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We study the Anderson model as a description of the quantum RC circuit for spin-1/2 electrons and a single
level connected to a single lead. Our analysis relies on the Fermi liquid nature of the ground state, which fixes
the form of the low-energy effective model. The constants of this effective model are extracted from a numerical
solution of the Bethe ansatz equations for the Anderson model. They allow us to compute the charge relaxation
resistance Rq in different parameter regimes. In the Kondo region, the peak in Rq as a function of the magnetic
field is recovered and proven to be in quantitative agreement with previous numerical renormalization group
results. In the valence-fluctuation region, the peak in Rq is shown to persist, with a maximum value of h/2e2, and
an analytical expression is obtained using perturbation theory. We extend our analysis to the SU(4) Anderson
model where we also derive the existence of a giant peak in the charge relaxation resistance.
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I. INTRODUCTION

High-frequency transport experiments aim to control and
probe the coherent motion of electrons in real time.1–4

Continuous technological progress have paved the way for
the study of dynamical properties of mesoscopic systems.
A typical example is the quantum RC circuit,5–7 where a
quantum dot is connected to the quantum Hall edge states
of a two-dimensional electron gas (2DEG) through a quantum
point contact (QPC). As illustrated in Fig. 1, the quantum
dot forms a mesoscopic capacitor with a top metallic gate
and the charge in the dot can be changed periodically by
applying an ac drive through the gate voltage Vg . For large
gate voltage modulations, this device acts as a single-electron
emitter8–12 and the effect of sweeping the last occupied
level of the dot across the Fermi energy has received a
broad theoretical attention.13–16 The quantum RC circuit is
also promising for efficient charge readout in a quantum
dot device17 or to detect topological excitations.18,19 The
electron dynamics in the presence of interactions in the dot20,21

and its spin/charge separation22 have been also studied. For
small metallic islands, the problem has been addressed at
intermediate temperatures23 and in the many channel case.24

In particular, the two-channel case has been argued to exhibit
non-Fermi liquid behavior.25,26 Novel perspectives have been
opened by recent experiments27–30 where a significant dipole
coupling between a microwave superconducting resonator and
a quantum dot has been demonstrated.

The low-frequency admittance for the current I from the
dot to the lead can be matched with the corresponding formula
for a classical RC circuit:

I (ω)

Vg(ω)
= −iωC0(1 + iω C0Rq) + O(ω3). (1)

This allows one to define a quantum capacitance C0 and
a charge relaxation resistance Rq for the ac admittance of
the system. This formula is related to the dynamic charge
susceptibility of the dot χc(ω) by the relation I (ω)/Vg(ω) =
−iωe2χc(ω). χc(t − t ′) = i/h̄θ (t − t ′)〈[n(t),n(t ′)]〉 is the lin-
ear response function of the total occupancy n of the dot to
a change in the gate voltage. Identifying term by term the

low-frequency expansion of χc(ω) with Eq. (1), the defini-
tions of the quantum capacitance and the charge relaxation
resistance are obtained:

C0 = e2χc(0) , Rq = e2Imχc(ω)

ωC2
0

∣∣∣∣
ω→0

. (2)

These quantities have raised a large interest from the
theoretical point of view starting with the seminal works of
Büttiker, Prêtre, and Thomas.7,31,32 In the quantum regime,
the quantum capacitance C0 provides information on the
level structure33 of the quantum dot. For a single channel in
the QPC connecting the dot and the lead, Rq is universally
fixed to h/2e2 regardless of the QPC transparency. This
prediction has been experimentally demonstrated.5 It coincides
with the lead-reservoir interface resistance34 relevant in dc
transport.35,36

The universality of Rq still holds if interactions in the
dot37 or not too strong interactions in the lead38 are taken
into account in an exact manner. Increasing the size of the
dot results in a mesoscopic crossover for Rq from h/2e2

to h/e2.37 For strong enough interactions in the lead, i.e.,
a Luttinger parameter below 1/2, the system undergoes a
Kosterlitz-Thouless phase transition to an incoherent regime
where Rq is no longer quantized.38

In this paper, we investigate the ac linear regime of the
quantum RC circuit where electrons carry a spin degree of
freedom, as represented in Fig. 1, and the system is described
by the Anderson model. Throughout the paper, we shall focus
on the regime where the local interaction term U is much larger
than the hybridization energy � such that charge fluctuations
are small except at the charge degeneracy points, i.e., the
Coulomb peaks. It includes, in particular, the Kondo regime
where the spin on the dot is strongly correlated with the Fermi
sea in the reservoir lead. Our analysis shall also include the
more exotic SU(4) Kondo regimes relevant for dots with an
additional orbital degree of freedom.39,40

The charge relaxation resistance of the Anderson model
has been recently investigated by numerical renormalization
group (NRG) calculations,41 where it was shown that Rq

develops a giant peak at zero temperature for Zeeman energies
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FIG. 1. (Color online) Schematic view of the Anderson quantum
RC circuit. Spin-degenerate electrons tunnel, through a quantum
point contact, between a reservoir lead and a single level with a local
interaction. An oscillating voltage Vg(t) is applied to the dot via a
metallic gate of geometric capacitance Cg .

of the order of the Kondo temperature TK . An analytical
description of this peak has been given in the Kondo scaling
limit,42 on the basis of a Fermi liquid description valid at
low temperature, in quantitative agreement with the NRG
results. It also predicts the disappearance of the resistance peak
at the particle-hole symmetric point, εd = −U/2, where εd

denotes the single-orbital energy on the dot. The Fermi liquid
approach43 is based on the identification of the low-energy
effective model, consistent with the Friedel sum rule. It allows
one to derive a generalized Korringa-Shiba relation44

lim
ω→0

Imχc(ω)

ω
= h̄π (χ2

↑ + χ2
↓), (3)

which relates the dynamical charge susceptibility χc(ω) to
the static ones χσ = −∂〈nσ 〉/∂εd . 〈nσ 〉 denotes the static
occupancy of the dot for spin σ . A similar relation was
previously obtained for the spin susceptibility using the same
Fermi liquid arguments.45 Comparing Eq. (3) with Eq. (2), a
general formula for the charge relaxation resistance,

Rq = h

4e2

(
1 + χ2

m

χ2
c

)
, (4)

is extracted, where we have introduced χc = χ↑ + χ↓, the total
charge susceptibility and χm = χ↑ − χ↓, the charge-magneto-
susceptibility.42 χm should be clearly distinguished from the
spin susceptibility, which is the derivative of the magnetization
with respect to the magnetic field. The whole point of Eq. (4)
is that Rq , a dynamical quantity, is expressed in terms of static
quantities computable by Bethe ansatz (BA). Deviations from
universality occur in Eq. (4) when χm �= 0, that is, when both
the particle-hole and the SU(2) spin symmetries are broken.

In this work, we extend the Fermi liquid analysis to
different parametric regimes by solving numerically the BA
equations for the ground state46–48 and computing the static
susceptibilities χc and χm appearing in Eq. (4). In the Kondo
region, the robustness of the scaling form proposed in Ref. 42 is
tested for finite parameters of the Anderson model, as shown
in Figs. 2(b) and (8). We confirm notably in Fig. 2(a) that
the Fermi liquid result Eq. (4) agrees nicely with the NRG
calculations of Ref. 41. Out of the Kondo regime, departures
from universality of the charge relaxation resistance as a
function of the magnetic field were also shown within the
Hartree-Fock approximation.21 Extending the BA calculations
to the mixed-valence, empty orbital, and valence-fluctuation
regimes, we find that the peak in the charge relaxation
resistance survives in these regimes, although its magnitude
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FIG. 2. (Color online) (a) Comparison of Rq as a function
of the magnetic field between NRG calculations (dots) (extracted
from Ref. 41) and BA results (solid lines) for different εd/U

and U/� = 20, showing good agreement. (b) Comparison of the
universal function �0(H/TK ) (solid) derived in the Kondo scaling
limit in Ref. 42 with the function � (dots) derived by Bethe
ansatz calculations from Eq. (12) for U/� = 20 and close to the
mixed-valence region (εd/U = −0.2).

decreases in size with εd/U . Interestingly, even far in the
valence-fluctuation region, i.e., for large εd/U and H 	 εd ,
the peak is still present: Rq varies between h/4e2 and h/2e2 as
a function of the magnetic field. The corresponding universal
function for Rq , represented in Fig. 3, is derived analytically
using perturbation theory and shown to agree with the BA
calculations. In this region, the peak in Rq is not generated
by breaking the Kondo singlet, but by the transition between
different charge states of the dot.

We finally give a further application of the Fermi liquid
approach42,43 by considering an additional orbital degeneracy
in the dot responsible for SU(4) Kondo behavior at low
energy.39,40 The existence of a Fermi liquid ground state49,50 in
the case of an SU(4) symmetry allows us to derive an analog of
Eq. (4). In the Kondo scaling limit, we predict, similarly to the
SU(2) case, a giant peak in the charge relaxation resistance.

The paper is organized as follows. Section II explains how
C0 and Rq are calculated by solving the BA equations for the
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FIG. 3. (Color online) Scaling form of the charge relaxation
resistance Rq in the limits � 
 εd 
 U (solid line) and � 
 U 
 εd

(dashed line). In circles, the resistance Rq is plotted for U = εd .

ground state of the Anderson model once the Fermi liquid
fixed point is determined. In Sec. III, we study the range of
validity of the Kondo scaling limit obtained in Ref. 42. In
Sec. IV, we analyze the new scaling forms of Rq in the valence-
fluctuation region. The peak in the charge relaxation resistance
for an SU(4) symmetric Anderson model in the Kondo limit is
presented in Sec. V.

II. FERMI LIQUID PICTURE

The relevant model to describe the quantum RC circuit in
Fig. 1, when the dot level spacing is sufficiently large and the
transport is not spin-polarized, is the Anderson model41,42

HAM =
∑
σ,k

εkσ c
†
kσ ckσ +

∑
σ

εdσ nσ + Un↑n↓

+ t
∑
k,σ

(c†kσ dσ + d†
σ ckσ ). (5)

This Hamiltonian describes a single level whose double
occupation costs a charging energy U , weakly coupled to
a noninteracting electron bath. The operators ckσ and dσ

annihilate electrons of spin σ on the lead and on the dot,
respectively. The lead electrons are characterized by the single-
particle dispersion relation εk with a constant density of states
ν0. The total electron occupancy of the dot is n = n↑ + n↓ with
nσ = d†

σ dσ . The geometric capacitance Cg and the tunable
electrostatic coupling Vg between the dot and the metallic
top gate enter in Eq. (5) through the interaction, or charging,
energy U = e2/Cg and the single-electron orbital energies
εdσ = −eVg − σH/2, where H is the external magnetic field.
t is the amplitude for electron tunneling between the dot and
the lead and we assume the hybridization constant � = πν0t

2

to be independent of the magnetic field.51

It is a well-established fact that the Anderson model behaves
as a Fermi liquid at zero temperature52,53 for all values of
the single-electron orbital energies εdσ . Moreover, the phase
shift of quasiparticles at the Fermi energy is fixed by the dot
occupancy through the Friedel sum rule54

〈nσ 〉 = δσ

π
. (6)

For a time-dependent gate voltage εd (t) = ε0
d + εω cos(ωt),

the form of the Hamiltonian follows from a quasistatic
approximation,42,43 consistent with the Friedel sum rule Eq. (6)

HFL =
∑
kσ

εka
†
kσ akσ + εω cos ωt

∑
σ

χσ

ν0

∑
k,k′

a
†
kσ ak′σ , (7)

where the akσ operators describe quasiparticle states with a
phase shift δσ (ε0

d ) with respect to the original fermions ckσ .
The dot variables have disappeared from the effective

Hamiltonian (7), although the memory of the dot is kept
in the static charge susceptibilities χσ . Practically, the oc-
cupation number 〈n〉 = 〈n↑〉 + 〈n↓〉 and the magnetization
〈m〉 = (〈n↑〉 − 〈n↓〉)/2 are static observables and they are
obtained by solving numerically the BA equations summarized
in Appendix.

The study of 〈n〉 and 〈m〉 identifies four regimes shown in
Fig. 4(a). A finite hybridization � between the dot and the lead
smoothens the boundary lines between the different charge
and spin states of the dot, as seen in Figs. 4(b) and 4(c). The
region where the charge is equal to 1 and the magnetization
to 1/2 is called the local-moment region. The transition to
the empty (or doubly occupied) orbital regimes, where the
charge is held fixed to zero (or two), takes place in the
valence-fluctuation region. The valence-fluctuation region is
signaled by a Coulomb peak in the charge susceptibility χc

[visible in the smaller panel of Fig. 4(b)], which defines
the frontiers between the different Coulomb-blocked regions
with zero, one, or two charges. For Zeeman energies below
H1 = �U/(U + 2εd ), the mixed-valence region is entered and
the Coulomb peak deviates from the H = 2εd line touching the
H = 0 axis at ε∗

d = 0, where ε∗
d = εd + �/π ln(πeU/4�) is

the renormalized orbital energy of the dot.46,52 This deviation
is presented in Fig. 5. The magnetization, shown in Fig. 4(c),
shows a different behavior from the charge occupation of
the dot. The transition line between a magnetized and a
nonmagnetized state penetrates in the local-moment region
following the Kondo temperature:47

TK = 2

√
U�

πe
e

πεd (εd +U )
2U� . (8)

This is the signature of a strongly correlated ground state
where the lead electrons screen the spin of the dot by forming
a many-body Kondo singlet.55 In general, this state cannot be
described by standard perturbation techniques. In this paper,
we circumvent this difficulty by solving the BA equations for
the static quantities, combined with a Fermi liquid approach
to access the low-frequency behavior of the dynamical charge
susceptibility χc(ω).

A. The quantum capacitance C0

The quantum capacitance C0 = e2χc appears to leading
order in the frequency expansion of Eq. (1). The static charge
susceptibility χc can be calculated from the Bethe ansatz
solution and is plotted in the inset of Fig. 4(b). It exhibits
strong Coulomb peaks at charge degeneracy points for U � �,
as a result of charge quantization. χc is also represented in
Fig. 5 as a function of the gate voltage for different values of
the magnetic field. Figure 5 illustrates in particular that χc is
insensitive to the magnetic field until the Zeeman energy is of
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FIG. 4. (Color online) (a) Phase diagram of the isolated dot in the
presence of a magnetic field. (b) and (c) are computed from the Bethe
ansatz equations summarized in Appendix. The domain εd < −U/2
is deduced from the colored domain (εd < −U/2) by particle-hole
symmetry. (b) Occupation number of the dot 〈n〉, for U/� = 20,
reproducing the phase diagram in (a). The boundaries between charge
states are smooth functions. The smaller panel represents the static
charge susceptibility χc with its Coulomb peaks. (c) Magnetization
〈m〉 of the dot, resembling the phase diagram in (a), except at
low energy. The difference is more visible in the smaller panel
(logarithmic scale), where the local moment is screened below the
Kondo temperature TK (solid line).

the order of �. In the Kondo region, the Kondo temperature TK

is much smaller than �, and the peak in the charge relaxation
resistance Rq thus develops in a region where the static charge
susceptibility is independent of the magnetic field.

When the Zeeman energy is above the hybridization
constant �, the Coulomb peak starts moving following the
H = 2εd transition line obtained for the isolated impurity
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FIG. 5. (Color online) Charge susceptibility χc for U/� = 20.
The circles (left to right) correspond to H/� = 0.1,5, and 15,
respectively, and show the displacement of the Coulomb peak, also
shown in Fig. 4(a). The solid line is obtained for H/� = 0.0001
and almost coincides with H/� = 0.1, showing the very weak
dependence of χc with the magnetic field in the Kondo regime. For
higher magnetic fields, H/� = 5,15, χc converges to the Lorentzian
form (20) (dashed lines) derived in the valence-fluctuation region.

diagram in Fig. 4(a). In this regime, the Coulomb peak has
a Lorentzian shape which can be derived analytically by just
neglecting the spin-down component. This procedure will be
presented in Sec. IV.

We stress that, in contrast with the noninteracting case, the
quantum capacitance is not proportional to the local density
of states as it is sensitive only to charge excitations and not
to spin excitations. Hence the Kondo peak in the density of
states, which arises due to spin-flip processes, has no effect on
the quantum capacitance C0.

B. The charge relaxation resistance Rq

The second term in the low-frequency expansion of Eq. (1)
describes the leading deviation from adiabaticity and intro-
duces the response time scale RC to a slow drive of the
gate voltage. Equation (3) derived in Refs. 42 and 43 gives
the charge relaxation resistance Rq for all gates voltages and
magnetic fields. χc and χm are both computed by solving
the Bethe ansatz equation summarized in the Appendix.
Before discussing the results for Rq in the different regimes
of parameters, let us note that the particle-hole symmetry
of the Anderson model implies that χm is an odd function of
εd + U/2 and thus vanishes for εd = −U/2. As a result, the
quantized value Rq = h/4e2 is obtained at the particle-hole
symmetric point irrespective of the magnetic field.

In the Kondo region, Rq assumes the form

Rq = h

4e2

[
1 +

(
U

�

)4

F0(y)�0

(
H

TK

)2
]

, (9)

in the scaling limit U � �, ε∗
d � �, H 
 �. The function

�0(x) = xf ′(x), plotted in Fig. 2(b), is obtained from the
universal form of the magnetization m = f (H/TK ) for the
Kondo model56 with the asymptotic behaviors:

�0(x) = x√
2πe

, x 
 1, �0(x) = 1

4

1

(ln x)2
, x � 1,

(10)
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where e is Euler’s number. The function �0 develops a peak
when the magnetic field H is on the order of the Kondo
temperature TK . The envelope function

F0(y) =
(

π2

8

)2
y2(y2 − 1)4

(1 + y2)2
(11)

depends on the asymmetry parameter y = 1 + 2εd/U and
is shown in Fig. 8. It is obtained from the leading order
charge susceptibility (insensitive to the magnetic field for
H 
 �) and from the derivative of the Kondo temperature
∂εd

ln TK = πy/�. ∂εd
ln TK is an odd function of y such that

F0(y) vanishes at the particle-hole symmetric point y = 0 in
agreement with the above discussion. The robustness of the
scaling form (9) for finite values of the different parameters of
the Anderson model is discussed in the following section.

III. SCALING FORM OF THE CHARGE
RELAXATION RESISTANCE

By definition, the scaling form Eq. (9) is only an asymptotic
behavior and it is of interest to evaluate how quantitative it is
for real systems. In the general case, we extend the definitions
of the two functions

F =
(

�

U

)4 (
yπ

�χc

)2

, � = �χm

yπ
, (12)

such that they coincide with F0 and �0 in the scaling limit. In
contrast to F0 and �0, F and � do not depend solely on y and
H/TK but on all parameters of the Anderson model U , εd , �,
and H . The range of practical validity of the scaling form (9)
is tested below.

A. The resistance peak in the function �

The departure of � from �0 is studied in Fig. 6 by plotting
� as a function of the magnetic field H for different values of
U/� and the asymmetry parameter y. The Kondo temperature
TK used to rescale the magnetic field in Fig. 6 is obtained by
numerically matching the low-field behavior of � with the
expected asymptotic form �0(H/TK ) 	 H/TK for H 
 TK .
The result for TK is shown in Fig. 7 where it is compared to
the Kondo temperature (8) of the Anderson model.

A first regime can be identified for U/� > 5 where the
universal function �0(H/TK ) is well reproduced in the Kondo
region. The deviation between � and �0 becomes sizable only
close to the Coulomb peaks, where ε∗

d 	 0, as seen in Fig. 5.
At these charge degeneracy points, the peak in the charge
relaxation resistance decreases in magnitude with εd but does
not disappear. The form of the resistance peak in the crossover
from the empty orbital to the valence fluctuation region is
discussed in Sec. IV.

For U/� � 5, Kondo physics is much less pronounced,
which results in a lowering of the peak in �. The agreement
between the calculated Kondo temperature using our fitting
procedure and Eq. (8) is also degraded as shown in Fig. 7.

B. The envelope function F in the Kondo region

Figure 5 demonstrates that, as long as one remains in the
Kondo region, the dependence of χc on the magnetic field can
be safely neglected. In Fig. 8(a), our BA calculation for the F
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FIG. 6. (Color online) Function � in Eq. (12) for different εd/U

(squares and circles) and U/� calculated by the numerical solution
of the Bethe ansatz compared to the universal scaling �0 (solid line).
The values of TK for the numerical data are fixed by matching the
values of � at low fields to the linear behavior of �0, Eq. (10). These
are plotted in Fig. 7.

function at zero magnetic field, represented by the dashed line,
is in very good agreement with the NRG data extracted from
Ref. 41. It remains, however, far from the asymptotic function
F0(y) even though U/� = 20 in Fig. 8(a), see also Ref. 42.

The convergence of F to the asymptotic form F0(y) as a
function of U/� is illustrated in Fig. 8(b) where it is shown to
be slow. A more quantitative analytical expression for F can
be derived by including the next to leading order corrections
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text) from the BA equations for U/� = 2, 5, and 20 (full circles,
squares and empty circles, respectively). They are compared to the
analytical formula (8) (solid lines).

to the charge susceptibility, namely,43

χc = �

π

(
1

(εd + U )2
+ 1

ε2
d

+ 2�

π

[
1

(εd + U )3
− 1

ε3
d

]

+ �

π

{(
1

εd + U
− 1

εd

)3

+ 2

(
1

εd + U
− 1

εd

)

×
[

1

ε2
d

− 1

(εd + U )2

]
ln

εd + U

−εd

})
(13)

in Eq. (12). The result for F is the function F0(y) with
additional �/U corrections. It is in much better agreement
with the BA calculations and the NRG results from Ref. 41
than F0 alone, as shown in Fig. 8(a).

IV. THE VALENCE-FLUCTUATION REGION

The meaning of Eq. (9) is restricted to the Kondo region
where a Kondo temperature can be defined. As we already
saw in Fig. 6, the peak in the charge relaxation resistance
decreases in magnitude at the edge of the Kondo region,
in the mixed-valence region around ε∗

d 	 0. Below, we discuss
the fate of the resistance peak as εd is further increased to
explore the empty orbital region εd � � and the valence-
fluctuation region at higher magnetic field. As we shall see
below, the resistance peak does not disappear although its
magnitude does not scale with U/� in this region.

The peak in the charge relaxation resistance can be derived
analytically in the regime εd � � by standard perturbation
theory. In this regime and for arbitrary magnetic field, the two
states of the isolated dot forming the low-energy sector are
|n = 0〉 and |n = 1, ↑〉 as shown in Fig. 9. The absence at low
energy of the spin-down component implies that the ground
state does not exhibit strong correlation and can be described
analytically using perturbation theory. The unperturbed
Hamiltonian is obtained by setting the tunneling involving
spin-down electrons,

t
∑

k

(c†k↓d↓ + d
†
↓ck↓), (14)

to zero. In that case, the number of spin-down electrons on
the dot is a constant of motion and the Hamiltonian can be

0

0.01
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-1 -0.5 0 0.5 1
y = 1+2εd

U

F(y)

(a)

0
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0.09

0.1

-1 -0.5 0 0.5 1
y = 1+2εd

U

F(y)

10

50

150

∞

(b)

FIG. 8. (Color online) (a) Comparison of NRG (points extracted
from the results of Ref. 41), BA (dashed line), and analytical (solid
line) results for the function F with U/� = 20. (b) Approach to
the scaling limit F0 Eq. (11) for different U/�. The dotted lines are
obtained by BA while the solid ones correspond to the perturbative
result Eq. (13).

diagonalized separately for n↓ = 0 (low energy) and n↓ = 1
(high energy). It gives an exactly solvable resonant level
model:

H ′ =
∑

k

εkc
†
k↑ck↑ + (εd↑ + Un↓)n↑

+ t
∑

k

(c†k↑d↑ + d
†
↑ck↑), (15)

EF

0, |0〉
εd −H/2, |1,↑〉

εd

εd +H/2, |1,↓〉

2εd +U, |2〉

FIG. 9. (Color online) Spectrum of the dot isolated from the lead
on the left. For a positive εd in the presence of a magnetic field, only
the states |0〉 and |1, ↑〉 compete in the low-energy sector.
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for which the charge relaxation resistance is h/2e2.
Let us call |ψ0〉 the unperturbed ground state, with n↓ = 0,

characterized by the spin-up electron occupancy on the dot,

〈n↑〉0 = 〈ψ0|n↑|ψ0〉 = 1

2
− 1

π
arctan

(
εd − H

2

�

)
. (16)

The perturbation due to the tunneling term (14) gives the first-
order correction to the wave function:

|ψ1〉 = t
∑

k

[
1

εk − U − εd − H
2

d
†
↓ck↓n↑

+ 1

εk − εd − H
2

d
†
↓ck↓(1 − n↑)

]
|ψ0〉. (17)

The projectors n↑ and (1 − n↑) are necessary to determine the
part of |ψ0〉 with a spin-up electron on the dot and the part with
no electron. This implies the presence or not of the interaction
energy U in the denominator of Eq. (17).

The values of the spin σ populations for the corrected
ground state |ψ0〉 + |ψ1〉 are

〈n↑〉 = 〈n↑〉0 − �

π

U 〈n↑〉0(1 − 〈n↑〉0)(
U + εd + H

2

)(
εd + H

2

) ,

(18)

〈n↓〉 = �

π

(
1 − 〈n↑〉0

εd + H
2

+ 〈n↑〉0

εd + U + H
2

)
,

corresponding to the static susceptibilities

χ↑ = χ0
↑ − �

π

χ0
↑(1 − 2〈n↑〉0)U

(εd + U + H/2)(εd + H/2)

− �

π

〈n↑〉0(1 − 〈n↑〉0)[U 2 + 2U (εd + H/2)]

(εd + U + H/2)2(εd + H/2)2
,

χ↓ = �

π

[
1 − 〈n↑〉0(
εd + H

2

)2 + 〈n↑〉0(
εd + H

2 + U
)2

+ χ0
↑

(
1

εd + H
2 + U

− 1

εd + H
2

)]
. (19)

We have introduced

χ0
↑ = �

π

1

(εd − H/2)2 + �2
, (20)

the spin-up susceptibility in the absence of the spin-down
component.

The static susceptibilities of Eq. (19) are combined to
give χc = χ↑ + χ↓ and χm = χ↑ − χ↓. Substituted in Eq. (4),
they give an analytical expression for the charge relaxation
resistance Rq , which still exhibits a peak as a function of the
magnetic field, as shown in Fig. 10. Figure 10 also compares
the analytical expression for Rq with the BA calculations and
shows an excellent agreement already for εd/� = 6. The peak
height occurs around h/2e2 and for H 	 2εd . At this point,
the spin-up charge fluctuations are maximum, see Eq. (20),
because the states |n = 0〉 and |n = 1, ↑〉 are degenerate for
the isolated dot when H = 2εd , and the spin-down fluctuations
remain small. Hence the resistance is around h/2e2 as in the
single-channel spinless case. The position of the maximum of
the resistance can be found perturbatively from the analytical

1

1.2

1.4

1.6

1.8

2

2.2

0.1 1 10
H/2εd

Rq

[
h

4e2

]

FIG. 10. (Color online) Comparison between Rq obtained from
the analytical results (19) (solid line) and the numerical solution of
the BA equations (circles) for U/� = 20 and εd/� = 6.

solution (19):

H

2εd

= 1 − �

πεd

U (4εd + U )

(2εd + U )2
, (21)

Rq = h

2e2

(
1 + �

πεd

U

2εd + U

)
. (22)

The analytical expression obtained for Rq from Eq. (19) can
be further simplified in the limit εd � �. For x = H/2εd < 1,
the universal form

Rq = h

4e2

[
1 + 4x2

(x2 + 1)2

]
(23)

is obtained. This result is independent of U because the
unperturbed ground state is |0〉 when � is sent to zero. The
doubly occupied state is therefore reached only to second
order in perturbation theory and can be neglected to leading
order. For x > 1, the unperturbed ground state is |1, ↑〉 for
a vanishing � and the form of Rq depends on the ratio
εd/U . For εd � U , we recover essentially a noninteracting
resonant level model and the resistance is also given by the
universal form (23) for x > 1. For εd 
 U , however, the
charge relaxation resistance Rq is frozen to h/2e2 for all
x > 1. Both these universal limits are shown in Fig. 3. The
reason is that the doubly occupied state is forbidden for infinite
U such that the spin-down states cannot be reached within
first-order perturbation theory. Hence we only have spin-up
charge fluctuations, χ↓ → 0, and we recover the universal
result of the spinless case: Rq = h/2e2.

V. THE SU(4) KONDO CASE

We extend our discussion to the more exotic case of an
SU(4) Kondo effect.39 This situation is relevant for certain
quantum dots with an additional orbital degree of freedom
that is conserved during lead-dot tunneling processes.57 For
example, ultraclean carbon nanotubes have a natural orbital
degeneracy that arises from the clockwise and anticlockwise
motions of electrons around the tube. We label here the orbital
index by l = +,−. The model has now four transport channels
in correspondence with the four available single-electron states
in the dot: | + ,↑〉,| + ,↓〉,| − ,↑〉, and | − ,↓〉. We label these
four states by a quantum number τ = 1, . . . ,4, respectively,
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and use the same index for the conduction electrons in the
lead. The Hamiltonian takes the form of an SU(4) Anderson
model:39

H =
∑
kτ

εkc
†
kτ ckτ + t

∑
kτ

(c†kτ dτ + d†
τ ckτ )

+ εd

∑
τ

nτ + U
∑
τ<τ ′

nτnτ ′ , (24)

where the meaning of the operators and notations are the same
as in Eq. (5). For temperatures much below the interaction
energy U and � 
 U , the charge on the dot is frozen to 1, 2,
or 3 depending on the gate voltage εd . Performing a Schrieffer-
Wolff transformation,58 one finds

HSW =
∑
kτ

εkc
†
kτ ckτ + Wq

∑
kk′τ

c
†
kτ ck′τ

+ Jq

2

∑
kk′ττ ′

c
†
kτ ck′τ ′

(
d
†
τ ′dτ − q

N
δττ ′

)
, (25)

where q denotes the dot occupancy in the low-energy sector
and N = 4. The generalization to any N and q is straightfor-
ward. The values of the potential scattering and the Kondo
coupling constants Wq and Jq are given by

Jq = −2t2

[
1

εd + (q − 1)U
− 1

εd + qU

]
, (26)

Wq = − t2

N

[
q

εd + (q − 1)U
+ N − q

εd + qU

]
. (27)

The potential scattering term vanishes for εdW0 = (1 − q −
q/N )U . An exact mapping to the SU(N) Kondo model59 is
then obtained:

HSU(N) =
∑
kτ

εkc
†
kτ ckτ + J ′

qS · T, (28)

where J ′
q = 2t2

U
N2

q(N−q) . We switched to the basis of genera-

tors of SU(N),59–61 such that an antiferromagnetic coupling
between the spin S = ∑

ττ ′ d†
τ

λττ ′
2 dτ ′ of the impurity and

T = ∑
kk′ττ ′ c

†
kτ

λττ ′
2 ck′τ ′ of the lead is made explicit. λ is the

vector composed of the N2 − 1 matrices that compose the
N × N fundamental representation of the SU(N) group. Their
explicit expression in the SU(4) case can be found in Ref. 62.

As mentioned in the Introduction, the low-energy fixed
point of the Hamiltonian (25) is a Fermi liquid and the Fermi
liquid approach42,43 introduced in Sec. II is also applicable
to this model. Defining χτ = −∂〈nτ 〉/∂εd as the τ -dependent
static susceptibilities, the charge relaxation resistance is found
to be

Rq = h

2e2

∑
τ χ2

τ(∑
τ χτ

)2 . (29)

The emergence of logarithmic singularities prevents the study
of the χτ susceptibilities by perturbative methods below the
SU(4) Kondo temperature, 39

T
q

K = De−1/(2ν0Jq ), (30)

where D 	 U,εd is the effective high-energy cut-off of the
model whose precise form is not needed here.

Following the line of reasoning developed in Ref. 42, one
can derive the behavior of Rq in the presence of a magnetic

field. We first switch to a more convenient basis that separates
the charge, spin, and orbital degrees of freedom, namely,⎛

⎜⎝
χc

χm

χv

χmv

⎞
⎟⎠ =

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠

⎛
⎜⎝

χ1

χ2

χ3

χ4

⎞
⎟⎠ . (31)

In addition to the total charge susceptibility χc, we have
introduced the charge-magneto-susceptibility χm, as in the
SU(2) case, and its orbital counterpart, χv , which measures
the sensitivity of the orbital magnetization to a change in gate
voltage. χmv is obtained from the difference between the spin
magnetizations of the two orbital states.

Substituting the new susceptibilities in Eq. (29), the charge
relaxation resistance is found to be

Rq = h

8e2

(
1 + χ2

m + χ2
v + χ2

vm

χ2
c

)
, (32)

the analog of Eq. (4) in the SU(4) case. At zero magnetic field,
the spin and orbital degeneracies are not broken such that
χm = χv = χvm = 0 and a universal resistance Rq = h/8e2 is
obtained. At finite magnetic field, only the spin degeneracy is
broken and χv = χvm = 0.

In the limit U � � and for magnetic fields of the order of
the Kondo temperature Eq. (30), the magnetic field dependence
of the charge susceptibility χc can be neglected. Assuming that
the results of Cragg and Llyod63 are also valid in the SU(4)
case, such that the leading potential scattering term in Eq. (25)
is unaltered along the Kondo crossover, the Friedel sum rule
leads to

χc = 4ν0∂εd
Wm = �

π

{
q

[εd + (q − 1)U ]2
+ 4 − q

(εd + qU )2

}
(33)

in the sector with q charges on the dot.
As in the SU(2) case, the form of the charge-magneto-

susceptibility χm can be derived from scaling arguments. In the
Kondo limit, the magnetization of the dot m = ∑

l,σ σ 〈nlσ 〉/2
has been derived from the Bethe ansatz solution of the
SU(N) Kondo Hamiltonian Eq. (28).50,64 It is a smooth and
monotonous universal function fq(H/T

q

K ) that starts at zero at
vanishing magnetic field and saturates at 1/2 (respectively,
1) for large magnetic fields, when q = 1,3 (respectively,
q = 2). Differentiating the magnetization with respect to εd ,
one obtains

χm = 2∂εd
ln T

q

K �q

(
H/T

q

K

)
, (34)

where we defined the universal functions �q(x) = xf ′
q(x).

From the general form of the functions fq(x), we expect that
the functions �q (x) have a similar peaked shape as the function
�(x) of the SU(2) case. Using the expression Eq. (30) of the
Kondo temperature, we obtain to leading order in �/U :

χm = π

2�

2εd + (2q − 1)U

U
�q

(
H

T
q

K

)
, (35)

where the prefactor 2εd + (2q − 1)U essentially comes from
the derivative of the Kondo temperature (30). Combining
Eqs. (33) and (35) into Eq. (32), we find a scaling law in
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FIG. 11. (Color online) Envelope functions Fq in the sectors
where the charge is frozen to 1, 2 or 3, that is, when εd/U ∈ [−1,0],
[−2, − 1], or [−3, − 2], respectively. The function becomes zero in
the middle of the Coulomb valleys, while the circles correspond to
the values of εd/U for which the potential scattering couplings Wq

in Eq. (27) become zero.

the Kondo limit,

Rq = h

8e2

[
1 +

(
U

�

)4

Fq(yq)�2
q

(
H

T
q

K

)]
, (36)

similar to the SU(2) case. Thus a giant peak in the charge
relaxation resistance, proportional to (U/�)4, also emerges
for an SU(4) symmetry. The envelope functions

Fq(yq) =
(

π2

32

)2 y2
q

(
y2

q − 1
)4

[
1 + y2

q + yq(q − 2)
]2 , (37)

depend on the charge q and on the variable yq = 2εd/U +
2q − 1. yq is defined such that yq = ±1 at the Coulomb
peaks and yq = 0 in the middles of the Coulomb valleys. The
envelope functions corresponding to the three charge sectors
q = 1,2,3 are represented on the same plot in Fig. 11 as a
function of εd/U .

Interestingly, the function F2 coincides with the SU(2)
function F up to the multiplicative factor 16. Instead, in the
sectors q = 1 and 3, the envelope function is asymmetric,
which gives an experimental signature distinguishing SU(2)
and SU(4) symmetries. We also notice that the values of εd/U ,
for which the envelope functions F1,3 vanish, do not coincide
with the locations of zero potential scattering, i.e., Wq = 0 in
Eq. (27), represented by circles in Fig. 11. We expect that the
approach to the Kondo scaling behavior is faster at those latter
points since they are free of potential scattering and exhibit
only Kondo coupling. In addition, the envelope is close to its
maximum at these points, in contrast with q = 2 and the SU(2)
case where the envelope vanishes as imposed by particle-hole
symmetry.

As a final remark before concluding, we stress that the
discussion above can be generalized to the case of an extended
SU(N) symmetry. The Fermi liquid picture still holds in that
case,65 and Eq. (29), with τ = 1, . . . ,N , predicts the universal
result

Rq = h

2Ne2
(38)

if all channels are symmetric. Indeed, in the symmetric case,
χτ = χc/N . χc = ∑

τ χτ is the total charge susceptibility
and appears in the denominator of Eq. (29). In the channel-
asymmetric case, the transformation (31) extends in the
following way:⎛

⎜⎜⎝
χc

χ ′
1
...

χ ′
N−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 1 . . . . . . 1
v1
...

vN−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

χ1

χ2
...

χN

⎞
⎟⎟⎠ . (39)

The first row vector (1,1, . . . ,1) of the transformation matrix
gives χc. The remaining vector vi depend on the specific
problem, they are, however, orthogonal to the first-row vector
and normalized to N . The resulting expression for the charge
relaxation resistance reads

Rq = h

2Ne2

(
1 +

∑N−1
i=1 χ ′2

i

χ2
c

)
, (40)

generalizing Eq. (32). A coupling to one of the vectors vi

(such as a magnetic field or an orbital energy term) breaks
the channel symmetry and should be responsible for a similar
peak in the charge relaxation resistance on energy scales on
the order of the SU(N) Kondo temperature.

VI. CONCLUSIONS

In this paper, we performed a thorough study of the
quantum capacitance and the charge relaxation resistance for
the Anderson model. We applied a Fermi liquid approach,
where the low-energy effective model is derived consistently
with the Friedel sum rule, which allowed us to express the
charge relaxation resistance in terms of static susceptibilities.
The susceptibilities are computed from the Bethe ansatz
equations describing the ground state of the Anderson model.
The accuracy of our approach was tested by comparing our
results to NRG calculations41 or perturbative calculations
both in the Kondo and in the strongly asymmetric regimes.
The analytical predictions given in Ref. 42 for the peak
in the charge relaxation resistance are shown to apply in
the whole Kondo region for U/� > 5. The persistence of
this peak was demonstrated in the valence-fluctuation region,
both numerically and from a direct perturbative calculation.
Moreover, we showed how the Fermi liquid approach can be
extended to the SU(4) symmetric case where a similar peak
emerges in the charge relaxation resistance.

Overall, this work constitutes a specific and detailed
example of how the effective Fermi liquid theory can be used
to derive the low frequency dynamics of quantum impurity
systems. This does not include, of course, systems and regimes
in which non-Fermi liquid physics25,26 dominates such as
impurity models with overscreening. We also mention the
possibility to apply Eq. (4) to the case of a multilevel quantum
dot66 with spin-1/2 electrons in the lead. The Friedel sum
rule applies in these systems67 and nonmonotonous behaviors
are expected to emerge in the charge relaxation resistance
Rq whenever the magnetization of the quantum dot varies
substantially with εd , leading to χm �= 0. This includes notably
the breaking of the Kondo singlet in the presence of a magnetic
field also in the multilevel case.
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Further extensions of this work could include the study
of nonzero temperatures and higher frequencies41,68 where
inelastic processes play an increasing role. Quite generally,
the main effect of finite temperature is to destroy quantum
coherence of electrons in the dot leading to a convergence
of the charge relaxation resistance with the dc resistance.23,35

The analysis of this paper relies essentially on the generalized
Korringa-Shiba relation (3), which is strictly valid only at zero
temperature. Finite temperature effects could be addressed
quantitatively by including Nozières’ Fermi liquid corrections
to the fixed point.65,69 This would modify Eqs. (3) and (4).
Qualitatively, the peak in the charge relaxation resistance
should survive for temperatures below the Kondo temperature.
Above the Kondo temperature, the Kondo singlet is completely
broken and the form of Rq with the magnetic field remains an
open question left for further study.
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APPENDIX: BETHE ANSATZ EQUATIONS FOR THE
GROUND STATE OF THE ANDERSON MODEL

A striking feature of one-dimensional quantum systems70

is the possibility to have a separation between charge and spin
degrees of freedom for electrons at low temperature. In the
case of the Anderson model, spin and charge are carried by
different excitations called spinons and holons, respectively.
Their densities of states are denoted ρ and σ . They satisfy the
following Bethe ansatz integral equations46–48 (we follow the
notations of Ref. 48):

ρ(k) + g′(k)
∫ B

−∞
dpρ(p)R[g(k) − g(p)] + g′(k)

×
∫ Q

−∞
dλσ (λ)s[g(k) − λ] = Sρ(k), (A1)

σ (λ) −
∫ Q

−∞
dλ′σ (λ′)R(λ − λ′)

+
∫ B

−∞
dkρ(k)s[λ − g(k)] = Sσ (λ), (A2)

with the source terms given by

Sρ(k) = 1

2π

{
1 + g′(k)

∫ ∞

−∞
dpR[g(k) − g(p)]

}

+ 1

L

{
�(k) + g′(k)

∫ ∞

−∞
dp�(p)R[g(k) − g(p)]

}
,

(A3)

Sσ (λ) =
∫ ∞

−∞
dks[λ − g(k)]

[
1

2π
+ �(k)

L

]
. (A4)

We have introduced the functions

R(x) = 1

2π

∫ ∞

−∞
dω

e−iωx

1 + e|ω| , s(x) = 1

2 cosh(πx)
, (A5)

g(k) = k − εd − U/2

2U�
, �(k) = �

π

1

(k − εd )2 + �2
. (A6)

L is the size of the system and the holon and spinon densities
can be split in a conduction and impurity (dot) part:

ρ(k) = ρc(k) + ρi(k)

L
, σ (λ) = σc(λ) + σi(λ)

L
. (A7)

The linearity of Eqs. (A1) and (A2) implies that the conduction
and impurity terms decouple. The former fixes the macroscopic
properties of the system, i.e., the global magnetic field H and
the position of the valence level εd ,

H

2π
=

∫ B

−∞
dkρc(k),

1

π

(
εd + U

2

)
=

∫ Q

−∞
dλσc(λ), (A8)

while the latter gives the occupancy 〈n〉 and the magnetization
〈m〉 of the dot, namely,

〈m〉 = 1

2

∫ B

−∞
dkρi(k), 〈n〉 = 1 −

∫ Q

−∞
dλσi(λ). (A9)

These equations hold exclusively for εd � −U/2 and H � 0,
while the results for εd < −U/2 are obtained by particle-hole
symmetry.

The zero magnetic field case H = 0 and the particle-hole
symmetric point εd = −U/2 are obtained by setting B and Q,
respectively, to −∞. In these cases, the BA equations for ρ

and σ decouple and an analytical solution can be constructed
on the basis of the Wiener-Hopf method.47

1R. Deblock, E. Onac, L. Gurevich, and L. P. Kouwenhoven, Science
301, 203 (2003).

2J. Petta, A. Johnson, J. Taylor, E. Laird, A. Yacoby, M. Lukin,
C. Marcus, M. Hanson, and A. Gossard, Science 309, 2180
(2005).

3F. Koppens, C. Buizert, K. Tielrooij, I. Vink, K. Nowack,
T. Meunier, L. Kouwenhoven, and L. Vandersypen, Nature
(London) 442, 766 (2006).

4E. Bocquillon, V. Freulon, J.-M. Berroir, P. Degiovanni, B. Plaçais,
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8G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais, D. C. Glattli,
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15M. Albert, C. Flindt, and M. Büttiker, Phys. Rev. Lett. 107, 086805
(2011).

16F. Battista and P. Samuelsson, Phys. Rev. B 85, 075428 (2012).
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G. Fève, B. Huard, C. Mora, A. Cottet, and T. Kontos, Phys. Rev.
Lett. 107, 256804 (2011).

28T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, and
A. Wallraff, Phys. Rev. Lett. 108, 046807 (2012).

29K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M.
Taylor, A. A. Houck, and J. R. Petta, Nature (London) 490, 380
(2012).

30M. D. Schroer, M. Jung, K. D. Petersson, and J. R. Petta, Phys. Rev.
Lett. 109, 166804 (2012).
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