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Short-range entangled bosonic states with chiral edge modes and T duality of heterotic strings
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We consider states of bosons in two dimensions that do not support anyons in the bulk, but nevertheless have
stable chiral edge modes that are protected even without any symmetry. Such states must have edge modes with
central charge c = 8k for integer k. While there is a single such state with c = 8, there are, naively, two such states
with c = 16, corresponding to the two distinct even unimodular lattices in 16 dimensions. However, we show
that these two phases are the same in the bulk, which is a consequence of the uniqueness of signature (8k + n,n)
even unimodular lattices. The bulk phases are stably equivalent, in a sense that we make precise. However, there
are two different phases of the edge corresponding to these two lattices, thereby realizing a novel form of the
bulk-edge correspondence. Two distinct fully chiral edge phases are associated with the same bulk phase, which
is consistent with the uniqueness of the bulk since the transition between them, which is generically first order,
can occur purely at the edge. Our construction is closely related to T duality of toroidally compactified heterotic
strings. We discuss generalizations of these results.
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I. INTRODUCTION

The last decade has seen enormous progress in the
understanding of topological phases (see Ref. 1, and refer-
ences therein) and of symmetry-protected topological (SPT)
phases.2–5 SPT phases are gapped phases of matter that do
not have nontrivial excitations in the bulk, have vanishing
topological entanglement entropy6,7 or, equivalently, have
short-ranged entanglement (SRE), but have gapless excitations
at the edge in the presence of a symmetry. In the case of
the most famous and best-understood example, “topological
insulators” (see Refs. 8–17, and references therein), the
symmetry is time reversal. Topological phases (without a
modifier) are gapped phases of matter that are stable to
arbitrary perturbations, support anyons in the bulk, and have
nonzero topological entanglement entropy or, equivalently,
have long-ranged entanglement (LRE). They may or may
not (depending on the topological phase) have gapless edge
excitations.45

However, there is a third possibility: phases of matter
that do not support anyons but nevertheless have gapless
excitations even in the absence of any symmetry. Thus they
lie somewhere between topological phases and symmetry-
protected topological phases but are neither. Integer quantum
Hall states of fermions are a well-known example. Their
gapless edge excitations18,19 are stable to arbitrary weak
perturbations even though they do not support anyons and
only have SRE. Although the existence and stability of SRE
integer quantum Hall (QH) states might seem to be a special
feature of fermions, such states also exist in purely bosonic
systems, albeit with some peculiar features. We emphasize
that unlike in other proposals of bosonic QH states,20 the edge
modes of the states we discuss are stable without imposing any
symmetry. Note that according to an alternate definition of SRE
states—adiabatic continuability to a local product state with
finite-depth local unitary transformations2—integer quantum
Hall states of fermions and the bosonic states discussed in this
paper would be classified as LRE states.

For any integer N , there is an integer quantum Hall state
of fermions with SRE, electrical Hall conductance σxy = N e2

h
,

and thermal Hall conductance κxy = N
π2k2

BT

3h
.21 In fact, there is

only one such state for each N : any two SRE states of fermions
at the same filling fraction N can be transformed into each
other without encountering a phase transition.46 (This is true in
the bulk; see Sec. VII B for the situation at the edge.) Therefore
the state with N filled Landau levels of noninteracting fermions
is representative of an entire universality class of SRE states.
As a result of its N chiral Dirac fermion edge modes, this
is a distinct universality class from ordinary band insulators.
These edge modes, which have Virasoro central charge c = N

if all of the velocities are equal, are stable to all perturbations.
If we do not require charge conservation symmetry, then some
Hamiltonians in this universality class may not have σxy =
N e2

h
, but they will all have κxy = c

π2k2
BT

3h
= N

π2k2
BT

3h
.

Turning now to bosons, there are SRE states of bosons
with similarly stable chiral edge modes, but only for central
charges c = 8k. As we discuss, they correspond to even,
positive-definite, unimodular lattices. Moreover, while there
is a unique such state with c = 8, there appear to be two with
c = 16, twenty four with c = 24, and more than ten million
with c = 32.22 Thus we are faced with the possibility that
there are many SRE bosonic states with the same thermal
Hall conductance κxy , presumably distinguished by a more
subtle invariant. In this paper, we show that this is not the
case for c = 16. The two SRE bosonic states with c = 16
edge excitations are equivalent in the bulk: their partition
functions on arbitrary closed manifolds are equal. However,
there are two distinct chiral edge phases of this unique bulk
state. They are connected by an edge reconstruction: a phase
transition must be encountered at the edge in going from
one state to the other, but this transition can occur solely at
the edge and the gap need not close in the bulk. Although
we focus on the c = 16 case, the logic of our analysis
readily generalizes. Therefore we claim that there is essentially
a unique bulk bosonic phase for each c = 8k given by k
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copies of the so-called E8 state.4,5 However, there are two
distinct fully chiral edge phases with c = 16, twenty four with
c = 24, more than ten million with c = 32, and even more for
larger c.

One important subtlety arises in our analysis. The two
c = 16 phases do not, initially, appear to be identical. However,
when combined with a trivial insulating phase, the two bulk
partition functions can be mapped directly into each other
by a change of variables. This is a physical realization of
the mathematical notion of stable equivalence. In general,
an effective description of a phase of matter will neglect
many gapped degrees of freedom (e.g., the electrons in
inner shells). However, the sequence of gapped Hamiltonians
that interpolates between two gapped Hamiltonians may
involve mixing with these usually forgotten gapped degrees
of freedom. Therefore it is natural, in considering a phase
of matter, to allow an arbitrary enlargement of the Hilbert
space by trivial gapped degrees of freedom (i.e., by SRE
phases without gapless edge excitations). This is useful when,
for instance, comparing a trivial insulating phase with p

bands with another trivial insulating phase with q > p bands.
They can be adiabatically connected if we are allowed to
append q − p trivial insulating bands to the latter system.
This notion is also natural when connecting different phases
of gapless edge excitations. The edge of a gapped bulk state
will generically have gapped excitations that we ordinarily
ignore. However, they can become gapless—which is a form
of edge reconstruction—and interact with the other gapless
degrees of freedom, driving the edge into a different phase.
However, this does not require any change in the bulk. As
we will see, such a purely edge phase transition connects the
two seemingly different chiral gapped edges with c = 16. By
combining a c = 16 state with a trivial insulator, we are able
to take advantage of the uniqueness of signature (8k + n,n)
even unimodular lattices,23 from which it follows that the two
phases are the same. This is closely related to the fact that T

duality exchanges toroidal compactifications of the E8 × E8

and Spin(32)/Z2 versions of the heterotic string, as explained
by Ginsparg.24

In the remainder of this paper, we describe the equivalence
of the two candidate phases at k = 2 from two complementary
perspectives. To set the stage, we begin in Sec. II with a short
introduction to the K-matrix formalism that we use to describe
the phases of matter studied in this paper. In Sec. III, we provide
a bulk description of the equivalence of the two candidate
phases at k = 2. We then turn to the edge, where we show
that there are two distinct chiral phases of the edge. We first
discuss the fermionic description of the edge modes in Sec. IV
and then turn to the bosonic description in Sec. V. There is an
(purely) edge transition between these two phases. We discuss
the phase diagram of the edge, which is rather intricate, and its
relation to the bulk. In Sec. VI, we summarize how the phase
diagram can change when some of the degrees of freedom
are electromagnetically charged so that a U(1) symmetry is
preserved. We then conclude in Sec. VII and discuss possible
generalizations of this picture.

In Appendix A, we collect basic definitions and explain
the notation used throughout the text. In Appendix B, we
provide some technical details for an argument used in the main
text.

II. K -MATRIX FORMALISM

A. Chern-Simons theory

We will consider 2 + 1-dimensional phases of matter
governed by bulk effective field theories of the form

L = 1

4π
εμνρKIJ aI

μ∂νa
J
ρ + j

μ

I aI
μ, (1)

where aI
μ, for I = 1, . . . ,N and μ = 0,1,2. See Refs. 25 and

26 for a pedagogical introduction to such phases. KIJ is a
symmetric, nondegenerate N × N integer matrix. (Repeated
indices should be summed over unless otherwise specified.)
We normalize the gauge fields aI

μ and sources j
μ

I so that fluxes
that are multiples of 2π are unobservable by the Aharonov-
Bohm effect. Consequently, if we take the sources to be given
by prescribed nondynamical classical trajectories x

μ
m(τ ) that

serve as sources of aI
μ flux, they must take the form

j
μ

I =
∑
m

n
(m)
I δ

[
xμ − xμ

m(τ )
]
∂τ x

μ
m, (2)

for integers n
(m)
I . The sum over m is a sum over the possible

sources xm.
Therefore, each excitation m of the system is associated

with an integer vector n
(m)
I . These integer vectors can be

associated with the points of a lattice as follows. Let λa for
a = 1, . . . ,N be the eigenvalues of (K−1)IJ with f I

a the corre-
sponding eigenvectors. We normalize the f I

a so that (K−1)IJ =
ηabf I

a f J
b , where ηab = sgn(λa)δab. Now suppose that we view

the f I
a as the components of a vector fI ∈ RN+,N− [i.e., of RN

with a metric ηab = sgn(λa) δab of signature (N+,N−)], where
K−1 has N+ positive eigenvalues and N− negative ones. In
other words, the unit vector x̂a = (0, . . . ,0,1,0, . . . ,0)tr with
a 1 in the ath entry and zeros otherwise is an orthonormal
basis of RN+,N− so that x̂a · x̂b ≡ (x̂a)cηcd (x̂b)d = ηab. Then
we can define fI ≡ f I

a x̂a . Thus the eigenvectors fI define a
lattice 
 in RN+,N− according to 
 = {mI fI |mI ∈ Z}; this
lattice determines the allowed excitations of the system.27,28

The lattice 
 enters directly into the computation of various
physical observables. For example, consider two distinct
excitations corresponding to the lattice vectors u = mI fI and
v = nJ fJ in 
. If one excitation is taken fully around the other,
then the resulting wave function differs from its original value
by the exponential of the Berry’s phase 2π (K−1)IJ mInJ =
2πu · v. When the excitations are identical, u = v, a half-braid
is sufficient and a phase equal to πu · u is obtained.

Of course, any basis of the lattice 
 is equally good; there is
nothing special about the basis fI . We can change to a different
basis fI = WI

J f̃J , where W ∈ SL(N,Z). (W must have integer
entries since it relates one set of lattice vectors to another. Its
inverse must also be an integer matrix since either set must be
able to serve as a basis. However, since det(W ) = 1/det(W−1),
W and W−1 can both be integer matrices only if det(W ) = ±1.)
This lattice change of basis can be interpreted as the field
redefinitions, ãI

μ = WI
J aJ

μ and j̃
μ

I WI
J = j

μ

J , in terms of which
the Lagrangian (1) becomes

L = 1

4π
εμνρK̃IJ ãI

μ∂νã
J
ρ + j̃

μ

I ãI
μ, (3)
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where K = WT K̃W . Therefore two theories are physically
identical if their K matrices are related by such a similarity
transformation.

We note that the low energy phases described here may
be further subdivided according to their coupling to the elec-
tromagnetic field, which is determined by the N -component
vector tI :

L = 1

4π
εμνρKIJ aI

μ∂νa
J
ρ + j

μ

I aI
μ − 1

2π
εμνρtIAμ∂νa

I
ρ. (4)

It is possible for two theories with the same K matrix
to correspond to different phases if they have different tI
vectors since they may have different Hall conductances
σxy = e2

h
(K−1)IJ tI tJ . (It is also possible for discrete global

symmetries, such as time reversal, to act differently on theories
with the same K matrix in which case they can lead to different
SPT phases if that symmetry is present.)

In this paper, we will be interested in states of matter in
which all excitations have bosonic braiding properties, i.e.,
in which any exchange of identical particles or full braid of
distinguishable particles leads to a phase that is a multiple of
2π . Hence, we are interested in lattices for which fI · fJ is an
integer for all I,J and is an even integer if I = J . Hence, K−1

is a symmetric integer matrix with even entries on the diagonal.
By definition, K must also an integer matrix. Since both K

and K−1 are integer matrices, their determinant must be ±1.
Because fI · fI ∈ 2Z (no summation on I ) and det(fI · fJ ) =
±1, the lattice 
 is said to be an even unimodular lattice.

It is convenient to introduce the (dual) vectors ea
I =

KIJ ηabf J
b . If, as above, we view the ea

I as the components
of a vector eI ∈ RN+,N− according to eI ≡ ea

I x̂a , then KIJ =
eI · eJ . Moreover, eI is the basis of the dual lattice 
∗ defined
by fI · eJ = δI

J . Since the lattice 
 is unimodular, it is equal
to 
∗, up to an SO(N+,N−) rotation, from which we see that
K must be equivalent to K−1, up to an SL(N,Z) change of
basis. (In fact, the required change of basis is provided by the
defining relation ea

I = KIJ ηabf J
b .)

Now consider the Lagrangian (5) on the spatial torus. For
convenience, we assume there are no sources so jμ = 0. We
can rewrite the Lagrangian as

L = 1

4π
εμνρeI · eJ aI

μ∂νa
J
ρ + j

μ

I fI · eJ aJ
μ (5)

= 1

4π
εμνρaμ · ∂νaρ + jμ · aμ, (6)

where we have defined aμ ≡ eI a
I
μ and jμ ≡ fI j

μ

I . Choosing
the gauge a0 = 0, ∂iai = 0, the Lagrangian takes the form

L = − 1

2π
a1 · ∂ta2. (7)

Therefore a1 and a2 are canonically conjugate. Although we
have gauge-fixed the theory for small gauge transformations,
under a large gauge transformation, aI

k → aI
k + nI

(k), where
nI

(k) are integers (so that physical observables such as the

Wilson loop e
i
∮
Ck

aI
k about the 1-cycle Ck remains invariant).

Therefore we must identify aj and aj + nI
(k)eI since they are

related by a gauge transformation.
Suppose that we write a ground state wave function in

the form �[a1]. Then a1 will act by multiplication and its

canonical conjugate a2 will act by differentiation. To display
the full gauge invariance of the wave function, �[a1] =
�[a1 + nI eI ], it is instructive to expand it in the form

�[a1] = N
∑
mI

�mI
e2πimI fI ·a1 , (8)

where mI ∈ Z. This is an expansion in eigenstates of a2, with
the mI term having the eigenvalue 2πimI fI . However, by
gauge invariance, a1 takes values in RN/
∗. Therefore we
should restrict mI such that mI fI lies inside the unit cell of

∗. In other words, the number of ground states on the torus
is equal to the number of sites of 
 that lie inside the unit cell
of 
∗. This is simply the ratio of the volumes of the unit cells,
|det(K)|1/2/|det(K)|−1/2 = |det(K)|. It may be shown that this
result generalizes to a ground state degeneracy |detK|g on a
genus g surface.29 Therefore the theories on which we focus
in this paper have nondegenerate ground states on an arbitrary
surface, which is another manifestation of the trivial braiding
properties of its excitations.

One further manifestation of the trivial braiding properties
of such a phase’s excitations is the bipartite entanglement
entropy of the ground state.6,7 If a system with action (1)
with j

μ

I = 0 is divided into two subsystems A and B and
the reduced density matrix ρA for subsystem A is formed by
tracing out the degrees of freedom of subsystem B, then the
von Neumann entropy SA = −tr[ρA ln(ρA)] takes the form

SA = αL − ln
√

|det(K)| + · · · . (9)

Here, α is a nonuniversal constant that vanishes for the
action (1) but is nonzero if we include irrelevant subleading
terms in the action (e.g., Maxwell terms for the gauge fields).
L is the length of the boundary between regions A and B.
The . . . denote terms with subleading L dependence. For the
theories that we will consider in this paper, the second term,
which is universal, vanishes. For this reason, such phases are
called “short-range entangled.”

The discussion around Eq. (8), though essentially correct
as far as the ground state degeneracy is concerned, swept
some subtleties under the rug. A more careful treatment30

uses holomorphic coordinates a = a1 + iK · a2, in terms of
which the wave functions are ϑ functions. Moreover, the
normalization N must account for the fact that the wave
function � is a function only on the space of ai with vanishing
field strength (which the a0 = 0 gauge constraint requires),
not on arbitrary ai . Consequently, it depends on the modular
parameter of the torus as N = (η(τ ))−N+ (η(τ ))−N− where N±
are the number of positive and negative eigenvalues of KIJ ;
the torus is defined by the parallelogram in the complex
plane with corners at 0, 1, τ , τ + 1 and opposite sides
identified; and is η(τ ) = q

1
24

∏∞
n=1(1 − qn) is the Dedekind

η function, where q = e2πiτ . Consequently, the ground-state
wave function transforms nontrivially under the mapping
class group of the torus (i.e., under diffeomorphisms of
the torus that are disconnected from the identity, modulo
those that can be deformed to the identity), which is equal
to the modular group SL(2,Z) generated by S : τ → −1/τ

and T : τ → τ + 1. Under T , which cuts open the torus
along its longitude, twists one end of the resulting cylinder
by 2π , and then rejoins the two ends of the cylinder to
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reform the torus, thereby enacting τ → τ + 1, the ground state
transforms according to � → e−2πi(N+−N−)/24 �. Therefore,
so long as N+ − N− �≡ 0 (mod 24), the bulk is not really
trivial.

B. Edge excitations

The nontrivial nature of these states is reflected in more
dramatic fashion on surfaces with a boundary, where there may
be gapless edge excitations. For simplicity, consider the disk
D with no sources in its interior.31,32 The action (1) is invari-
ant under gauge transformations aI

μ → aI
μ + −i(gI )−1∂μgI ,

where gI ∈ [U (1)]N , so long as gI = 1 at the boundary ∂D.
In order to fully specify the theory on a disk, we must fix
the boundary conditions. Under a variation of the gauge fields
δaJ

μ , the variation of the action S = ∫
R×D

L (here, R is the
time direction) is

δS = 1

2π

∫
R×D

δaI
μ KIJ εμνρ∂νa

J
ρ

+ 1

4π

∫
R×∂D

εμνrKIJ aI
μδaJ

ν . (10)

Here, r is the radial coordinate on the disk. The action will be
extremized by KIJ εμνρ∂νa

J
ρ = 0 (i.e., there will not be extra

boundary terms in the equations of motion) so long as we
take boundary conditions such that εμνrKIJ aI

μδaJ
ν = 0. We

can take boundary condition KIJ aI
0 + VIJ aI

x = 0, where x is
the azimuthal coordinate. Here, VIJ is a symmetric matrix
that is determined by nonuniversal properties of the edge such
as how sharp it is. The Lagrangian (1) is invariant under all
transformations aJ

μ(x) → aJ
μ(x) − i(gJ )−1(x)∂μgJ (x) that are

consistent with this boundary condition. Only those with gJ =
1 at the boundary are gauge symmetries. The rest are ordinary
symmetries of the theory. Therefore, although all bulk degrees
of freedom on the disk are fixed by gauge invariance and the
Chern-Simons constraint, there are local degrees of freedom
at the boundary.

The Chern-Simons constraint KIJ εij ∂ia
J
j = 0 can be

solved by taking aI
i = (UI )−1∂iU

I or, writing UI = eiφ ,
aI

i = ∂iφ, where φ ≡ φ + 2π . This gauge field is pure gauge
everywhere in the interior of the disk (i.e., we can locally
set it to zero in the interior with a gauge transformation), but
it is nontrivial on the boundary because we can only make
gauge transformations that are consistent with the boundary
condition. Substituting this expression into the action (1), we
see that the action is a total derivative, which can be integrated
to give a purely boundary action:

S = 1

4π

∫
dt dx (KIJ ∂tφ

I ∂xφ
J − VIJ ∂xφ

I ∂xφ
J ). (11)

The Hamiltonian associated with this action will be positive
semidefinite if and only if VIJ has nonnegative eigenvalues. If
we define X ≡ eJ φJ or, in components, Xa ≡ ea

J φJ , then we
can rewrite this in the form

S = 1

4π

∫
dt dx (ηab∂tX

a ∂xX
b − vab ∂xX

a ∂xX
b), (12)

where vab ≡ VIJ f I
a f J

b . We see that the velocity matrix vab

parameterizes density-density interactions between the edge
modes. Note that the fields Xa satisfy the periodicity conditions
Xa ≡ Xa + 2πea

I n
I for nI ∈ Z.

This theory has N different dimension-1 fields ∂xφ
I . The

theory also has “vertex operators,” or exponentials of these
fields that must be consistent with their periodicity conditions:
eimI φ

I

or, equivalently, eimI fI ·X or, simply, eiu·X = eiηabu
aXb

for
u ∈ 
. They have correlation functions

〈eiu·Xe−iu·X〉 =
N+∏
b=1

1

(x − vbt)yb

N∏
b=N++1

1

(x + vbt)yb
. (13)

In this equation, yb ≡ ∑
a,c,d,e uaSabηbc(ST )cdηdeue, where

Sab is an SO(N ) matrix that diagonalizes ηabvbc. Its first
N+ columns are the normalized eigenvectors corresponding
to positive eigenvalues of ηabvbc and the next N− columns
are the normalized eigenvectors corresponding to negative
eigenvalues of ηabvbc. The velocities vb are the absolute values
of the eigenvalues of ηabvbc. Therefore this operator has scaling
dimension

�u = 1

2

N∑
b=1

yb. (14)

The scaling dimensions of an operator in a nonchiral theory
generally depend upon the velocity matrix vab. For a fully
chiral edge, however, ηab = δab, so �u = 1

2 |u|2.
If the velocities all have the same absolute value, |va| =

v for all a, then the theory is a conformal field theory
with right and left Virasoro central charges c = N+ and
c = N−. Consequently, we can separately rescale the right-
and left-moving coordinates: (x − vt) → λ(x − vt) and (x +
vt) → λ′(x + vt). The field ∂xX

a has right- and left-scaling
dimension (1,0) for a = 1,2, . . . ,N+ and dimension (0,1) for
a = N+ + 1, . . . ,N . Meanwhile, eiu·X has scaling dimension

(
�R

u ,�L
u

) =
⎛
⎝1

2

N+∑
b=1

yb,
1

2

N∑
b=N++1

yb

⎞
⎠ , (15)

which simplifies for the case of a fully chiral edge to
(�R

u ,�L
u ) = ( 1

2 u · u,0).
In a slight abuse of terminology, we will call the state of

matter described by Eq. (1) in the bulk and Eq. (11) on the
edge a c = N+, c = N− bosonic SRE phase. In the case of
fully chiral theories that have c = 0, we will sometimes simply
call them c = N bosonic SRE phases. Strictly speaking, the
gapless edge excitations are only described by a conformal
field theory when the velocities are all equal. However, we
will continue to use this terminology even when the velocities
are not equal, and we will use it to refer to both the bulk and
edge theories.

In the case of a c > 0, c = 0 bosonic SRE phase, all possible
perturbations of the edge effective field theory Eq. (11)—or,
equivalently, Eq. (12)—are chiral. Since such perturbations
cannot open a gap, completely chiral edges are stable. A
nonchiral edge may have a vertex operator eiu·X with equal
right- and left-scaling dimensions. If its total scaling dimension
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is less than 2, it will be relevant and can open a gap at weak
coupling. More generally, we expect that a bosonic SRE will
have stable gapless edge excitations if c − c > 0. Some of
the degrees of freedom of the theory (11) will be gapped out,
but some will remain gapless in the infrared (IR) limit and
the remaining degrees of freedom will be fully chiral with
cIR = c − c and cIR = 0. Therefore, even if such a phase is
not, initially, fully chiral, the degrees of freedom that remain
stable to arbitrary perturbations is fully chiral. Therefore
positive-definite even unimodular lattices correspond to c > 0,
c = 0 bosonic SRE phases with stable chiral edge excitations,
in spite of the absence of anyons in the bulk.

C. The cases c − c = 0,8,16

Positive-definite even unimodular lattices only exist in
dimension 8k for integer k,23 so bosonic SRE phases with
stable chiral edge excitations must have c = 8k. There is a
unique positive-definite even unimodular lattice in dimension
8, up to an overall rotation of the lattice. There are two
positive-definite even unimodular lattices in dimension 16;
there are 24 in dimension 24; there are more than 107 in
dimension 32, and even more in higher dimensions. If we
relax the condition of positive definiteness, then there are even
unimodular lattices in all even dimensions; there is a unique
one with signature (8k + n,n) for n � 1.

In dimension 2, the unique even unimodular lattice in R1,1,
which we will call U , has basis vectors e1 = 1

r
(x̂1 + x̂2), e2 =

r
2 (x̂1 − x̂2), and the corresponding K matrix is

KU = e1 · e2 =
(

0 1

1 0

)
. (16)

This matrix has signature (1,1). (Within this discussion, r

is an arbitrary parameter. It will later develop a physical
meaning and play an important role in the phase transition
we describe.) The even unimodular lattice of signature (n,n)
has a block diagonal K matrix with n copies of KU along the

diagonal:

KU⊕U⊕···⊕U =

⎛
⎜⎜⎜⎜⎝

KU 0 0 . . .

0 KU 0

0 0 KU

...
. . .

⎞
⎟⎟⎟⎟⎠. (17)

The unique positive-definite even unimodular lattice in
dimension 8 is the lattice generated by the roots of the Lie
algebra of E8. We call this lattice 
E8 . The basis vectors for

E8 are given in Appendix A, and the corresponding K matrix
takes the form

KE8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 −1 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 0 0

0 −1 0 0 0 0 2 −1

0 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(18)

The two positive-definite even unimodular lattices in
dimension 16 are the lattices generated by the roots of E8 × E8

and spin(32)/Z2. (The latter means that a basis for the lattice is
given by the roots of SO(32), but with the root corresponding to
the vector representation replaced by the weight of one of the
spinor representations.) We will call these lattices 
E8 ⊕ 
E8

and 
Spin(32)/Z2 . They are discussed further in Appendix A.
The corresponding K matrices take the form

KE8×E8 =
(

KE8 0

0 KE8

)
, (19)

[for later convenience, we permute the rows and columns of
the second copy of E8 in Eq. (A5) so that it looks superficially
different from the first] and

Kspin(32)/Z2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)
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The even unimodular lattice with signature (8 + n,n) has
K matrix

KE8⊕U⊕···⊕U =

⎛
⎜⎜⎜⎜⎝

KE8 0 0 . . .

0 U 0

0 0 U

...
. . .

⎞
⎟⎟⎟⎟⎠ . (21)

The even unimodular lattice with signature (16 + n,n) has K

matrix

KE8×E8⊕U⊕···⊕U =

⎛
⎜⎜⎜⎜⎝

KE8 0 0 . . .

0 KE8 0

0 0 U

...
. . .

⎞
⎟⎟⎟⎟⎠. (22)

These lattices are unique, so the matrix

Kspin(32)/Z2⊕U⊕···⊕U =

⎛
⎜⎜⎝

Kspin(32)/Z2 0 . . .

0 U

...
. . .

⎞
⎟⎟⎠ (23)

is equivalent to Eq. (22) under an SL(16 + 2n,Z) basis change.
This fact will play an important role in the sections that follow.

III. EQUIVALENCE OF THE TWO c = 16
BOSONIC SRE PHASES

In the previous section, we saw that two theories of the
form (1) with different N × N K matrices are equivalent if
the two K matrices are related by an SL(N,Z) transformation
or, equivalently, if they correspond to the same lattice. But if
two K matrices are not related by an SL(N,Z) transformation,
is there a more general notion that may relate the theories?
A more general notion might be expected if the difference in
the number of positive and negative eigenvalues of the two K

matrices coincide. Consider, for instance, the case of an N1 ×
N1 K matrix and an N2 × N2 K matrix with N1 < N2. Could
there be a relation between them, even though they clearly
cannot be related be related by an SL(N1,Z) or SL(N2,Z)
similarity transformation?

The answer is yes, for the following reason. Consider the
theory associated with KU , defined in Eq. (16). Its partition
function is equal to 1 on an arbitrary three-manifold, M3, as
was shown in Ref. 33:

Z(M3) ≡
∫

DaI e
i
∫

1
4π

εμνρ (KU )IJ aI
μ∂νa

J
ρ = 1. (24)

One manifestation of the triviality of this theory in the bulk
is that it transforms trivially under modular transformations,
as we saw earlier. Furthermore, a state with this K matrix can
be smoothly connected to a trivial insulator by local unitary
transformations if no symmetries are maintained.2 We shall
not do so here, but it is important to note that, if we impose a
symmetry on the theory, then we can guarantee the existence
of gapless (nonchiral) excitations that live at the edge of the
system.2,5 (We emphasize that we focus, in this section, on
the bulk and, in this paper, on properties that do not require
symmetry.)

Therefore we can simply replace it with a theory with no
degrees of freedom. We will denote such a theory by K = ∅
to emphasize that it is a 0 × 0 K matrix in a theory with 0
fields and not a theory with a 1 × 1 K matrix that vanishes.
Similarly, the partition function for a theory with arbitrary K

matrix KA on any three-manifold M3 is equal to the partition
function of KA⊕U :∫

DaI e
i

4π

∫
εμνρ (KA)IJ aI

μ∂νa
J
ρ

=
∫

DaI Da′
I

[
e

i
4π

∫
εμνρ (KA)IJ aI

μ∂νa
J
ρ e

i
4π

∫
εμνρ (KU )IJ a′I

μ∂νa
′J
ρ

]

=
∫

DaI e
i

4π

∫
εμνρ (KA⊕U )IJ aI

μ∂νa
J
ρ . (25)

Therefore all of the theories corresponding to even, unimodular
lattices of signature (n,n) are, in fact, equivalent when there
is no symmetry preserved. There is just a single completely
trivial gapped phase. We may choose to describe it by a very
large K matrix (which is seemingly perverse) but it is still the
same phase. Moreover, any phase associated with a K matrix
can equally well be described by a larger K matrix to which
we have added copies of KU along the block diagonal. This
is an expression of the physical idea that no phase transition
will be encountered in going from a given state to one in which
additional trivial, gapped degrees of freedom have been added.
Of course, in this particular case, we have added zero local
degrees of freedom to the bulk and we have not enlarged the
Hilbert space at all. So it is an even more innocuous operation.
However, when we turn to the structure of edge excitations,
there will be more heft to this idea.

At a more mathematical level, the equivalence of these the-
ories is related to the notion of “stable equivalence,” according
to which two objects are the same if they become isomorphic
after augmentation by a “trivial” object. In physics, stable
equivalence has been used in the K-theoretic classification
of (noninteracting) topological insulators.34 In the present
context, we will be comparing gapped phases and the trivial
object that may be added to either phase is a topologically
trivial band insulator. Heuristically, stable equivalence says
that we may add some number of topologically trivial bands to
our system in order to effectively enlarge the parameter space
and, thereby, allow a continuous interpolation between two
otherwise different states.

We now turn to the two c = 16 bosonic SRE phases.
Their bulk effective field theories are of the form of Eq. (1)
with K matrices given by KE8×E8 and Kspin(32)/Z2 . Their bulk
properties are seemingly trivial, but not entirely so since, as
we noted in Sec. II, they transform nontrivially under modular
transformations.

These two nontrivial theories are, at first glance, distinct.
They are associated with different lattices. For instance, 
E8 ⊕

E8 is the direct sum of two eight-dimensional lattices while

spin(32)/Z2 is not. The two K matrices are not related by an
SL(16,Z) transformation.

Suppose, however, that we consider the K matrices
KE8×E8 ⊕ U and Kspin(32)/Z2 ⊕ U , which describe “enlarged”
systems. (We use quotation marks because, although we now
have theories with 18 rather than 16 gauge fields, the physical
Hilbert space has not been enlarged.) These K matrices are, in
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fact, related by an SL(18,Z) transformation:

WT
G Kspin(32)/Z2⊕U WG = KE8×E8⊕U , (26)

where WG is given by

WG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−3 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−4 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0

−5 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0

−6 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0

−7 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0

−8 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 −1

−9 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 1 −1

−10 0 0 0 0 0 8 0 1 0 0 0 0 0 0 0 2 −2

−11 0 0 0 0 0 9 0 0 1 0 0 0 0 0 0 3 −3

−12 0 0 0 0 0 10 0 0 0 1 0 0 0 0 0 4 −4

−13 0 0 0 0 0 11 0 0 0 0 1 0 0 0 0 5 −5

−14 0 0 0 0 0 12 0 0 0 0 0 1 0 0 0 6 −6

−7 0 0 0 0 0 6 0 0 0 0 0 0 1 0 0 3 −3

−8 0 0 0 0 0 7 0 0 0 0 0 0 0 1 0 4 −4

−2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 2 −2

0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 2 −2

0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 −2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

We will explain how WG is derived in Sec. V. Here, we focus on
its implication: these two theories are equivalent on an arbitrary
closed manifold. There is a unique bulk c = 16 bosonic SRE
phase of matter. However, there appear to be two possible
distinct effective field theories for the edge of this unique bulk
phase, namely the theories (11) with KE8×E8 and Kspin(32)/Z2 .
In the next section, we explain the relation between these edge
theories.

IV. FERMIONIC REPRESENTATIONS OF THE TWO c = 16
SRE BOSONIC PHASES

In Sec. III, we saw that there is a unique bulk c = 16 bosonic
SRE phase of matter. We now turn our attention to the two
corresponding edge effective field theories, namely Eq. (11)
with KIJ given by either KE8×E8 or Kspin(32)/Z2 . These two
edge theories are distinct, although the difference is subtle. To
understand this difference, it is useful to consider fermionic
representations35,36 of these edge theories.

Consider 32 free chiral Majorana fermions:

S =
∫

dxdτ ψj (−∂τ + vai∂x) ψj , (28)

where j = 1, . . . ,32. If the velocities va are all the same,
then this theory naively has SO(32) symmetry, up to a
choice of boundary conditions. We could imagine such a
1 + 1-dimensional theory as the edge of a 32-layer system
of electrons, with each layer in a spin-polarized p + ip su-
perconducting state. We will assume that the order parameters

in the different layers are coupled by interlayer Josephson
tunneling so that the superconducting order parameters are
locked together. Consequently, if a flux hc/2e vortex passes
through one of the layers, it must pass through all 32 layers.
Then all 32 Majorana fermion edge modes have the same
boundary conditions. When two vortices in a single-layer
spin-polarized p + ip superconducting state are exchanged,
the resulting phase is e−iπ/8 or e3iπ/8, depending on the fusion
channel of the vortices (i.e., the fermion parity of the combined
state of their zero modes). Therefore a vortex passing through
all 32 layers (which may be viewed as a composite of 32
vortices, one in each layer) is a boson. These bosons carry
32 zero modes, so there are actually 216 states of such
vortices—215 if we require such a vortex to have even fermion
parity. (Of course, the above construction only required 16
layers if our goal was to construct the minimal dimension SRE
chiral phase of bosons.)4

Now suppose that such vortices condense. (Without loss of
generality, we suppose that the vortices are in some particular
internal state with even fermion parity.) Superconductivity is
destroyed and the system enters an insulating phase. Although
individual fermions are confined since they acquire a minus
sign in going around a vortex, a pair of fermions, one in
layer i and one in layer j , is an allowed excitation. The
dimension-1 operators in the edge theory are of the form iψiψj

where 1 � i < j � 32. There are 1
2 × 32 × 31 = 496 such

operators. We may choose iψ2a−1ψ2a , with a = 1,2, . . . ,16
as a maximal commuting subset, i.e., as the Cartan subalgebra
of SO(32). The remaining 480 correspond to the vectors
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of (length)2 = 2 in the lattice 
16. To see this, it is useful
to bosonize the theory (28). We define the Dirac fermions
�I ≡ ψ2a−1 + iψ2a , with a = 1,2, . . . ,16 and represent them
with bosons: �I = eiXa . Then the Cartan subalgebra consists
of the 16 dimension-1 operators ∂Xa . The operators eiv·X
with v ∈ 
SO(32) ⊂ 
spin(32)/Z2 and |v|2 = 2 correspond to the
vectors of (length)2 = 2 in the SO(32) root lattice: ±x̂a ± x̂b

with 1 � a < b � 16. In the fermionic language, we see that
the relevant perturbations of iψiψk can be gauged away with
a spatially dependent SO(32) rotation and, therefore, do not
affect the basic physics of the state.

To complete the description of the spin(32)/Z2 theory,
recall that a vortex in a single layer braids nontrivially with
the composite vortex that condenses. Such single vortices are
confined after condensation of the composite. Therefore it is
impossible to change the boundary conditions of just one of
the fermions ψi by inserting a single vortex into the bulk;
all of the fermions must have the same boundary conditions.
The fermion boundary conditions can be changed from
anti-periodic to periodic by the operator eiμs ·X = exp[i(X1 +
X2 + · · · + X16)/2], where μs is the weight of one of the
spinor representations of SO(32). This is a dimension-2
operator.

Note that the group spin(32) is a double-cover of SO(32)
that has spinor representations. By disallowing one of the
spinor representations and the vector representation (i.e., the
odd fermion parity sector), the theory is associated with
spin(32)/Z2 but the Z2 that is moded out is not the Z2

that leads back to SO(32). Thus it is the inclusion of μs

along with the vectors v of SO(32) mentioned above that is
essential to the description of the fermionic representation of
the spin(32)/Z2 theory. If we had chosen not to include μs , i.e.,
if we had not condensed the composite vortex, the resulting
theory would have had topological order with a torus ground
state degeneracy equal to four. [The SO(32) root lattice has
unit cell volume equal to four while the unit cell volume of the
spin(32)/Z2 lattice is unity.]

Now suppose that the first 16 layers are coupled by
interlayer Josephson tunneling so that their order parameters
are locked and the remaining 16 layers are coupled similarly,
but the first 16 layers are not coupled to the remaining 16.
Then there are independent vortices in the first 16 layers
and in the remaining 16 layers. Suppose that both types
of vortices condense. Each of these 16-vortex composites
is a boson, and superconductivity is again destroyed. In-
dividual fermions are again confined and, moreover, the
fermion parity in each half of the system must be even.
Therefore the allowed dimension-1 operators in the theory
are iψiψj with 1 � i < j � 16 or 17 � i < j � 32. There
are 2 × 1

2 × 16 × 15 = 240 such dimension-1 operators. As
above, 16 of them correspond to the Cartan subalgebra.
The other 224 correspond to lattice vectors eiv·X with v =
±x̂a ± x̂b and 1 � a < b � 8 or 9 � a < b � 16. Unlike in
the case of spin(32)/Z2, the boundary-condition changing
operators exp[i(±X1 ± X2 ± · · · ± X8)/2] and exp[i(±X9 ±
X10 ± · · · ± X16)/2] are dimension-1 operators. There are
2 × 27 = 256 such operators with even fermion parity in
each half of the system (i.e., an even number of + signs
in the exponential). The corresponding vectors v = (±x̂1 ±
x̂2 ± · · · ± x̂8)/2 and v = (±x̂9 ± x̂10 ± · · · ± x̂16)/2 with an

even number of + signs together with v = ±x̂a ± x̂b are
the 480 different (length)2 = 2 vectors in the E8 × E8 root
lattice. Consequently, this is the fermionic representation of
the E8 × E8 theory.

It is unclear, from this fermionic description, how to
adiabatically connect the two bulk theories. The most obvious
route between them, starting from the E8 × E8 theory, is to
restore superconductivity, couple the order parameters of the
two sets of 16 layers, and then condense 32-layer vortices to
destroy superconductivity again. This route takes the system
across three phase transitions while the analysis in the previous
section showed that they are, in fact, the same phase and,
therefore, it should be possible to go from one to the other
without crossing any bulk phase boundaries.

As we saw above, there are 480 vectors u with |u|2 = 2
in both 
E8×E8 and 
spin(32)/Z2 . In fact, a result of Milnor37

(related to hearing the shape of a drum) states that the two
lattices have the same number of vectors of all lengths: for
every u ∈ 
E8×E8 , there is a unique partner v ∈ 
spin(32)/Z2

such that |v|2 = |u|2. (See Ref. 36 for an elegant presentation
of this fact following Ref. 23.) Therefore the E8 × E8 and
spin(32)/Z2 edge theories have identical spectra of operator
scaling dimensions �u = 1

2 |u|2. Thus it is impossible to
distinguish these two edge theories by measuring the possible
exponents associated with two-point functions. However, in
the fermionic realization described above, consider one of
the 496 dimension-1 operators, which we will call Ji , i =
1,2, . . . ,496. They are given by ∂Xa and eiu·X with |u|2 = 2 for
u ∈ 
E8×E8 or 
spin(32)/Z2 . In the limit that all of the velocities
are equal, these are conserved currents corresponding to the
496 generators of either E8 × E8 or spin(32)/Z2, but we will
use the notation Ji even when the velocities are not equal.
It is clear that, in the spin(32)/Z2 phase, there are Jis that
involve both halves of the system, but not in the E8 × E8

phase. In other words, in the spin(32)/Z2 phase, there are
two-point functions involving both halves of the system that
decay as 〈Ji(x,0)Ji(0,0)〉 ∝ 1/x2. In the E8 × E8 phase, such
operators Ji only exist acting entirely within the top half or the
bottom half of the system.

Moreover, the n-point functions for n � 3 of the two
theories are different. Consider, for the sake of concreteness,
the following 3-point function:

〈Ja(x1,t1)Jb(x2,t2)Jc(x3,t3)〉, (29)

where Ja,Jb,Jc are dimension-1 operators. In the spin(32)/Z2

phase, there are 4960 such nonvanishing 3-point functions
(up to permutations of the labels a,b,c) since this correlation
function will only be nonvanishing if Ja = iψjψk , Jb =
iψkψl , Jb = iψlψj , with 1 � j < k < l � 32. (Here, we are
using the fermionic representation for simplicity, but the same
conclusion can be reached using the bosonic representation.)
In the E8 × E8 phase, on the other hand, there are 8288 such
nonvanishing 3-point functions. There are 1120 correlation
functions (up to permutations of the labels a,b,c) with Ja =
iψjψk , Jb = iψkψl , Jb = iψlψj , with 1 � j < k < l � 16 or
17 � j < k < l � 32. There are also 7168 3-point functions
involving the twist fields, such as the 3-point function with
Ja = exp[i(X1 + X2 + X3 + · · · + X8)/2], Jb = exp[i(X1 +
X2 − X3 − · · · − X8)/2], and Jc = exp[i(X1 + X2)].
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V. PHASE DIAGRAM OF THE c − c = 16 EDGE

Since there is a unique bulk c = 16 bosonic SRE phase
of matter, the two different edge theories corresponding to
KE8×E8 or Kspin(32)/Z2 must be different edge phases that
can occur at the boundary of the same bulk phase. For this
scenario to hold, it must be the case that the transition between
these two edge theories is purely an edge transition—or, in
other words, an “edge reconstruction”—that can occur without
affecting the bulk. Such a transition can occur as follows. The
gapless modes in the effective theory (11) are the lowest energy
excitations in the system. However, there will generically be
gapped excitations at the edge of the system that we usually
ignore. So long as they remain gapped, this is safe. However,
these excitations could move downward in energy and begin
to mix with the gapless excitations, eventually driving a phase
transition. Such gapped excitations must be nonchiral and can
only support bosonic excitations.

A perturbed nonchiral Luttinger liquid is the simplest
example of such a gapped mode:

SLL = 1

4π

∫
dt dx

[
2∂tϕ ∂xθ − v

g
(∂xθ )2 − vg(∂xϕ)2

+u
(m)
1 cos(mθ ) + u

(n)
2 cos(nϕ)

]
, (30)

with Luttinger parameter g and integers m,n. The ϕ and θ fields
have period 2π . The first line is the action for a gapless Lut-
tinger liquid. The second line contains perturbations that can
open a gap in the Luttinger liquid spectrum. The couplings u

(m)
1

and u
(n)
2 have scaling dimensions 2 − m2

2 g and 2 − 2n2g−1,
respectively. Let us concentrate on the lowest harmonics which
are the most relevant operators with couplings u

(1)
1 ≡ u1 and

u
(1)
2 ≡ u2. The first operator is relevant if g < 4 and the

second one is relevant if g > 1. At least one of these is
always relevant. Given our parametrization of the Luttinger
Lagrangian, a system of hard-core bosons on the lattice with no
other interactions or in the continuum with infinite δ-function
repulsion has g = 1 (see Ref. 38).

When considering one-dimensional bosonic systems, the
above cosine perturbations can be forbidden by, respectively,
particle-number conservation and translational invariance.
Here, however, we do not assume that there is any symmetry
present, so these terms are allowed. The Luttinger action can
be rewritten in the same way as the edge theory (11):

SLL = 1

4π

∫
dt dx [(KU )IJ ∂tφ

I ∂xφ
J − VIJ ∂tφ

I ∂xφ
J

+u1 cos(φ17) + u2 cos(φ18)], (31)

where I,J = 17,18 in this equation and φ17 = θ and φ18 = ϕ.
Therefore we see that the action for a perturbed Luttinger
liquid is the edge theory associated with the trivial bulk theory
with K matrix given by KU that we discussed in Sec. III. It is
gapped unless u1 and u2 are fine-tuned to zero or forbidden by
a symmetry. However, augmenting our system with this trivial
one does increase the number of degrees of freedom at the
edge and expands the Hilbert space, unlike in the case of the
bulk.

Hence, we consider the edge theory

S = 1

4π

∫
dtdx

[(
KE8×E8⊕U

)
IJ

∂tφ
I ∂xφ

J − VIJ ∂xφ
I ∂xφ

J

+u1 cos(φ17) + u2 cos(φ18) + · · · ]. (32)

We can integrate out the trivial gapped degrees of freedom φ17

or φ18, leaving the gapless chiral edge theory associated with
KE8×E8 . The . . . represents other nonchiral terms that could
appear in the Lagrangian (i.e., cosines of linear combinations
of the fields φI ), they are all irrelevant for VI,17 = VI,18 = 0
for I = 1, . . . ,16, or more accurately, they are less relevant
than u1 or u2 and so we ignore them to first approximation.
However, if we vary the couplings VIJ , then u1, u2 could both
become irrelevant and some other term could become relevant,
driving the edge into another phase.

To further analyze the possible transition, it is useful to
rewrite the action in terms of the fields X = eJ φJ :

S = 1

4π

∫
dt dx

{
ηab∂tX

a ∂xX
b − vab ∂xX

a ∂xX
b

+u1 cos

[
r

2
(X17 + X18)

]

+u2 cos

[
1

r
(X17 − X18)

]
+ · · ·

}
, (33)

where vab ≡ VIJ f I
a f J

b , f I
a ea

J = fI · eJ = δI
J and ηab =

(116,1,−1). Here, eJ for J = 1, . . . ,16 is a basis of 
E8 ⊕

E8 given explicitly in Appendix A and cn refers to the
n-component vector where each component equals c. We
take e17 = (016, 1

r
, 1
r
) and e18 = (016, r

2 ,− r
2 ) so that e17 · e17 =

e18 · e18 = 0 and e17 · e18 = 1. When va,17 = va,18 = 0 for a =
1, . . . ,16 (or, equivalently, when VI,17 = VI,18 = 0 for I =
1, . . . ,16), the parameter r is related to the Luttinger parameter
according to g = r2/2 and u1, u2 have renormalization group
(RG) equations:

du1

d�
=

(
2 − r2

4

)
u1,

du2

d�
= (2 − r−2)u2. (34)

Hence one of these two perturbations is always relevant
when va,17 = va,18 = 0 for a = 1, . . . ,16 and, consequently,
X17,18 become gapped. The arguments of the cosine follow
from the field redefinition φI = fI · X = (K−1)IJ eJ · X. The
field X satisfies the periodicity conditions X ≡ X + 2πu for
u ∈ 
E8 ⊕ 
E8 ⊕ U . Again, the . . . refers to other possible
perturbations, i.e., cosines of other linear combinations of
the Xas.

In a nearly identical manner, we can construct a theory for
spin(32)/Z2 ⊕ U in which a nonchiral gapped mode is added
to the spin(32)/Z2 edge theory and allowed to interact with it.
The only difference is in the parametrization of the U lattice.
We choose ẽ17 = (016,−r,r) and ẽ18 = (016,− 1

2r
,− 1

2r
). The

action

S = 1

4π

∫
dt dx

{
ηab∂t X̃

a ∂xX̃
b − ṽab ∂xX̃

a ∂xX̃
b

+ ũ1 cos

[
1

2r
(X̃17 − X̃18)

]

+ ũ2 cos[r(X̃17 + X̃18)] + · · ·
}
. (35)
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Again, the . . . refers to cosines of other linear combinations of
the X̃as. When ṽ17,18 = ṽa,17 = ṽa,18 = 0 for a = 1, . . . ,16,
the parameter r is related to the Luttinger parameter according
to g = r−2/2 and ũ1, ũ2 have RG equations:

dũ1

d�
=

(
2 − 1

4r2

)
ũ1,

dũ2

d�
= (2 − r2)ũ2. (36)

Hence one of these two perturbations is always most relevant
when ṽa,17 = ṽa,18 = 0 for a = 1, . . . ,16 and, consequently,
X17,18 become gapped. The fields X̃ satisfy the periodicity
conditions X̃ ≡ X̃ + 2πv for v ∈ 
spin(32)/Z2 ⊕ U .

We now make use of the fact there is a unique signature
(17,1) even unimodular lattice. It implies that there is an
SO(17,1) rotation OG that transforms 
E8 ⊕ 
E8 ⊕ U into

spin(32)/Z2 ⊕ U . Therefore the fields OGX satisfy the periodic-
ity condition OGX ≡ OGX + 2πv for v ∈ 
spin(32)/Z2 ⊕ U or,
in components, (OG)abX

b ≡ (OG)abX
b + 2πnI ẽa

I for nI ∈ Z.
Thus we identify X̃a = (OG)abX

b. The explicit expression for
OG is provided in Appendix A. [As an aside, having identified
Xa and X̃b through the SO(17,1) transformation OG, we can
now explain how the SL(18,Z) transformation WG is obtained.
The desired transformation is read off from the relation,

φ̃J = f̃ J
a (OG)abe

b
I φ

I =: (WG)IJ φI , (37)

which follows from equation relating the 
E8 ⊕ 
E8 and

spin(32)/Z2 bases,

(OG)abe
b
I =

∑
K

mK
I ẽa

K, (38)

where the mK
I are a collection of integers. Multiplying both

sides of Eq. (38) by f̃ J
c allows us to read off the elements of

WG.]
Therefore by substituting X̃a = (OG)abX

b, the action (35)
could equally well be written in the form

S = 1

4π

∫
dt dx

(
ηab∂tX

a∂xX
b − ṽab(OG)ac(OG)bd

× ∂xX
c ∂xX

d + ũ1 cos

{
1

2r

[
(OG)17

a Xa − (OG)18
a Xa

]}

+ ũ2 cos
{
r
[
(OG)17

a Xa + (OG)18
a Xa

]} + · · ·
)

, (39)

where X ≡ X + 2πu for u ∈ 
E8 ⊕ 
E8 ⊕ U . [We have used
the defining property, (OG)abηac(OG)cd = ηbd , in rewriting the
first term in the action (35).]

Having rewritten the augmented spin(32)/Z2 action
Eq. (35) in terms of the 
E8 ⊕ 
E8 fields, let us add in two
of the available mass perturbations u1,u2 written explicitly in
Eq. (33):

S = 1

4π

∫
dt dx

(
ηab∂tX

a ∂xX
b

− ṽab(OG)ac(OG)bd∂xX
c ∂xX

d

+ ũ1 cos

{
1

2r

[
(OG)17

a Xa − (OG)18
a Xa

]}

+ ũ2 cos
{
r
[
(OG)17

a Xa + (OG)18
a Xa

]}

+u1 cos

[
r

2
(X17 + X18)

]

+u2 cos

[
1

r
(X17 − X18)

]
+ · · ·

)
. (40)

So far we have only rewritten Eq. (35) and included additional
mass perturbations implicitly denoted by “. . .”. If ṽ17,18 =
ṽa,17 = ṽa,18 = 0 for a = 1, . . . ,16, then either ũ1 or ũ2 is the
most relevant operator and the X̃17 and X̃18 fields are gapped
out. The remaining gapless degrees of freedom are those of
the spin(32)/Z2 edge theory. On the other hand, if vcd =
ṽab(OG)ac(OG)bd with v17,18 = va,17 = va,18 = 0, either u1

or u2 is the most relevant operator. At low energies, X17

and X18 are gapped with the remaining degrees of freedom
being those of the E8 × E8 theory. We see that the transition
between the chiral E8 × E8 and spin(32)/Z2 is mediated by
OG given a starting velocity matrix—this is an interaction
driven transition.

Given OG, we can define a one-parameter family
of SO(17,1) transformations as follows. As discussed in
Appendix A, OG can be written in the form OG =
ηW (A)ηW (A′), where W (A),W (A′) are SO(17,1) transfor-
mations labeled by the vectors A,A′, which are defined in
Appendix A as well and η is a reflection. We define OG(s) =
ηW (sA)ηW (sA′). This family of SO(17,1) transformations,
parameterized by s ∈ [0,1] interpolates between OG(0) = I ,
the identity, and OG(1) = OG or, in components, (OG(0))ab =
δa

b, the identity, and (OG(1))ab = (OG)ab. This one-parameter
family of transformations defines a one-parameter family of
theories:

S4(s) = 1

4π

∫
dt dx

(
ηab∂tX

a ∂xX
b

− vab[OG(s)]ac[OG(s)]bd∂xX
c∂xX

d

+ ũ1 cos

{
1

2r

[
(OG)17

a Xa − (OG)18
a Xa

]}

+ ũ2 cos
{
r
[
(OG)17

a Xa + (OG)18
a Xa

]}

+u1 cos

[
r

2
(X17 + X18)

]

+u2 cos

[
1

r
(X17 − X18)

]
+ · · ·

)
. (41)

These theories are parametrized by s, which determines a one-
parameter family of velocity matrices vab[OG(s)]ac[OG(s)]bd
(this is the only place where s enters the action). We call
this action S4(s) because there are four potentially mass-
generating cosine perturbations. Note that the ũ1,2 terms have
OG = OG(1) in the arguments of the cosines, not OG(s).
As our starting point, we take v17,18 = va,17 = va,18 = 0 for
a = 1, . . . ,16. (For instance, we can take diagonal vab.) Then,
for s = 0, this theory is of the form of Eq. (33) with two
extra mass perturbations parameterized by ũ1 and ũ2; however,
either u1 or u2 is the most relevant, and the remaining gapless
degrees of freedom are those of the chiral E8 × E8 edge theory.
For s = 1, this theory is of the form of Eq. (40), which we know
is equivalent to Eq. (35) with two extra mass perturbations
parameterized by u1 and u2; now, either ũ1 or ũ2 is the most
relevant, and the remaining gapless degrees of freedom are
those of the spin(32)/Z2 edge theory. For intermediate values
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FIG. 1. (Color online) The scaling dimensions of u1,2 (densely
dashed and dotted) and ũ1,2 (thick and dashed), plotted as a function
of s at r = 1. The E8 × E8 phase lives roughly within 0 � s < 0.625
and the spin(32)/Z2 phase between 0.625 < s � 1.

of s, the RG equations for u1, u2, ũ1, ũ2 are

du1

d�
=

{
2 − [2s2 + r2(1 − s2 + 4s4)]2

4r2

}
u1,

du2

d�
=

[
2 − (1 + 2r2s2)2

r2

]
u2,

dũ1

d�
=

{
2 − [4 − 7s + 4s2 + 2r2(s − 1)2(1 + s + 4s2)]2

4r2

}
ũ1,

dũ2

d�
=

{
2 − [2(s − 1)2 + r2(1 + s + 3s2 − 8s3 + 4s4)]2

r2

}
ũ2.

(42)

The expressions in square brackets on the right-hand sides of
these equations, which are equal to 1

u1,2

du1,2

d�
and 1

ũ1,2

dũ1,2

d�
, are

the scaling dimensions of u1,2 and ũ1,2 near the u1,2 = ũ1,2 = 0
fixed line.

We plot the weak-coupling RG flows of these operators in
Figs. 1–3 for three different choices of r . First, we notice that,
depending upon r , either u1 or u2 is most relevant at s = 0. At
s = 1, either ũ1 or ũ2 is most relevant. At intermediate values
of s, there are several possibilities. Assuming that the most
relevant operator determines the flow to low energy [which
must have the same value c − c = 16 as the action (41)], we
conclude that when either of these two sets of operators is most
relevant we expect a mass to be generated for, respectively,
the X17,18 or X̃17,18 modes, thereby leaving behind either the
E8 × E8 or spin(32)/Z2 edge theories at low energies. If there
are no relevant operators, then the edge is not fully chiral, it
has c = 17, c = 1.

Thus we see that the two different positive-definite even
unimodular lattices in 16 dimensions correspond to two differ-
ent fully chiral phases at the edge of the same bulk phase. In the
model in Eq. (41), the transition between them can occur in two
possible ways: either a direct transition (naively, first-order, as
we argue below) or or via two Kosterlitz-Thouless-like phase
transitions, with an intermediate c = 17, c = 1 phase between
the two fully chiral phases. The former possibility occurs
(again, assuming that the most relevant operator determines the
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FIG. 2. (Color online) The scaling dimensions of u1 (densely
dashed) and ũ2 (dashed), plotted as a function of s at at r = 0.2.
The scaling dimensions of u2 and ũ1 lie outside the range of the plot
and are not displayed. The system is not fully chiral phase between
approximately s = 0.5 and 0.625.

flow to low energy) when there is always at least one relevant
operator. The system is in the minimum of the corresponding
cosine, but when another operator becomes more relevant,
the system jumps to this minimum as s is tuned through the
crossing point. Precisely at the point where two operators are
equally relevant (e.g., u1 and ũ1 at r = 1,s ≈ 0.6 as shown in
Fig. 1) the magnitudes of the two couplings become important.
At a mean-field level, the system will be in the minimum
determined by the larger coupling and there will be a first-order
phase transition at the point at which these two couplings are
even in magnitude.

If the most relevant operator is in the set u1,u2,ũ1,ũ2, then
this means that the crossing point between the larger of 1

u1,2

du1,2

d�

and the larger of 1
ũ1,2

dũ1,2

d�
occurs when both are positive so

that the system goes directly from E8 × E8 to spin(32)/Z2

theory. However, if there is a regime in which there are no
relevant operators, then there will be a stable c = 17, c = 1
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FIG. 3. (Color online) The scaling dimensions of u1,2 (densely
dashed and dotted) and ũ1 (thick), plotted as a function of s at at
r = 3. The scaling dimension of ũ2 lies outside the range of the
plot and is not displayed. The system is in the not fully chiral phase
between approximately s = 0.425 and 0.625.
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phase. [Note that we adhere to a slightly weaker definition
of stability than used in the recent papers;39,40 we say that an
edge is unstable to gapping out some subset of its modes if
a null vector41 of the K matrix exists and that the associated
operator is relevant in the RG sense. A null vector is simply an
integer vector nI satisfying nI (K−1)IJ nJ = 0 or, equivalently,
a lattice vector ka satisfying kaη

abkb = 0.] If the crossing point
between the larger of 1

u1,2

du1,2

d�
and the larger of 1

ũ1,2

dũ1,2

d�
occurs

when both are negative, then there may be a stable c = 17,
c = 1 phase.

However, the model of Eq. (41) is not the most general
possible model; it is a particular slice of the parameter space
in which the only perturbations of the quadratic theory are u1,2

and ũ1,2. A more general model will have many potentially
mass-generating perturbations:

Sgen(s) = S4(s) +
∫

dt dx
∑

v∈
E8
⊕
E8

⊕U

δ|v|2,0 uv,s cos(v · X),

(43)

where the sum is over vectors v ∈ 
E8 ⊕ 
E8 ⊕ U that have
zero norm. This guarantees that these are spin-0 operators that
are mass-generating if relevant. In Eq. (41), we have chosen
4 particular operators of this form and set the coefficients
of the others to zero.47 However, to determine if there is a
stable nonchiral phase, it behooves us to consider a more
general model in order to determine whether the nonchiral
phase requires us to set more than one of the potentially
mass-generating operators in Eq. (43) to zero by hand and
so any such critical point is multicritical.

Of course, there are many possible v ∈ 
E8 ⊕ 
E8 ⊕ U

with |v|2 = 0. But most of them give rise to operators that
are highly irrelevant over most of the range of the parameters
r and s. However, there are two sets of operators that cannot
be ignored. In one set, each operator is highly relevant in
the vicinity of a particular value of s (which depends on the
operator) in the r → 0 limit and, in the other set, each operator
is highly relevant in the vicinity of a particular value of s in
the r → ∞ limit. Consider the operators

cos
(
αf̃ 17

a Ra
bX

b
)
, cos

(
βf̃ 18

a Ra
bX

b
)
, (44)

where R is an arbitrary SO(17,1) transformation. These
operators have spin-0 since f̃17,18 have vanishing norm, which
R preserves. Although they have spin-0 and can, therefore,
generate a mass gap, there is no particular reason to think
that either one is relevant. Moreover, it is not even likely that
either one is an allowed operator. For an arbitrary SO(17,1)
transformation, f̃ 17

a Ra
b will not lie in the 
E8 ⊕ 
E8 ⊕ U

lattice spanned by the f I s, so this operator will not be allowed.
However, there is a special class of R for which these operators
are allowed and are relevant in the vicinity of special points.
Let us suppose that R = OG(p/q) and let us consider α = q4,
β = q2.48 Consider the action

S4

(
s = p

q

)
+ u18, p

q

∫
dt dx cos

{
q2f̃ 18

a [OG(p/q)]ab Xb
}
.

(45)

This is a spin-0 perturbation. Moreover, it is an allowed
operator for the following reason. We can write

q2f̃ 18
a [(OG(p/q)]ab = q2[W (p/q)]18,J f J

a (46)

where [W (s)]IJ is defined in analogy with WG: [W (s)]IJ =
f̃ J

a [OG(s)]abe
b
I . The vector q2[W (p/q)]18,J has integer entries,

so q2f̃ 18
a [(OG(p/q)]ab is in the lattice 
E8 ⊕ 
E8 ⊕ U . At the

point s = p/q, its scaling dimension is the same as the scaling
dimension of q2f̃ 18

a Xa at s = 0:

d

d�
u18, p

q
= (2 − q4r2)u18, p

q
. (47)

Therefore, for r <
√

2/q2, the coupling u18, p
q

is a relevant
mass-generating interaction at s = p/q and, over some range
of small r , it is relevant for s sufficiently near p/q. By a
similar analysis, u17, p

q
is a relevant mass-generating interaction

at s = p/q for r > q4/(2
√

2) and, over some range of large r ,
it is relevant for s sufficiently near p/q. Therefore, when these
couplings are nonzero, the nonchiral phase survives in a much
smaller region of the phase diagram. (Making contact with our
previous notation, we see that u17,1 = ũ1 and u18,1 = ũ2.)

When one of these interactions gaps out a pair of counter-
propagating modes, we are left with a fully chiral c = 16 edge
theory corresponding to either E8 × E8 to spin(32)/Z2. To see
which phase we get, consider, for the sake of concreteness, the
coupling u18, p

q
. When it generates a gap, it locks the combina-

tion of fields q2f̃ 18
a [OG(p/q)]abX

b = q2[W (p/q)]18,J f J
aX

a .
In the low-energy limit, we may set this combination to
zero. Only fields that commute with this combination remain
gapless. (Moreover, since we have set this combination to zero,
any fields that differ by a multiple of it are equal to each other
at low energy.) Therefore the vertex operators that remain in
the theory are of the form exp(nIf

J
aX

a) where nI satisfies
nI (K−1)IJ [W (p/q)]18,J = 0. We note that [W (p/q)]18,J is
nonzero only for J = 8,16,17,18. Therefore [W (p/q)]18,J f J

a

is orthogonal to e1, . . . ,e7 and e9, . . . ,e15.
Much as in our discussion in Sec. IV of the difference

between the E8 × E8 and spin(32)/Z2 edge theories, we
again make use of the basic observation that E8 × E8 is
a product while spin(32)/Z2 has a single component in
order to identify the low energy theory. If the vectors nIf

I
a

with nI (K−1)IJ [W (p/q)]18,J = 0 (and two vectors differing
by a multiple of q2[W (p/q)]18,J f J

a identified) form the
spin(32)/Z2 lattice, then there must be a vector c = cI fI in the
lattice with |c|2 = 2 such that c · e1 = −c · e7 = c · e9 = 1 and
c · e2 = c · e3 = · · · = c · e6 = 0 and c · e10 = c · e11 = · · · =
c · e15 = 0. This is because there exists a set of Cartesian
coordinates ŷa such that all the vectors in spin(32)/Z2

with (length)2 = 2 are of the form ±ŷa ± ŷb with a,b =
1, . . . ,16, while for E8 × E8, vectors of the form ±ŷa ± ŷb

must have a,b = 1, . . . ,8 or a,b = 9, . . . ,16. In E8 × E8,
vectors of (length)2 = 2 cannot “connect” the two halves
of the system. If the equations cI (K−1)IJ (W (p/q))18,J = 0
and cI (K−1)IJ cJ = 2 with c1 = −c7 = c9 = 1 and c2 = c3 =
· · · = c6 = c10 = c11 = · · · = c15 = 0 have integer solutions,
then the remaining gapless degrees of freedom are in the
spin(32)/Z2 phase. Otherwise, they are in the E8 × E8 phase.
We could choose e1, −e7, and e9 as the vectors with unit
product with c because such a c must exist in spin(32)/Z2.
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(Note that we could have taken c7 to be arbitrary, and we would
have found that solutions to these equations must necessarily
have c7 = −1.) The phase is E8 × E8 if and only if such a
vector c is not in the lattice. Of course, it is essential that we
can restrict our attention to the two possibilities, E8 × E8 and
spin(32)/Z2, since these are the only two unimodular self-dual
lattices in dimension 16.

With the aid of MATHEMATICA, we have found that solutions
to the above equations must be of the form cI = (1,05,

−1,c8,1,06,c8 − 1,q/p(2c8 − 1),−p/q(2c8 − 1)). Since cI

must be an integer vector, both p and q must be odd since
2c8 − 1 is odd. Here, as above, we have assumed that p and q

are relatively prime. Further, we see that this solution requires
2c8 = pqm + 1 for odd m.

This means that the chiral spin(32)/Z2 theory is left behind
at low energies when both p and q are odd and u18, p

q
is the most

relevant operator that generates a mass gap for two counter-
propagating edge modes. When either p or q is even, the
remaining gapless modes of the edge are in the E8 × E8 phase.
We find the identical behavior for the low energy theory when
u17, p

q
is the most relevant operator.

When these operators have nonzero coefficients in the
Lagrangian, they eliminate a great deal of the nonchiral phase
shown in the u1,2, ũ1,2-only phase diagram in Fig. 4. The effect
is most noticeable as r → 0 and r → ∞ as shown in Fig. 5.

However, there still remain pockets of the nonchiral phase
at intermediate values of r and s, where these operators are
irrelevant. However, we find that these regions of nonchiral
phase are not stable when we include a larger set of operators in
the Lagrangian. Consistent with our expectations, it is possible
to find a relevant operator in the region around any given point
(r,s) in the phase diagram such that the low energy theory
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FIG. 4. (Color online) Phase diagram of our edge theory as a
function of s and r for the theory S4(s) in which the only nonzero
perturbations are u1,2 and ũ1,2. The light region is in the E8 × E8

phase. The darkest region is in the spin(32)/Z2 phase. The system
is not fully chiral in the intermediately shaded region. The dashed
phase boundary line indicates a KT transition. The solid lines denote
regions where there are two equally relevant couplings; the phase is
determined by their ratio.

remaining after a pair of counter-propagating modes gaps out
is E8 × E8 or spin(32)/Z2.

To see how this works, consider, for instance, the point
(r,s) = (3,3/5) that exists in the putative region of nonchiral
phase according to Fig. 4. The couplings u17, p

q
, u18, p

q
are all

irrelevant there so the system remains nonchiral even when
these couplings are turned on. However, we can find a relevant
spin-0 operator at this point as follows. It must take the form
cos(paX

a), with pa ∈ 
8 ⊕ 
8 ⊕ U , where ηabpapb = 0 (this
is the spin-0 condition). To compute its scaling dimension,
we observe that it can be written in the form cos[qaX

a(s)],
where Xa(s) ≡ [OG(s)]abX

b and pb = qa[OG(s)]ab . In terms
of this field, the quadratic part of the action is diagonal in the
Xa(s) fields, so their correlation functions (and, therefore, their
scaling dimensions can be computed straightforwardly). Since
the operator in question has spin-0, its total scaling dimension
δabqaqb is twice their left-moving dimension or, simply, |q18|2.
Therefore such an operator is relevant if |q18|2 < 2.

O−1
G (s) is simply a boost along some particular direction

in the 17-dimensional space combined with a spatial rotation.
The eigenvalues of such a transformation are either complex
numbers of modulus 1 (rotation) or contraction/dilation by
e±α (Lorentz boost). Consequently, even if δabpapb is large—
which means that cos(paX

a) is highly irrelevant at s = 0–
δabqaqb can be smaller by as much as e−2α , thereby making
cos(paX

a) a relevant operator at this value of s (and of r).
The maximum possible contraction, e−α , occurs when pa is
antiparallel to the boost. (The maximum dilation, e−α , occurs
when pa is parallel to the boost, and there is no change in the
scaling dimension when pa is perpendicular to the boost.) For
a given r,s, we can choose a lattice vector pa that is arbitrarily
close to the direction of the boost, but at the cost of making
δabpapb very large. Then δabqaqb ≈ e−2αδabpapb may not be
sufficiently small to be relevant. (The ≈ will be an = sign if
pa is precisely parallel to the direction of the boost, however,
we are not guaranteed to be able to find an element of the
lattice that is precisely parallel.) Alternatively, we can choose
a smaller δabpapb, but the angle between pa and the boost may
not larger. As explained through an example in Appendix B,
we can balance these two competing imperatives and find a pa

so that neither δabpapb nor the angle between pa and the boost
is too large. Then 1

2δabqaqb ≈ 1
2e−2αδabpapb < 2, so that the

corresponding operator is relevant.
The following simple ansatz leads to a relevant operator

pa = nf 7
a + (m − 2n)f 8

a + mf 16
a + n17f

17
a + n18f

18
a (48)

at all candidate nonchiral points in the (r,s) phase diagram
that we have checked. We do not have a proof that there is
not some region in parameter space where a nonchiral phase
is stable, but we have explicitly excluded nearly all of it, as
may be seen from the phase diagram in Fig. 6 where we have
included a selection of the possible operators described here
that become relevant at the set of points (r,s) = (6,p/q) for
q = 5, and we anticipate that this ansatz will enable us to do
so for any other point not already excluded. Thus we expect
the nonchiral phase to be entirely removed by this collection
of operators combined with those discussed earlier.

Therefore the phase diagram has a quite rich and intricate
structure. From our experience with the above operators,
our general expectation is that in the neighborhood of any
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FIG. 5. (Color online) The small-r region of the phase diagram of our edge theory as a function of s and r for the theory with nonzero u1,2,
ũ1,2; u17, p

q
, u17, p

q
for all p,q � 57; and several cos(paX

a) operators with pa nearly aligned with the direction of the boost OG(s), as described
in the text. The light region is in the E8 × E8 phase. The darker region is in the spin(32)/Z2 phase. All phase boundary lines denote regions
where there are two equally relevant couplings; the phase is determined by the ratio of these couplings. The left panel shows the r < 0.6 region
of the phase diagram, where we see that regions of the two phases are interspersed with each other along the s axis. In the right panel, we zoom
in on the r < 0.01 region of the phase diagram and see an even richer intermingling of these two phases as we sweep over s.

point (r,p/q), there exists a relevant operator that gaps out
a pair of modes leading to the fully chiral E8 × E8 theory
if p or q is even, while spin(32)/Z2 remains if p and q are
odd.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3
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s

r xE  Ex
8 8 Spin(32)/Z2

FIG. 6. (Color online) Phase diagram of our edge theory as a
function of s and r for the theory S4(s) in which the only nonzero
perturbations are u1,2 and ũ1,2; u17, p

q
, u17, p

q
for all p,q � 57; and

several cos(paX
a) operators with pa nearly aligned with the direction

of the boost OG(s), as described in the text. The latter operators were
specifically chosen to remove the remaining points of nonchiral phase
at r = 6, s = p/q for q = 5. This set of operators was sufficient to
remove all the nonchiral phase displayed previously in Fig. 4. The
light region is in the E8 × E8 phase. The darker region is in the
spin(32)/Z2 phase. Solid phase boundary lines denote regions where
there are two equally-relevant couplings; the phase is determined by
the ratio of these couplings.

VI. CHARGED SYSTEMS

We return to our c − c = 16 theories and consider the case
in which some of the degrees of freedom are charged as a result
of coupling to an external electromagnetic field as in Eq. (4).
Now, there are many phases for a given K , distinguished
by different t . They may, as a consequence, have different
Hall conductances σxy = e2

h
tI (K−1)IJ tJ , which must be even

integer multiples of e2

h
since K−1 is an integer matrix with

even entries on the diagonal.
Let us focus on the minimal possible nonzero Hall conduc-

tance, σxy = 2 e2

h
. We will not attempt to systematically catalog

all of these states here, but will examine a few examples
with c = 16 that are enlightening. By inspection, we see
that we have three distinct σxy = 2 e2

h
states with K matrix

K = KE8×E8 : (1) tI = δI6, (2) δI9, and (3) −2δI1 + δI2. These
states have stable edge modes even if the U (1) symmetry of
charge conservation is violated (e.g., by coupling the system
to a superconductor), in contrast to the σxy = 2 e2

h
bosonic

quantum Hall states discussed in Ref. 20.
As before, we adjoin a trivial system to our system

so that the K matrices are K = KE8×E8⊕U . Under the
similarity transformation WG, these states are equivalent to
the states with Kspin(32)/Z2⊕U and, respectively, t = (0,0,0,

0,1,−2,0,0,0,0,0,0,0,0,0,4,−2,2), t = 0,0,0,0,0,0,0,−2,

1,0,0,0,0,0,0,4,−2,2, and tI = δI1. Consider the first
of these, Kspin(32)/Z2⊕U , t = (0,0,0,0,1,−2,0,0,0,0,0,0,

0,0,0,4,−2,2). It is not equal to Kspin(32)/Z2 with an additional
trivial system adjoined to it because φ̃17 and φ̃18 are both
charged. In other words, there is a right-moving neutral
edge mode φ̃17 + φ̃18 and a left-moving charged edge mode
φ̃17 − φ̃18. This is nontrivial, and there is no charge-conserving
perturbation, which will give a gap to these modes. The
same is true of the second state. In the case of the third
state, both φ17, φ18 and φ̃17, φ̃18 are neutral. Therefore
there are perturbations that could gap out either of them.
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In addition, operators defined by lattice vectors of the
form, Eq. (48), are neutral. Consequently, we conclude that
K = KE8×E8 , tI = −2δI1 + δI2 and Kspin(32)/Z2 , tI = δI1

are stably equivalent bulk states with an edge theory phase
diagram similar to that in Fig. 6. We remark that neutrality of
both exp(iφ̃17) and exp(iφ̃18) implies that operators defined
by lattice vectors of the form, Eq. (48), are neutral as well.

VII. DISCUSSION

A. Summary

Bosonic SRE states with chiral edge modes are bosonic
analogues of fermionic integer quantum Hall states: they do
not support anyons in the bulk, but they have completely stable
chiral edge modes. Together, they populate an “intermediate”
class of phases that are completely stable and do not require
symmetry protection, however, they lack nontrivial bulk
excitations. Unlike in the fermionic case, such states can only
occur when the number of edge modes is a multiple of 8. As we
have seen in this paper, the scary possibility that the number
of edge modes does not uniquely determine such a state is
not realized, at least for the first case in which it can happen,
namely, when there are 16 edge modes. The two phases that are
naively different are, in fact, the same phase. This is consistent
with the result that all 3-manifold invariants associated with the
two phases are the same,30 and we have gone further and shown
that it is possible to go directly from one state to the other
without crossing a phase boundary in the bulk. However, there
are actually two distinct sets of edge excitations corresponding
to these adiabatically connected bulk states. We have shown
that the phase transition between them can occur purely at the
edge, without closing the bulk gap. However, both edge phases
are fully chiral, unlike the “T -unstable” states considered in
Refs. 41 and 42. There is no sense in which one of these two
phases is inherently more stable in a topological sense than the
other; it is simply that, for some values of the couplings, one
or the other is more stable.

Our construction is motivated by the observation that there
is a unique even, unimodular lattices with signature (8k + n,n).
Consequently, enlarging the Hilbert spaces of seemingly dif-
ferent phases associated with distinct even, unimodular lattices
with signature (8k,0) by adding trivial insulating degrees
of freedom associated with even, unimodular lattices with
signature (n,n) leads to the same bulk phase. Since the edge
is characterized by additional data, the corresponding edge
theories are distinct but are separated by a phase transition that
can occur purely on the edge without closing the bulk gap. The
details of our construction draw on a similar one by Ginsparg24

who showed explicitly how to interpolate between toroidal
compactifications of E8 × E8 and spin(32)/Z2 heterotic string
theories.

B. Future directions

Let us describe a few possible directions for future study.
(1) We have considered one possible interpolation between
the E8 × E8 and spin(32)/Z2 theories and, therefore, have
only considered a small region of possible parameter space
determined by r and s. It would be interesting to carve out in
more detail the full 153-dimensional phase space.

(2) The last phase diagram displayed in Fig. 6 includes only
a subset of the possible operators that may be added to the edge
theory. The operators that have been added are sufficient to lift
the nonchiral phase that is naively present and displayed in
Fig. 4 when only four operators are included. It is possible
that consideration of all allowed operators could result in an
even more complex phase diagram with a rich topography of
interspersed E8 × E8 and spin(32)/Z2 phases.

(3) The uniqueness of even, unimodular lattices with
signature (8k + n,n) implies that a similar route can be
taken to adiabatically connect states associated to different
positive-definite even unimodular lattices of dimension 8k =
24,32, . . . . However, in these cases, it is possible for states
corresponding to different lattices to have different spectra of
operator scaling dimensions at the edge, unlike in the c = 16
case, so the situation may be more subtle. The 24-dimensional
case may be particularly interesting as the ground state
transforms trivially (as reviewed at the end of Sec. II A) under
modular transformation of the torus.

(4) It is possible to have an edge in which the interaction
varies along the edge so that u1 is the only relevant operator for
x < 0 and ũ1 is the only relevant operator for x > 0. The edge
will then be in the E8 × E8 phase to the left of the origin and
the spin(32)/Z2 phase to the right of the origin. It would be
interesting to study the defect that will be located at the origin.

(5) Unimodular lattices occur in the study of four-manifold
topology as the intersection form of H 2(M,Z), where M is
a four-manifold and H 2(M,Z) is the second cohomology
group over the integers. (We assume that M is closed.)
In the circumstances when de Rham cohomology can be
defined, we can think of the intersection form as follows.
Consider all pairs of 2-forms, ωI ,ωJ and construct the matrix,
KIJ = ∫

M
ωI ∧ ωJ ∈ Z. Even when de Rham cohomology

does not make sense, the above matrix can be defined. KIJ

is unimodular and symmetric. Interestingly, the cases for
which KIJ is even (and, therefore, provide intersection forms
of the type studied in this paper) correspond to nonsmooth
four-manifolds. The first instance is the so-called E8 manifold
whose intersection form is the E8 Cartan matrix. Likewise,
there exist two distinct four-manifolds, E8 × E8 and the
Chern manifold, with E8 × E8 and spin(32)/Z2 intersection
form, respectively.43 While these two four-manifolds are not
equivalent or homeomorphic, they are cobordic: there exists a
five-manifold whose two boundary components correspond to
these two four-manifolds. The cobordism can be understood
as taking the direct sum of each four-manifold with S2 × S2,
which has intersection matrix equal to U . A series of surgeries
then relates these two connected augmented four-manifolds.
In other words, our paper has been a physical implementation
of the above cobordism. Is there a deeper connection between
four-manifold topology and integer quantum Hall states? We
might go further and imagine that any such relation could
be generalized to fractional and, possibly, non-Abelian states.
Further, the introduction of symmetry-protected topological
phases in 2 + 1d could inform the study of four-manifolds,
i.e., the stabilizing symmetry of any phase could further refine
the possible invariants characterizing any manifold.

(6) We have concentrated on bosonic systems in this
paper, but very similar considerations apply to fermionic
SRE systems with chiral edge modes, which correspond to
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positive-definite odd unimodular lattices. The conventional
integer quantum Hall states correspond to the hypercubic
lattices ZN . However, there is a second positive-definite odd
unimodular lattice in dimensions greater than 8, namely,
KE8 ⊕ IN−8. In dimensions greater than 11, there is also
a third one, and there are still more in higher dimensions.
However, there is a unique unimodular lattice with indefinite
signature. Therefore, by a very similar construction to the one
that we have used here, these different lattices correspond to
different edge phases of the ν � 9 integer quantum Hall states.

(7) Finally, stable equivalence is not restricted to topolog-
ically ordered states in 2 + 1d; it would be interesting to see
explicitly how it manifests itself in the study of topological
phases in other dimensions.
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APPENDIX A: LATTICES AND MATRICES

In this Appendix, we collect formulas for the various lattice
vectors and matrices we use throughout the main text. To fix
some notation, consider the standard basis for RN ,

x̂I = (0 · · · 010 · · · 0)t , (A1)

where the 1 appears in the I th row for I = 1, . . . ,N . The
root lattice 
G of any rank N Lie group G is defined in
terms of linear combinations of the x̂I . Given a basis eI

for the lattice, we may construct the Cartan matrix or K

matrix, (KG)IJ = ea
I ηabe

b
J where η is the diagonal matrix

diag(1M,−1N−M ) and 1P is the P -component vector with
every entry equal to unity. The Cartan matrix summarizes the
minimal data needed to specify a Lie group. Geometrically,
a diagonal entry (KG)II is equal to the length-squared of the

root I and an off-diagonal entry (KG)IJ gives the dot product
between roots I and J and so can be interpreted as being
proportional to the cosine of the angle (in RN ) between the
two roots. Given the inverse (K−1

G )IJ , we may define dual
lattice vectors f I

a = (K−1
G )IJ ηabe

b
J that satisfy f I

a ea
J = δI

J .

1. �E8

A basis for the root lattice 
E8 of the rank 8 group E8 is
given by

eI = x̂I − x̂I+1, for I = 1, . . . 6,
(A2)

e7 = −x̂1 − x̂2, e8 = 1
2 (x̂1 + · · · + x̂8).

The associated K matrix takes the form

KE8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 −1 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 0 0

0 −1 0 0 0 0 2 −1

0 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A3)

The inner product is Euclidean so ηab = δab.

2. �E8 ⊕ �E8

The rank 16 Lie group E8 × E8 is equal to two copies of
E8. We take as our lattice basis for 
E8 ⊕ 
E8 ,

eI = x̂I − x̂I+1, for I = 1, . . . 6,

e7 = −x̂1 − x̂2, e8 = 1
2 (x̂1 + · · · + x̂8),

(A4)
e8+I = x̂9+I − x̂10+I , for I = 1, . . . ,6,

e15 = x̂15 + x̂16, e16 = − 1
2 (x̂9 + · · · + x̂16).

The associated K matrix takes the form

KE8⊕E8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 2 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 2 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The inner product is again taken to be ηab = δab.

045131-16



SHORT-RANGE ENTANGLED BOSONIC STATES WITH . . . PHYSICAL REVIEW B 88, 045131 (2013)

3. �spin(32)/Z2

A basis for the root lattice 
spin(32)/Z2 of the rank 16 Lie group spin(32)/Z2 is given by

ẽI = x̂I+1 − x̂I+2, for I = 1, . . . ,14, ẽ15 = x̂15 + x̂16, ẽ16 = − 1
2 (x̂1 + · · · + x̂16). (A5)

The associated K matrix is

Kspin(32)/Z2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The inner product is given by ηab = δab.

4. �E8 ⊕ �E8 ⊕ U

To write a basis for the 
E8 ⊕ 
E8 ⊕ U lattice, we must enlarge the dimension of our previous 
E8 ⊕ 
E8 lattice by two. Thus
we take as our lattice basis the following:

eI = x̂I − x̂I+1, for I = 1, . . . 6, e7 = −x̂1 − x̂2, e8 = 1

2
(x̂1 + · · · + x̂8), e8+I = x̂9+I − x̂10+I , for I = 1, . . . ,6,

e15 = x̂15 + x̂16, e16 = −1

2
(x̂9 + . . . + x̂16), e17 = 1

r
x̂17 + 1

r
x̂18, e18 = r

2
x̂17 − r

2
x̂18. (A6)

The associated K matrix takes the form

KE8⊕E8⊕U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 2 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 2 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The inner product is taken with respect to ηab = (117,−1).
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5. �spin(32)/Z2 ⊕ U

We must again enlarge the dimension of 
spin(32)/Z2 by two in order to write a basis for 
spin(32)/Z2 ⊕ U ,

ẽI = x̂I+1 − x̂I+2, for I = 1, . . . ,14, ẽ15 = x̂15 + x̂16, ẽ16 = −1

2
(x̂1 + . . . + x̂16),

(A7)

ẽ17 = −r x̂17 + r x̂18, ẽ18 = − 1

2r
x̂17 − 1

2r
x̂18.

The associated K matrix is

Kspin(32)/Z2⊕U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The inner product is taken with respect to ηab = (117,−1).

6. SO(17,1) and SL(18,Z) transformations

There exist two distinct even, self-dual 16-dimensional lattices, 
E8 ⊕ 
E8 and 
spin(32)/Z2 , that cannot be rotated into each
other via an SO(16) transformation.23 However, if we augment each lattice by U , we obtain a Lorentzian lattice of signature
(17,1), i.e., the augmented lattice has the inner product ηab = diag(117,−1). Such lattices are unique up to an SO(17,1) rotation.
Following,24 the SO(17,1) transformation relating the 
E8 ⊕ 
E8 ⊕ U and 
spin(32)/Z2 ⊕ U lattices is given by

OG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 1
2r

− −1+r2

2r
− 1

2r
− 1+r2

2r

0 1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 1
2r

− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 1 0 0 0 0 −1 1 0 0 0 0 0 0 0 1
2r

− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 0 1 0 0 0 −1 1 0 0 0 0 0 0 0 1
2r

− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 0 0 1 0 0 −1 1 0 0 0 0 0 0 0 1
2r

− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 0 0 0 1 0 −1 1 0 0 0 0 0 0 0 1
2r

− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 0 0 0 0 1 −1 1 0 0 0 0 0 0 0 1
2r

− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 − 1
2r

− −1+r2

2r
1
2r

− 1+r2

2r

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
r

− 1
r

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
r
2

r
2

r
2

r
2

r
2

r
2

r
2 − r

2 + 1−r2

r
r − 1−r2

r
0 0 0 0 0 0 0 1

2 + (1−r2)(−1+r2)
r2 − 1

2 − r2 + 1−r2

r2

− r
2 − r

2 − r
2 − r

2 − r
2 − r

2 − r
2

r
2 + 1+r2

r
−r − 1+r2

r
0 0 0 0 0 0 0 − 1

2 + r2 − 1+r2

r2
1
2 + (1+r2)2

r2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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OG acts on basis vectors as

Oa
G be

b
I =

∑
J

mJ
I ẽa

J , (A8)

where mJ
I are a collection of integers.

Because OG lies in the component of SO(17,1) connected to
the identity transformation, we may build OG from a series of
infinitesimal transformations beginning at 1. First, we rewrite

OG = ηW (A)ηW (A′), (A9)

where

W (A) = exp

⎡
⎣1

2

⎛
⎝ 0 A −A

−At 0 0
−At 0 0

⎞
⎠

⎤
⎦ , with (A10)

A = 2

r
(07,−1,1,07), (A11)

A′ = −2r

((
1

2

)8

,08

)
. (A12)

We then introduce the (infinitesimal) parameter s by rescaling
A,A′ → sA,sA′ and defining

OG(s) = ηW (sA)ηW (sA′). (A13)

(While the resulting matrix does not fit between the margins
of this page, the expression is not beautiful.)

Substituting the transformation Eq. (A8) into the periodicity
condition, Xa ≡ Xa + 2πnI ea

I , for the 
E8 ⊕ 
E8 ⊕ U lattice,
we find

(OG)abX
b ≡ (OG)abX

b + 2πñJ ẽa
J , (A14)

where we have defined the integer vector ñJ = ∑
I nImJ

I .
However, Eq. (A14) is simply the periodicity obeyed by
X̃a . Therefore we identify X̃a = (OG)abX

b. Having identified
Xa and X̃b through the SO(17,1) transformation OG, we
can obtain the SL(18,Z) transformation WG that relates
Kspin(32)/Z2⊕U and KE8⊕E8⊕U by conjugation. The desired
transformation is read off from the relation

φ̃J = f̃ J
a (OG)abe

b
I φ

I =: (WG)IJ φI , (A15)

which follows immediately from Eq. (A8). We find

WG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−3 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
−4 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0
−5 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0
−6 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0
−7 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0
−8 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 −1
−9 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 1 −1
−10 0 0 0 0 0 8 0 1 0 0 0 0 0 0 0 2 −2
−11 0 0 0 0 0 9 0 0 1 0 0 0 0 0 0 3 −3
−12 0 0 0 0 0 10 0 0 0 1 0 0 0 0 0 4 −4
−13 0 0 0 0 0 11 0 0 0 0 0 1 0 0 0 5 −5
−14 0 0 0 0 0 12 0 0 0 0 0 1 0 0 0 6 −6
−7 0 0 0 0 0 6 0 0 0 0 0 0 1 0 0 3 −3
−8 0 0 0 0 0 7 0 0 0 0 0 0 0 1 0 4 −4
−2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 2 −2
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 2 −2
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 −2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix satisfies WT
GKspin(32)/Z2⊕UW = KE8⊕E8⊕U .

APPENDIX B: “DIMENSION CONTRACTION” AND
RELEVANT MASS-GENERATING OPERATORS AT

INTERMEDIATE r,s

We consider spin-0 operators that take the form
cos(paX

a), with pa ∈ 
8 ⊕ 
8 ⊕ U and ηabpapb = 0. Even
if 1

2δabpapb > 2, which means that cos(paX
a) is irrelevant at

s = 0, this operator may become relevant at an intermediate
value of s. At general s, the scaling dimension of the
operator is 1

2δabqaqb = |q18|2, where qb = pa[O−1
G (s)]ab. In

writing the scaling dimension in terms of q18 only, we have
used the fact that qb is a null vector in R17,1 (ηabqaqb =
q2

1 + · · · + q2
17 − q2

18 = 0). Thus cos(paX
a) will become

relevant at s if pa(O−1
G (s))a18 is sufficiently Lorentz contracted

so that q2
18 < 2.

If the direction of the boost O−1
G (s) happened to be along

the 1-direction, then we know that the only components of pa

affected by the boost are the 1st and 18th component; they are
contracted/dilated according to(

p1

p18

)
�→

(
cosh(α) − sinh(α)

− sinh(α) cosh(α)

)(
p1

p18

)
. (B1)

Therefore multiples of the eigenvectors (1,±1)T with
eigenvalues exp(∓α) have components that are maximally
contracted/dilated. If the boost took the above simple form, it
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would be simple to choose a vector pa whose 18th component
after the boost was maximally contracted. This vector would
determine the most relevant operator at a given point in the
(r,s) phase diagram.

Unfortunately, O−1
G (s) is defined in terms of a rather

complicated combination of rotations and boosts, and so it is
not a priori obvious which spatial direction to choose in order
to maximize the possible contraction, i.e., it is difficult to know
the direction �v of the boost. However, we know that we can
view the O−1

G (s) transformation as: O−1
G (s) = MT �M , where

M is a rotation that aligns �v along the 1-direction and � is a
boost along the 1-direction. (Both of these transformations, of
course, depend upon the initially chosen r and s.) To find null
vectors whose components maximally contract, we need only
consider the eigenvector of O−1

G (s) given by M tr(1,016,1)tr

with eigenvalue exp(−α), for some constant α depending
upon r and s. For (r,s) = (3,3/5), we find that this maxi-
mally contracting eigenvector takes the simple (approximate)
form:

pa = 0.3f 7
a + (0.1 − 0.6)f 8

a + 0.1f 16
a + f 17

a − 0.9f 18
a .

(B2)

While the components of this vector are maximally contracted
under O−1

G (s) in the sense discussed above, it is certainly not
an element of 
E8 ⊕ 
E8 ⊕ U since the coefficients are not
integral. We can find a vector with very large components that
is nearly parallel to this vector, but it will be irrelevant because
O−1

G (s) cannot contract it by enough at (r,s) = (3,3/5).
However, we can find a shorter lattice vector that is

sufficiently aligned with the maximally contracting vector,
but of lower starting dimension so that we obtain a relevant
operator at the point of interest. Indeed, if we take the ansatz

pa = nf 7
a + (m − 2n)f 8

a + mf 16
a + n17f

17
a + n18f

18
a , (B3)

it is straightforward to find n,m,n17 and n18 determining a
relevant spin-0 operator at (r,s). At (r,s) = (3,3/5), we may
take n = 1,m = 2,n17 = 2, and n18 = −3. We lack a proof
that this ansatz is sufficient to exclude all possible nonchiral
points in the (r,s) phase diagram. However, we have yet to
find a point (r,s) for which this ansatz is unsuccessful. Thus
we expect the nonchiral phase to be entirely removed by this
collection of operators combined with those discussed earlier.
[Note, we expect the resulting chiral phase for this operator to
be spin(32)/Z2.]
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for instance, by their edge excitations. For a discussion of such
“symmetry-enhanced topological phases,” see Ref. 44.

46Of course, it may be possible to take a route from one to the other
that does cross a phase transition but such a transition can always be
avoided. For instance, if we restrict to Sz-conserving Hamiltonians,
then a phase transition must be encountered in going from a spin-
singlet N = 2 state to a spin-polarized one. If we do not make this
restriction, however, then this phase transition can be avoided and
the two states can be adiabatically connected.

47To lowest order in u1,2 and ũ1,2, this is consistent, but at higher
order, these four operators will generate some others, and we must
consider a more general theory. However, it does not appear that
these operators generate any spin-0 operators other than multiples
of themselves, which are less relevant than they are.

48This choice of α and β is a sufficient one for generic s = p/q;
however, certain q accommodate smaller α and β so that the
resulting operators are well defined. For example, when q is even,
we may take α = q2/2 and β = q4/4.

045131-21




