in absence
of the external electromagnetic field q A.

It is important to note that these results have to be substituted
into the equations of motion (90) and (91) and not (92) and (93)
since the latter has been obtained by dropping terms beyond
leading order corrections in Berry curvatures, whereas our
results for the fictitious fields are in fact higher order in Berry
connections (q2h̄ actually already corresponds to terms of third
order in the expansion of the Moyal product).

The term E × B( p) of E ′( p) is the anomalous velocity term
that is, for example, responsible for the quantum Hall effect,
since the Berry curvature B( p) becomes nontrivial when the
system is in the quantum Hall state. Similarly, in systems
with spin-orbit interactions, this term constitutes the intrinsic
contribution to the anomalous Hall effect. The reciprocal effect
thereof is described by the term q B × E ( p), where a external
magnetic field transforms a momentum space electric field into
a real-space one.

�′rp gets modified by a magnetic field term that resembles
a dipole interaction between a real-space and the momentum
space magnetic field. In fact, as we have seen in result (78),
and as we will see explicitly at the end of this section, �′rp is
directly related to the magnetic dipole energy in the case of a
two-level model, and thus, it is the magnetic field term in �′rp,
which will give rise to the Zeeman energy in the Hamiltonian.
Furthermore, the term quadratic in the fields can be absorbed
by �′rp, i.e., fictitious electric field can be recast into

E ′(r) = q E + E (r) + q�′rp E + q B × E ( p). (118)

From this expression, we see that the external electric field
enters effectively as q(1 + �′rp)E, and the electric field
acting on the system is thus renormalized. An analogous
renormalization of the external magnetic field appears also
in the result for B′(r).

The modification of the transformation rule (48) for
arbitrary observables is easily found by virtue of Eq. (109),

Ō′ = Ō + [Y ′
1 − Y1,Ō0] + h̄

2
q E{AP ,∂EŌ0}

− εijkqBk

h̄

2

{
AP i

,

[
∂Pj

− i

2
APj

,Ō0

]}
, (119)

where again, primed symbols represent quantities in presence
of an external magnetic field. In particular, evaluating the above
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expression for the Hamiltonian, we find for the magnetization
energy in the rotated frame H̄M = Tr�′rp [see Eq. (71)], where

�
′rp
ij = �

rp
ij + q[(� pp · B)δij − �

pp
i Bj ]. (120)

Notice the resemblance between this expression and Eq. (117);
in fact, it turns out we obtain �′ by substituting the Berry
curvatures with the analog quantities of � in results (113)–
(117). In two dimensions, �

′rp
33 is zero,50 and thus Tr�′rp =

Tr�rp + q B ·B( p), i.e., a factor 2 less than in the 3D case, and
likewise, in 1D Tr�′rp = Tr�rp. Nevertheless, we see that the
magnetic field couples in the shape of a dipole term B ·B( p) to
the momentum space magnetic field B( p). Since the magnetic
dipole energy is already of order �̄h, we can equally write B(X)
and B(x), since substituting canonical and kinetic variables
affects only higher orders in �̄h.

VI. THE DIRAC EQUATION: AN ALTERNATIVE
PERSPECTIVE ON DERIVING

THE PAULI HAMILTONIAN

The goal of this section is illustrate our formalism, while at
the same time serving as a concise summary of the framework,
essentially making use of all the central results. The Dirac
equation and its descendants like the Pauli Hamiltonian are
the most fundamental equations in condensed matter physics,
nevertheless, we present some interesting insight into the
physics revealed by this rather simple equation.

We consider the Dirac Hamiltonian in the presence of a
scalar potential and minimally coupled to the magnetic field,51

H = cα( p − q A) + mc2β + V (x)14, (121)

where m is the rest mass and p the momentum of the electron.
As

α =
(

0 σ

σ 0

)
, β =

(
12 0
0 −12

)
, (122)

H acts on the 4-dimensional Dirac Spinor and thus can be
considered as a 4-band model.

The Foldy-Wouthuysen transformation,39 which brings the
Dirac equation into diagonal form, is described by the unitary
matrix

U0 = (EP + mc2)14 + cβα P√
EP (EP + mc2)

, (123)

where EP = c
√

P 2 + m2c2 is the relativistic energy of the
electron with gauge invariant momentum P . Performing, as
outlined before [cf. Eq. (22)], the diagonalization with respect
to U0, we arrive at

H̄ = U ∗ H ∗ U†

= EP σ0τz + (
V (r)σ0 + h̄(∂rV )A(d)

P + qEP B · B( p))τ0.

(124)

The 2 × 2-matrices τi denote the Pauli matrices in electron-
positron space, while σi describes the usual spin degree of
freedom. The magnetic dipole term is given according to
Eq. (120) in terms of an interaction term between magnetic
field B = ∇ × A and the fictitious momentum space magnetic
field B( p), to be specified below. We note that in this case, all
the correction terms are equal for both electron and positron

bands, albeit the term positron becomes only meaningful when
all negative energy states are completely occupied.

The full matrix structure of the Berry connection, split into
diagonal and off-diagonal parts, i.e., AP = A(d)

P τ0 + A(o)
P τy ,

reads

A(d)
P = c2 P × σ

2EP (EP + mc2)
≈ λc

4h̄

P × σ

mc
, (125)

A(o)
P = cσ

2EP

− P(Pσ ) c3

2E2
P (EP + mc2)

≈ λc

2h̄
σ , (126)

where in the last step, we are dropping terms of order
O(p/mc)2.

The kinetic variables for both positive and negative energy
states read explicitly

P = p − q A(r) − qh̄B × A(d)
P ,

R = r + h̄A(d)
P ,

so that the Berry curvature (34) is also equal for both bands,
and yields

B( p) = −h̄mc4

2E3
P

σ − P(P ·σ ) h̄c4

2E3
P (EP + mc2)

≈ −λ2
c

2h̄
σ , (127)

where again, in the last step we took the nonrelativistic limit.
Of course, the general expressions are still valid for arbitrary
velocities, for example, in the opposite, the ultra-relativistic
limit, we find

B( p) p�mc→ − P(P ·σ )h̄

2P 4
.

Using the results (113)–(117), we immediately find E (r) =
0 = E ( p) and

B(r) = q B(R) + q2(B( p) · B)B,
(128)

�
rp
ij = q

[
(B( p) · B)δij − B( p)

i Bj

]
,

where here, we used E(R) = 0, since we are already using the
scalar potential V (R).

In terms of kinetic variables, the Hamiltonian H̄ can now be
rewritten (let us restrict ourselves to the positive energy branch,
whose excitations correspond to electrons, so that q = −e),
neglecting terms of order �̄h2,

H̄ = EP + V (R) + qEP B(R)·B( p), (129)

so that in view of this, the spin-orbit interaction that appears in
the rotated frame can be reinterpreted as being a result of the
shift the kinetic position operator attains. However, we should
keep in mind that this shift is gauge dependent and becomes
physically meaningful only when integrated over the whole
momentum space (which then is equivalent to the polarization)
or in the form of the Berry curvature, viz the momentum
space magnetic field appearing in the kinetic equations. In the
nonrelativistic limit, the magnetic dipole energy is just the
usual Zeeman term [using Eqs. (71) and (72)]

H̄M = −μs · B, (130)

where we introduced the magnetic moment of the electron
spin, μs = −gsμBσ/2 = −μBσ , and we assume a g factor
of 2 within the validity of the Dirac theory without quantum
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corrections from the radiative field, and μB = eh̄
2m

is the Bohr
magneton.

Using results (90) and (91) together with Eqs. (128)
and (129), we obtain the operator equations of motion of a
relativistic electron, which moves in an electromagnetic field
that is smooth on the scale of the Compton wavelength λc. We
do not explicitly write the expression here, however, our result
is consistent with the work of Bliokh.52

For the sake of our discussion, we will nevertheless specify
the equations of motion in absence of a magnetic field,

dR
dt

= ∂H̄
∂ P

− dP
dt

× B( p) = ∂H̄
∂ P

+ λ2
c

2h̄

dP
dt

× σ , (131)

dP
dt

= −∂H̄
∂ R

= −eE(R), (132)

whose anomalous velocity term is a factor 2 larger than what
one would obtain from the Hamiltonian (124), naively taking
the canonical variable r to be the physical position operator.
Essentially, the same conclusion has been reached in Refs. 3
and 22 for the case of the relativistic Dirac equation.

The particle density is, according to results (87) and (128),
given by

n(R,t) =
∫

d3P

(2πh̄)3
Tr4ρ̄(1 − 2q B · B( p)), (133)

and let us take the vacuum state with all negative energies filled,
so that ρ̄ = �(−τzEP ) and the first term gives the vacuum
charge. However, from the correction factor proportional to
the magnetic field one might conclude that a sufficiently
strong magnetic field leads to a charge accumulation with
respect to the vacuum state. This kind of charge accumulation
is also present in topological insulators.33 Here, however,
factors like D = 1 − Tr�rp = 1 − 2H̄M

mc2 are relevant only for
enormous magnetic fields of ≈1010T , so we can safely drop
all corrections due to �rp.

It is also insightful to study the current density in the
presence of the electromagnetic field, because it gives a direct
meaning to the divergence-free current terms in Eq. (88).
For the simplicity of our discussion, we restrict ourselves

to the nonrelativistic limit, where B( p) = − λ2
c

2h̄σ = μs

emc2 and
EP = mc2 + P2/2m, and furthermore, we treat external fields
E and B only to linear order. Since we want to study excitations
of positive energy, we ignore the completely filled lower band.

Then, our charge density is

n(R,t) = −e

∫
ddP

(2πh̄)d
ρ̄,

so that with the help of Eqs. (88) and (90) as well as the
definition of the spin magnetic moment [c.f. Eq. (130)] the
charge current density becomes

j (R,t) = −e

∫
ddP

(2πh̄)d
P
m

ρ̄ − e

mc2
n(R,t) E × μs

−μs × ∇R n(R,t), (134)

where the surface term vanishes since we assume our electron
momentum to be peaked around some mean value Pc. The
density ρ̄ can be explicitly determined from Eq. (97), here,
however, we only integrate this equation over all momenta

and arrive at the continuity equation

∂tn(R,t) + ∇R · j (R,t) = 0. (135)

The first term in Eq. (134) is the usual definition of a nonrela-
tivistic current, and the second term is the anomalous velocity
contribution due to the electric field. Similar to the electron
wave packet considered in Eq. (131), using the nonrelativistic
Pauli Hamiltonian without the distinction between canonical
and kinetic variables would yield an anomalous velocity term
that is just half of the correct value. However, the last term
seems unusual at first as it constitutes a persistent current,
which itself gives rise to a magnetic moment,

1

2

∫
d3R R × jper = −1

2

∫
d3R R × (μs × ∇R n)

= μs

∫
d3R n(R,t) = Nμs , (136)

where N = 1 is the number of electrons. This result suggests
that the notion of electron spin and this internal persistent
current are just different interpretations of the same effect. For
example, a magnetic field couples to this circular current via
the magnetic moment it generates, and gives rise to the Zeeman
energy (130). This comes close to the original suggestion of an
internal rotation of the electron by Uhlenbeck and Goudsmit,53

yet unlike their idea, it is not the motion of a solid object,
instead it is a genuine quantum phenomenon, and thus does
not suffer the same deficiencies concerning rotation velocities
of the electron that would have to be faster than the speed of
light. Recently, an analogous conclusion has been reached in
the approach by Chuu et al. using the picture of a self-rotating
wave packet.13

In the same work, it has also been noted that the spin-orbit
term is due to the difference between canonical position and
physical position given by the wave-packet center of mass,
which is consistent to what we found in Eq. (129). As a
consequence, the spin-orbit term in the Pauli Hamiltonian
is not gauge invariant, it gives the correct energy spectrum,
but not the correct equations of motion. That is why it has
not been realized for a long time, as the Pauli Hamiltonian
has been mainly put to test with electronic spectra in atoms or
solid matter. To explicitly show this point, we go into a different
rotated frame so that the Berry connection is changed toA p →
A p + h̄∇pχ ( p), and we get an additional term in the Pauli
Hamiltonian h̄(∇pχ )(∂rV ). Let us assume for the moment
that we are working in momentum space and in the operator
representation of quantum mechanics, where the Hamiltonian
formally looks the same. Now, performing a local gauge trans-
formation in momentum space by adding the phase factor eiχ ( p)

to the wave function, we obtain e−iχ( p)V (r)eiχ( p) = V (r −
h̄∇pχ ) = V (r) − h̄(∇pχ )(∂rV ) + O(�̄h2), which exactly can-
cels the additional term, and we are left with the original
Hamiltonian. Usually, one enforces gauge-invariance in real
space to obtain the electromagnetic field. This is a an
example of gauge invariance in reciprocal space which leads
to the phenomena of spin-orbit interaction, or the anomalous
velocity.

In the above analysis, we needed to drop terms of order h̄2,
though here, h̄ is just a formal expansion parameter, the real
relevant scale being the Compton wavelength λc ≡ h̄

mc
. For
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example, here, we find that the order of h̄A(d) is h̄p

4m2c2 = λc
v
c
,

which is to be compared with our position coordinate, where
one realizes that corrections are indeed small unless the
potential V (r) varies strongly on the scale of the Compton
wavelength λc. Consequently, the Hamiltonian (124) still
describes the correct quantum behavior for sufficiently smooth
potentials and thus, the term semiclassical expansion seems
misleading. However, for the case of the Coulomb δ-like
potential of the nucleus of an atom it is obviously no longer
true, and this leads to corrections like the Darwin term, which
is essential to understand atomic spectra.51

Sometimes, one interprets the terms appearing in the
Pauli Hamiltonian as being a result of what one termed
Zitterbewegung, and which one envisages as helical motion
of the electron. Then the spin-orbit interaction and its phys-
ical consequences such as the anomalous velocity can be
understood as a result of this motion. Obviously, we do not
observe such an oscillatory motion here in the effective theory,
when the excitation is confined to a single band. Essentially,
due to the Wigner transformation, this rapid oscillation has
been transformed into energy space, and instead, the effects
like anomalous velocity now appear in form of interband
corrections. We remark that in the case of massless Dirac
fermions and if one considers excitations in the vicinity of the
Dirac point, both positive and negative energy states have to be
taken into account simultaneously so that excitations are not
confined to positive or negative energies alone. In this scenario,
as for example in graphene, one obtains those features termed
Zitterbewegung.54

VII. CONCLUSIONS AND OUTLOOK

In this work, we first studied a general Hamiltonian that con-
tains an additional matrix structure describing different bands,
and the goal was to bring this Hamiltonian into a band-diagonal
form, which has been achieved by performing a rotation in
band space. The diagonal representation is very practical when
one wants to study the low-energy response of the system
because then, only one or few degenerate bands are relevant.
Since in the very general case this diagonalization involves
the pair of noncommutating position r and momentum p
operators, we performed the diagonalization perturbatively in h̄

by using the Wigner representation. We investigated the Hamil-
tonian and physical observables in the rotated frame and how
Berry curvatures emerge naturally during this diagonalization
procedure. Essentially, Berry connections describe corrections
to the canonical variables like position and momentum due
to interband scattering. This led to the distinction between
canonical and kinetic variables, where the kinetic variables
in the rotated frame are strongly linked to the canonical
variables of the original theory. The canonical ones are, on
the other side, responsible for the proper quantum structure
due to their canonical commutation relations, which defines
the quantization. Therefore both the canonical and kinetic
variables are an important part of our effective description,
and only then will it be consistent. We also established a
link between gauge invariance in momentum space and the
spin-orbit interaction, and the Hamiltonian expressed in terms
of canonical variables is enough if one merely wants to know
the energy spectrum of the system.

Having in mind a gauge-invariant description, we expressed
the Hamiltonian and observables in terms of kinetic variables,
which naturally leads to the appearance of Berry curvatures
that describe various effects intrinsic to the band structure.
In addition to Berry curvatures, we identified further gauge
invariant objects, which are related to circular, or persistent
currents, which itself interact with magnetic fields give
for example rise to energy corrections, like the Zeeman
interaction. For the Dirac equation, the electron is naturally
delocalized in space and we found the appearance of an internal
motion in the form of circular persistent currents giving rise to
a magnetic dipole moment, and which exactly corresponds to
the spin magnetic moment of the electron.

Using these kinetic variables, we formulated a Boltzmann
transport equation that incorporates intrinsic effects expressed
in terms of Berry curvatures. To this end, we consistently
defined various quasiprobability densities that are connected
by a conservation law: Liouville’s theorem in phase space.
These can be used to obtain physically meaningful densities
and currents within the effective description. Furthermore,
it is rather straightforward to include impurity scattering in
the same manner as in Ref. 46, which is subject of future
work. The results derived in this work provide a good starting
point to transform the collision integral into the diagonalized
frame, automatically incorporating the effect of an external
electromagnetic field.

A related work by Wong and Tserkovnyak treated a
general two-band system by studying a quantum kinetic
equation approach in the rotated frame.17 However, the rotation
diagonalizes the Hamiltonian only to zeroth order in a gradient
expansion, so that when studying gradient corrections the
diagonalization is no longer exact. It is therefore no longer
sufficient to consider only the diagonal part of the kinetic
equation. To this end, it is necessary to take into account the
off-diagonal elements, which is in contrast to our formulation
where already the rotation transformation includes gradient
corrections.

Despite performing a formal expansion in h̄, similar
to treating the semiclassical limit, we never abandon the
quantum description. One major advantage compared to other
semiclassical approaches is that there is no need for a re-
quantization (see Appendix B for some details). In fact, our
real expansion parameter might be a different one, like the
Compton wave-length as we have seen in the case of the
relativistic Dirac equation. Also, our approach is systematic
in the sense that we can go to arbitrary order in h̄ or interband
coupling. In this respect, it is also very interesting to look at
terms second order in h̄, which yield important contributions,
for example, the Darwin term in the case of the low-energy
limit of the relativistic Dirac equation. Furthermore, new
physical phenomena emerge at O(h̄2), like the magnetoelectric
coupling in insulators which received new attention recently,
also due to the discovery of topological insulators.55,56

Then, one could study a variety of systems that involve both
spin-orbit interaction (SOI) and an inhomogeneous and time-
dependent magnetization. This is interesting for spin-orbit
coupled semiconductors where one has different types such
as the Rashba SOI, Dresselhaus SOI, or in the case of strong
SOI in III-V ferromagnetic semiconductors, one can utilize the
Luttinger Hamiltonian for hole transport. In addition, one can
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have nonmagnetic and magnetic impurity scattering that adds
additional complexity to the system and is naturally studied in
terms of a collision integral within the Boltzmann approach.
Thus the formalism developed in this work seems practical
to attack these kinds of problems in order to study various
(magneto-, spin-, or thermo-)transport and dynamical proper-
ties. Finally, it would be interesting to include many particle
effects like electron-electron interactions in the investigation.
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APPENDIX A: WIGNER REPRESENTATION

In the operator representation of quantum mechanics, we
can write the canonical commutation relation (quantities with
hats indicate operators in the original picture),

[π̂μ,x̂ν] = ih̄δ ν
μ . (A1)

In 4-component notation, the Wigner transformation ex-
plicitly reads∫

d4z ei zπ/h̄A

(
x + z

2
,x − z

2

)
= A(x,π ), (A2)

and the Moyal product obeys the axiom of associativity,

A ∗ B ∗ C = A ∗ (B ∗ C) = (A ∗ B) ∗ C, (A3)

and also

(A ∗ B)† = B† ∗ A†, (A4)

however, the Moyal product is noncommutative, i.e., A ∗ B =
B ∗ A. In fact, the latter property encodes the noncommuta-
tivity of operators in quantum theory, which one can explicitly
see by considering the commutator of two general observables
dependent on x and π and which are band diagonal,

[A(x,π ) ∗
, B(x,π )] = 2iA(x,π ) sin(h̄�/2) B(x,π )

= ih̄ {A,B}p + O(h̄3). (A5)

It becomes essentially an extended Poisson bracket in the
semiclassical limit, which reduces to the normal Poisson
bracket when neither A nor B explicitly depend on ε, which
is usually the case.

The Wigner representation has the very practical feature of
automatically symmetrizing operators, when one transforms
back into the operator formulation, for example, using the

back transformation of Eq. (A2),

A

(
x + z

2
,x − z

2

)
=

∫
d4π

(2πh̄)4
e−i zπ/h̄A(x,π ), (A6)

one obtains

xp → 1
2 (x̂p̂ + p̂x̂) , (A7)

so what is usually required to be put in by hand in usual
quantum mechanics in order to obtain Hermitian observables,
comes out automatically. Another, more direct way to see this
is by using identities of the form

1
2 (x ∗ p + p ∗ x) = xp. (A8)

The special operator ordering obtained in this manner is the
so-called Wigner-Weyl ordering.

APPENDIX B: SOME NOTES ON REQUANTIZATION

In this section, we address the question of the quantum
theoretical aspects of our semiclassical analysis. In particular,
in literature, there is the question of how to properly quantize
the theory in the Lagrangian formalism, since one needs to
identify the canonical pair of variables, which is the starting
point of the quantization. As mentioned previously, using wave
packet analysis,3 one obtains the same set of equations of
motion for the center of mass coordinates of the wave packet
as in Eqs. (92) and (93). Then one can find the Lagrangian, but
one does not know anything about canonical variables, and in
the general case, it is not always easy or possible to find the
pair of canonical variables.3

However, in our framework, we did not encounter such
problems, since firstly, we are working in the Hamilton
formalism, where one knows the canonical variables and
secondly, our theory is quantized at any time, albeit neglecting
terms of order O(�̄h2). This quantization is encoded in the
structure of the Moyal product, or more explicitly in the special
structure of the commutator in Eq. (47). Furthermore, without
major effort, we can go back to the operator representation of
quantum mechanics by undoing the Wigner transformation.

Since many of our expressions [for example,
Eqs. (19), (48), (29), etc.] are straightforwardly transformed
back into the operator formulation of quantum mechanics, we
formally obtain the same expression, except mixtures of r and
p appear properly symmetrized (see Appendix A). In fact, we
retain the full quantum theory, which gives correct results at
least to order h̄. One just has pay attention that the Wigner
transformation is only with respect to the canonical pair of
variables so kinetic variables have to be replaced accordingly.
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