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Plasmon dispersions in simple metals and Heusler compounds
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We present a comprehensive study of plasmon dispersions in simple metals and Heusler compounds based
on an accurate ab initio evaluation of the momentum- and frequency-dependent dielectric function ε(�q,ω) in
the random-phase approximation. Using a momentum-dependent tetrahedron method for the computation of
the dielectric function, we extract and analyze “full” and “intraband” plasmon dispersions: The “full” plasma
dispersion is obtained by including all bands, the intraband plasma dispersion by including only intraband
transitions. For the simple metals silver and aluminum, we show that the intraband plasmon dispersion has an
unexpected downward slope and is therefore markedly different from the results of an effective-mass electron-gas
model and the full plasmon dispersion. For the two Heusler compounds Co2FeSi and Co2MnSi, we present spectra
for the dielectric function, their loss functions, and plasmon dispersions. The latter exhibit the same negative
intraband plasmon dispersion as found in the simple metals. We also discuss the influence of spin mixing on the
plasmon dispersion.

DOI: 10.1103/PhysRevB.88.045124 PACS number(s): 71.10.−w, 71.45.Gm, 78.20.−e, 79.20.Uv

I. INTRODUCTION

Important characteristics of materials such as metals, half
metals, and doped semiconductors are their optoelectronic
properties due to the electrons in partially filled bands.
These properties are determined by the dielectric function
ε(�q,ω), which is, in principle, a dynamical and wave-vector
dependent quantity.1–3 In addition to the direct connection
with optical “constants,” the dielectric function also serves
as input for calculations of various electronic properties, such
as lifetimes or electronic dynamics.4,5 For materials with a
“simple” band structure, e.g., metals and semiconductors, there
exist approximate expressions for the dielectric function in
the static and long-wavelength limit that are based on the
electron-gas model for quasifree electrons in the conduction
band.1–3 This analytically tractable model is particularly useful
for a qualitative understanding and can, in addition, be used
as input in dynamical or lifetime calculations. On the other
hand, starting as early as the 1950s, the dielectric function
of “simple” materials has been measured6–8 and, in recent
years, calculated ab initio with impressive accuracy.9–14 Both
measurements and ab initio calculations generally yield rather
complex spectra that need to be interpreted with care, so
it would be helpful to have approximate results for the
dielectric function based on the electron-gas model, even for
materials where the band structure does not resemble a single
band. For instance, one may want to study composition and
crystal formation effects of Heusler compounds or alloys by
measuring their plasma frequency to have a single result that
characterizes a particular growth condition.15 These measured
plasma frequencies may then be used to determine electronic
densities and effective masses of a single-band electron-gas
model.

For the simple metals silver (Ag) and aluminum (Al)
measurements6,16 and calculations9,17 showed that there is an
influence on the plasmon dispersion from transitions between
different bands. This deviation from the single-band electron-
gas model, even in the case of materials where it should
apply best, leads to different views about what constitutes

“the” plasma frequency: the intraband plasma frequency or
the one corresponding to a peak in the loss function. Only
very recently a negative plasmon dispersion for the layered
compound 2H − NbSe2 has been found and was ascribed to
intraband transitions.18 In the present paper we complete the
picture of different plasmon frequencies by taking a closer look
at the dispersions of both candidates for the plasma frequency
in simple metals and use the results to analyze the plasma
behavior of the “novel” Heusler compounds Co2FeSi (CFS)
and Co2MnSi (CMS).

Our numerical approach uses a state-of-the-art calculation
of the dielectric function in the random-phase approximation
(RPA) from first principles. The electronic energies and matrix
elements are obtained from a density-functional theory (DFT)
calculation employing a full-potential linearized augmented
plane wave (FP-LAPW) basis.19 The evaluation of ε(�q,ω) is
done using an accurate wave-vector dependent linear tetrahe-
dron method. We calculate the “full” dielectric function ε(�q,ω)
including transitions between all bands and the dielectric
function including only intraband transitions from which we
extract intraband and full plasma dispersions. We show that at
finite wave vectors �q, the two plasmon dispersions have very
different slopes. In particular, the intraband plasmon dispersion
curves downward, i.e., has a negative slope, which makes the
difference between the two plasmons much more pronounced
than it may seem from their q → 0 behavior in some materials,
most notably aluminum. We stress that one needs to be aware
of these differences between plasmon dispersions when using
standard ab initio codes, which usually compute the intraband
plasma frequency.

This paper is organized as follows. We give some details of
our numerical approach in Sec. II. In Sec. III we present com-
puted dielectric functions for aluminum and silver, and give a
comprehensive discussion of the “full” and “intraband” plasma
dispersions that are extracted from the dielectric functions. We
then present a similar analysis of the dielectric functions and
the plasma dispersions for the Heusler compounds in Sec. IV.
Our results are summarized in Sec. V.
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II. NUMERICAL METHOD

We start by calculating the wave-vector dependent RPA
dielectric function ε(�q,ω) based on electronic states and
energies obtained from DFT calculations,5,20

ε(�q,ω) = 1 − Vq

∑
μν�k

∣∣Bμν

�k�q
∣∣2

f ν
�k − f

μ

�k+�q
h̄ω + εν

�k − ε
μ

�k+�q + ih̄γ
, (1)

where the limit h̄γ → 0 is understood. Here and in the follow-
ing band indices are denoted by μ, ν, and wave vectors by �k, �q.
The DFT energies and wave functions are ε

μ

�k and ψ
μ

�k , respec-
tively, the T = 0 K occupation numbers f

μ

�k , and the overlap

matrix elements are defined by B
μν

�k�q = 〈ψμ

�k+�q |ei �q·�r |ψν
�k 〉, where

we have neglected local field effects. Further, Vq = e2/(ε0q
2)

is the Fourier transformed Coulomb potential.
It is customary in state-of-the-art evaluations of the complex

dielectric function to use a finite value of h̄γ , which is usually
either treated as an unavoidable parameter and/or chosen in
accordance with experimental results.5,20,21 In the latter case,
it is usually taken to be identical to the broadening of the Drude
peak at ω = 0. We avoid the introduction of this parameter in
the evaluation of (1) by first computing the imaginary part
ε2 ≡ �ε(�q,ω) in the limit h̄γ → 0,

ε2 = πVq

∑
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f ν
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)
δ
(
h̄ω + εν

�k − ε
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)
, (2)

with a linear tetrahedron method.22,23 This numerical method
evaluates the integrand, which is only known on the numerical
grid but contains a singular δ function, using a three-
dimensional interpolation between the discrete �k points in
the first Brillouin zone (1. BZ).22,23 On the finite grid, 8 �k
points form the edges of a parallelepiped, which is then
split into 6 tetrahedra of equal size. The energy conservation
h̄ω + εν

�k − ε
μ

�k+�q can be fulfilled by interpolating linearly
between the edges of each tetrahedron. We have implemented
this method, which is usually formulated for q = 0 quantities
such as plasma frequencies,20 ε2(ω), reflectivities,13,14 or the
density of states,24 for any finite �q (and band combination
μ and ν) in order to obtain a numerically accurate result for
ε(�q,ω). The real part of the dielectric function, ε1 ≡ �ε(�q,ω),
is then found via the Kramers-Kronig relation (see, e.g.,
Ref. 1). The matrix elements B

μν

�k�q , energies ε
μ

�k , and distribution

functions f
μ

�k have been computed in the framework of the
density functional theory using the full-potential linearized
augmented plane wave ELK code.19 The calculation is in the
same spirit as those presented in Refs. 4, 20, and 25.

III. SIMPLE METALS

A. Dielectric function and loss function

In Fig. 1 we present numerical results for the complex
dielectric function ε(�q,ω) of aluminum and silver because
its dependence on �q and ω forms the basis of the main
results of this paper. We also provide a comparison with
optical measurements7,8,26 in order to check the accuracy
of the calculation in the frequency range of interest. We
included the first 20 (30) bands in the aluminum (silver)
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FIG. 1. (Color online) Computed real (black solid line) and
imaginary (black dashed line) part of the dielectric function ε(�q,ω)
for |�q| = 0.44 nm−1. (a) Results for Al in comparison to optical
measurements (thin blue lines) (Refs. 7 and 26). (b) Results for Ag
in comparison to optical measurements (Ref. 8) (thin blue lines). The
red dotted line shows the intraband �ε(�q,ω) whose zero determines
the intraband plasmon resonance.

calculation and we used 61 × 61 × 61 �k points in the full
Brillouin zone. When comparing to the measured results one
needs to keep in mind that these correspond to q ≈ 0 (optical
limit). We have to use a small but finite wave vector in
the numerical evaluation of Eq. (1). One therefore cannot
avoid a discrepancy around ω = 0. Intraband transitions with
vanishing momentum transfer (q → 0) lead to the Drude peak
and consequently to a strong increase of ε2(0,ω) for energies
below 1 eV, whereas our finite-q results lead to a double-peak
structure in this energy range, cf. Fig. 2. Bearing this in mind
we find a good agreement with Ref. 7 (cf. also Ref. 12) in
Fig. 1(a) for Al in the range of 1–4 eV and for q = 0.44 nm−1.

Figure 1(b) shows the computed dielectric function of silver
for the same �q on a wider energy range. The imaginary part
again increases strongly for small energies due to intraband
scattering processes [cf. Fig. 2(b)], while the influence of
interband transitions can be seen for larger energies. Different
from aluminum, there are several roots of the real part of
εAg (�q,ω). The roots around 7, 22, and 29 eV result only
from interband transitions and are nearly �q independent for
small �q vectors. The two roots around 4 eV are, in contrast,
influenced by intraband transitions and therefore �q dependent.
For small �q these results are in good agreement with recent
optical measurements and calculations,5,8,9,27 but in contrast
to earlier measurements of Ehrenreich and Philipp,6 where
only the first root was found. Recent GW calculations have
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FIG. 2. (Color online) Imaginary part of the dielectric function
of (a) aluminum and (b) silver for small energies and different �q. The
black solid lines correspond to |�q| = 0.44 nm−1 (|�q| = 0.44 nm−1),
the red dashed lines to |�q| = 0.88 nm−1 (|�q| = 0.87 nm−1), and
the blue dotted lines to |�q| = 1.32 nm−1 (|�q| = 1.31 nm−1) in the
aluminum (silver) calculation. Also shown are q = 0 dielectric
functions obtained directly from the ELK code for two different
broadenings h̄γ = 0.01 Ha (thin gray line) and h̄γ = 0.005 Ha (gray
thin-dashed line).

yielded corrections to the DFT results for the band lineup10

and have improved the agreement with experiment8 further.
For the purposes of determining the wave-vector dependent
characteristics, we neglect these small corrections. Figure 1(b)
also shows the intraband �ε(�q,ω) of silver whose zero
determines the intraband plasmon resonance.

Our numerical method allows us to get accurate results
for the dielectric function even for low frequencies and small
(but finite) wave vectors, where the behavior around ω = 0
is exclusively due to intraband transitions.28 Figure 2 shows
the calculated low-frequency behavior of the imaginary part
of the intraband dielectric function for the simple metals
aluminum and silver for different q. In contrast to the Drude
peak at q = 0, we find a double-peak structure even for
small q for both materials. This spectral signature results
from the anisotropy of the bands, i.e., the conduction bands
cross the Fermi energy with different slopes. For smaller q

values the two peaks move closer together. Since for q → 0
they must merge into the Drude peak, we also show the result
for ε2(q = 0,ω), as obtained from the ELK code, according
to Refs. 19 and 20. The q = 0 results are calculated with a
broadening h̄γ in Eq. (1), and we can draw some conclusions
for γ from our finite q results. A broadening of h̄γ = 0.01 Ha
at q = 0 seems too large to compare well with our finite q
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FIG. 3. (Color online) Loss function of aluminum on a large
(a) and a small (b) energy scale. The arrows mark the peaks due
to the acoustic plasmon resonance. The wave vectors are the same as
in Fig. 2.

spectra, since the low-frequency resonance becomes narrower
and higher with decreasing q. For the low frequency behavior
of the dielectric function, our results suggest that one should
use a broadening of at most h̄γ = 0.005 Ha in aluminum
and even less in silver. In contrast, for larger energies, where
interband transitions play a role, h̄γ = 0.005 Ha seems to be
small enough for silver according to Ref. 5. This difference
shows that the broadening should actually be energy dependent
in the calculation of the dielectric function.

Having examined the numerical results for the dielectric
function for long wavelengths, we now turn to the properties
of the electron plasma at finite �q. The conventional way to
characterize plasmons is as a resonance of the loss function,
or dynamic structure factor, S = −�ε−1(�q,ω),3,29 which is
shown for completeness in Figs. 3 and 4. In the electron-
gas model it is known that S exhibits a sharp peak at the
plasma frequency ωPl(�q), which dominates S at small q and
whose dispersion is ωPl(�q) ∝ q2. This is the signature of a
collective plasma excitation (or “plasmon”). The loss function
of aluminum (full calculation), Fig. 3(a), shows a single
plasmon peak at ωPl = 15 eV. The loss function of silver,
Fig. 4(a), is also in agreement with earlier calculations,10,29,30

where the first peak around 4 eV was identified as the “optical
plasmon.”

Recent investigations of the loss function of different
materials yielded additional peaks at small energies, which
were called “acoustic plasmons”.31–34 These peaks are due to
the double-peak structure of the imaginary part of the dielectric
function at small energies.31–34 We show our results for the loss

045124-3



STEFFEN KALTENBORN AND HANS CHRISTIAN SCHNEIDER PHYSICAL REVIEW B 88, 045124 (2013)

0 5 10 15 20
0

0.2

0.4

0.6

0.8
S A

g

E (eV)

0 0.5 1.0 1.5
0

0.001

0.002

0.003

0.004

E (eV)

S A
g

(a)

(b)

FIG. 4. (Color online) Loss function of silver on a large (a) and
a small (b) energy scale. The arrow in (a) marks the optical plasmon
and the arrows in (b) correspond to the edges of the acoustic plasmon
signature. The wave vectors are the same as in Fig. 2.

function of aluminum and silver for small energies in Figs. 3(b)
and 4(b), which demonstrate the existence of such acoustic
plasmon excitations also in these materials. Aluminum has a
well-defined acoustic plasmon resonance, whereas for silver
we find a broad spectral signature instead of a sharp resonance.
These different spectral shapes in the acoustic plasmon region
are due to the different separations between the peaks in ε2,
cf. Figs. 2(a) and 2(b).

B. Plasma frequencies and plasmon dispersions

In this subsection we focus on intraband and full plasmon
dispersions. The numerical value of both plasma frequencies
can be expressed in the form h̄ωPl =

√
ne2/(ε0m).1 For the

plasma frequency obtained from the full dielectric function
one finds35

h̄ωPl(Al) =
√

n∗e2

ε0m0
≈ 15 eV, (3)

where m0 is the vacuum electron mass and n∗ is an effective
electron density that is not equal to the valence electron density.
For Al, typical results are n∗ = 1.8 e/atom–2.6 e/atom (see
Ref. 35 and references therein). From the intraband dielectric
function, one finds35

h̄ωintra(Al) =
√

nee2

ε0mopt
≈ 12 eV, (4)

where mopt is an effective (“optical”) mass with typical
values of mopt = 1.15 m0–1.67 m0 (see Ref. 35 and refer-
ences therein) and ne the density of conduction electrons in
aluminum. More generally, the intraband plasma frequency
tensor can be computed in ab initio fashion,20

h̄2ω2
intra,ij = h̄2e2

πm2
opt

∑
μ

∫
d3k 〈pi〉μ�k〈pj 〉μ�kδ

(
ε

μ

�k − EF
)
, (5)

where EF denotes the Fermi energy and 〈pi〉μ�k = 〈ψμ

�k |pi |ψμ

�k 〉
the momentum matrix element between two Bloch states.
It seems to be accepted wisdom that, for the purposes of
comparison with electron loss spectroscopies, one should
use the plasma frequency as given by the peak of the loss
function for the full dielectric function, even though such a
well-defined peak in the loss function does not always exist.
On the other hand, for the purpose of the description of the
Drude peak in optical spectra one should use the intraband
plasma frequency.20,35 The intraband plasma frequency also
has the advantage that it can be calculated ab initio by Eq. (5),
even if there is no well defined peak in the loss function
obtained from the full dielectric function. Further, this plasma
frequency is related to the model of an electron gas with the
actual density of valence electrons and an effective optical
mass. Thus, the relation between the plasma frequency and
the (correct) electron density as mentioned above should only
be used with the pure intraband calculation.

If one takes the point of view that the plasma frequency
is intimately connected with excitations in a single-band
electron gas, the intraband plasma frequency seems the most
faithful generalization of the plasma frequency to a real
material, whereas interband transitions are mixed in the full
dielectric function, even in the limit of q → 0. Indeed, early
investigations of Ehrenreich and Philipp6 for silver used this
point of view to reconcile an apparent discrepancy between the
full plasma frequency and the intraband plasma frequency by
subtracting the interband contributions from the full dielectric
function. This analytic subtraction procedure for the dielec-
tric function, and the separate calculation of the intraband
plasma frequency according to Eq. (5) or (4), works only at
q = 0. For finite q one has to obtain the dielectric function
first, and then extract the plasma frequency.

To study the difference between these two points of view
we calculate the plasma dispersion for finite wave vectors for
both cases. For Al and Ag, the full dielectric function leads
to a loss function with a well-defined peak that can be used
to obtain the full plasmon energy for a range of q values. In
addition to these full plasmon dispersions, we also calculate
the q-dependent intraband plasmon energy, which we obtain
from the root of the intraband �ε(q,ω). We use the zero of
�ε(�q,ω) (for fixed �q) instead of the peak in the intraband
loss function because the intraband plasmon resonance does
not have a finite broadening in the RPA. As support for the
validity of this procedure we note that, for q → 0, it coincides
with the intraband plasma frequency as calculated via Eq. (5).

The classification of intraband vs interband transition,
which underlies our numerical results, is based on the labeling
of the bands. We use a generic and unique band labeling
according to the sequence of Kohn-Sham energy eigenvalues
at each �k point.36
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FIG. 5. (Color online) Different plasmon dispersions (red mark-
ers) and top of the intraband electron-hole continuum (blue crosses)
of aluminum. Shown are the effective plasma frequency (diamonds),
intraband plasma frequency (open circles) and intraband plasma
frequency without transitions between Kramers pairs of states (open
squares) using 173 and 613 �k points in the 1. BZ. The scatter of
the continuum and the plasma frequencies is due to the different
�q vectors with the same modulus. The black bar at q = 0 denotes
the range of the published values for ωPl (�q → 0) (Refs. 7, 38,
and 39), and the thin solid line corresponds to the experimental results
of Ref. 37. Acoustic plasmons in the 
L direction are indicated by
red “ + ”.

In Fig. 5 we show a comprehensive plot of the disper-
sions of the different plasmons along with the edge of the
intraband continuum for Al. In particular, the (red) open
circles are the intraband plasma frequencies and the blue
crosses mark the upper border of the intraband electron-hole
continuum and therefore describe the maximal energy transfer,
max�k {h̄ω = ε(�k + �q) − ε(�k)}, for intraband single-particle
transitions with a change in the wave vector. Several markers
at the same q value correspond to different wave vectors �q
with the same modulus. The spread of values at a given |k|
point therefore is a measure of the anisotropy of the spectrum.
We also show as (red) open squares an “extreme intraband”
calculation where we neglect transitions between Kramers
degenerate bands in the intraband dielectric function. Finally,
the plasma dispersion ωPl, determined from the peak of the
full loss function is plotted as (red) diamonds. For small q,
the full plasma dispersion reaches a value of 15 eV, which
is in agreement with results extracted from measurements,
such as EELS, where all transitions contribute.7,37,38 The
intraband plasma frequency goes to 12 eV, for q → 0, which
is in agreement with values obtained from fits to electron-gas
models, see, e.g., Ref. 39, and corresponds to the result of
Eq. (5) obtained with the ELK code.19

The most striking result is a qualitative difference of the in-
traband plasmon dispersion from the electron-gas plasmon dis-
persion, where the plasma frequency increases as ω

e-gas
Pl ∝ q2.

The computed intraband plasma frequency decreases until
it joins the electron-hole continuum. It is obvious that the
intraband plasma frequency has to curve downward, because
in some �q directions the high-energy boundary of the intraband
electron-hole continuum is smaller than the (intraband) plasma
frequency in the long wavelength limit, q → 0. This will
become even more obvious in the case of silver below.
Note that we get a similar behavior of the intraband plasma
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FIG. 6. (Color online) Same as Fig. 5 for silver. The first two roots
of ε1(�q,ω) (full calculation) in the 
L direction are plotted as open
diamonds. These roots give rise to the optical plasmon resonance
marked in Fig. 4(a). Published theoretical results for ωPl(�q) are
indicated for q = 0 (black bar on the energy axis) (Refs. 39, 42–44).
The measured curves for q > 0 from Refs. 16 and 41 (black lines)
are indistinguishable on this energy scale.

frequency by evaluating the f-sum rule (not shown here),2,3

ω2
intra,f-sum(�q) = 2

π

∫ ∞

0
dω ωε2(�q,ω), (6)

which is �q independent for a single parabolic band.2 The
negative dispersion thus clearly comes from a finite width
of the bands, for which we take the intraband transitions
into account. The decrease of the intraband Coulomb matrix
elements for larger momenta q, which originates from the
Coulomb potential, leads to smaller contributions to ε2 for
large wave vectors and can therefore also have an influence on
this negative dispersion, which was also mentioned in Ref. 18.

Another remarkable property of the intraband plasma fre-
quency is the pronounced contribution of transitions between
Kramers degenerate bands in Eq. (1), which can be seen
by comparing the plasma frequencies obtained from the
intraband dielectric function calculated with and without these
contributions. This is a consequence of the spin mixing in
the single-particle states,40 because the matrix elements B

μν

�k�q
between Kramers degenerate bands would vanish if these were
completely spin polarized. Without spin mixing, the inclusion
of transitions between Kramers degenerate bands would make
no difference.

The full plasmon dispersion in Fig. 5 is in agreement
with EELS measurements37 and calculations.12,17 Note that
the interband contributions reduce the spread for different
�q directions, i.e., the anisotropy, and, more importantly, change
the overall shape of the dispersion qualitatively. That there is
an influence of interband transitions on the effective plasma
frequency was already noted by Quong and Eguiluz,17 but
these authors extracted effective dispersion parameters that
described relatively small deviations from the plasmon of a gas
of electrons with vacuum electron mass m0. Compared with
the intraband plasmon, however, the interband contributions
lead to qualitative changes.

Figure 6 displays the different plasmon dispersions and
continuum edges for silver. We assign the effective plasma
frequency to the closely spaced roots of ε1(�q,ω) at about 4 eV
as shown in Fig. 1(b). These are the ones that show a dispersion
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with q and provide a dominant contribution to the loss function.
In fact, the GW -RPA calculation10 shows that the two roots
at this energetic position are even closer and that the peak in
the loss function is sharper than in our DFT-RPA calculation,
so that the identification of this resonance with an “optical
plasmon” is correct. The parabolic dispersion of the effective
plasma frequency around ωPl(Ag) ≈ 4 eV determined from
the full dielectric function fits well to measurements by elec-
troreflectance spectroscopy6,16 and EELS41 and calculations.9

For q → 0 our intraband calculation, ωintra(Ag) ≈ 9 eV, is
again in good agreement with electron-gas models39,42–44 and
the ELK code.19 That the full plasmon dispersion in Ag is
markedly different from the one of Al due to d-electron
contributions was already established by experiments16 and
calculations.9 Our results complete this picture by showing
that the negative intraband plasmon dispersion is actually quite
similar to the one of Al, except that the influence of spin mixing
is not as pronounced.

Thus, our calculations complete the picture of the different
plasmon dispersions in these metals and make the electron-
gas model questionable at finite q, even for Al, because both
choices for the plasmon have some unappealing consequences.
Using the plasma frequency ωPl leads to a curvature of the
plasmon dispersion as expected from the electron-gas model,
but only because of interband transitions, which are outside
of a single-band electron-gas model. The intraband plasmon,
which is, in the optical limit, defined via Eq. (5) and can be
used to determine electron densities within the electron-gas
model [Eq. (4)],35 shows a downward slope, which does not
agree with the electron-gas plasmon dispersion. In our view,
and as will be shown below, such a downward slope of the
intraband plasmon dispersion is quite generic. It is due to the
finite width of the bands, and not influenced much by details
of the band structure. The finite width of the bands, of course,
is related to hybridization and band splitting in a real material,
which is absent in the idealized electron-gas model with one
parabolic band of effectively infinite width.

For completeness we also show the dispersion of the
acoustic plasmon resonance of aluminum in Fig. 5 and the
edges of the acoustic plasmon signature of silver in Fig. 6.
We find a linear dispersion of these resonances, which is the
reason that they were called acoustic plasmons in Refs. 31–34.

With an understanding of these simple cases, we turn to an
investigation of the plasmon behavior in more “complicated”
materials.

IV. HEUSLER COMPOUNDS

A. Dielectric function and loss function

We investigate here the Heusler compounds Co2MnSi
(CMS) and Co2FeSi (CFS). The calculations are done as
described in the previous sections, with the difference that we
employ a local-density approximation (LDA + U ) calculation
with a Hubbard-U in the fully localized limit within the ELK

FP-LAPW code.19 The crystal structure is a face-centered cu-
bic lattice with lattice constants aCMS = aCFS = 5.654 Å.45,46

The basis of the lattice is formed by a Mn/Fe atom located at
(0,0,0), cobalt atoms at ( 1

4 , 1
4 , 1

4 ) and ( 3
4 , 3

4 , 3
4 ), and a Si-atom

at ( 1
2 , 1

2 , 1
2 ), as outlined in Ref. 47. The effective screening
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FIG. 7. Computed real (black solid line) and imaginary (black
dashed line) part of the dielectric function of CFS (a) and CMS
(b) for q = 0.55 nm−1, where we used 35 × 35 × 35 �k points in the
(full) 1. BZ and included the first 62 (60) bands in the CFS (CMS)
calculation.

parameter (Hubbard-U ) is introduced to include interactions
between electrons in narrow bands.48 We choose UMn =
0.195 Ha, UCo = 0.15 Ha for CMS46 and UCo = 0.155 Ha
and UFe = 0.16 Ha for CFS46 to reproduce the density of
states (DOS) calculated in Ref. 46 with the ELK FP-LAPW
code (not shown). Again, the �k- and band-resolved energies
and distribution functions as well as the matrix elements
between different states serve as input parameters for our
evaluation of the dielectric function for all wave vectors �q and
frequencies ω.

Figure 7(a) shows our numerical results for the real
and imaginary part of the dielectric function of CFS for
q = 0.55 nm−1. For small energies and momentum transfers,
the strong increase of the imaginary part is again dominated
by intraband transitions, which produce the Drude peak in
the optical limit (q → 0). The effect of interband scattering
processes can be seen for energies larger than 1.5 eV. Although
this curve is similar to the calculations of Picozzi et al.,49 there
are differences (e.g., the positions of the roots of ε1), which
result mainly from our use of a finite �q value and the inclusion
of a larger number of bands, which also explains the small
difference in the DOS.

In the dielectric function of CMS, shown in Fig. 7(b), the
intraband and interband contributions are not clearly separated,
but the overall shape is very similar to εCFS over a broad
energy range. The result is in good agreement with recent GW

calculations that yield only slightly different energies.50
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FIG. 8. Computed loss function for CFS (a) and CMS (b) for the
parameters given in Fig. 7.

The first root of the real part of εCFS coincides with a
nearly vanishing imaginary part at about 1.3 eV, which results
in a strong peak in the loss function and therefore a well
defined plasmon energy ωPl, as shown in Fig. 8(a) and already
discussed in the case of silver. In contrast, intraband plasma
frequency calculations determined via Eq. (5) by standard DFT
codes19 and recent calculations50,51 for CFS lie between 5.7
and 6.1 eV. In Fig. 8(b), the first peak in the loss function of
CMS at about 1.4 eV is also an optical plasmon. Even though
the resonance is not as pronounced as in the case of CFS, it can
still be well distinguished from the quasicontinuous spectrum.
For CMS, the intraband plasma frequency (5), as determined
by standard DFT codes19 and in previous calculations,49,50 is
in the range of 4.5–5.0 eV, which has no counterpart in the
loss function shown in Fig. 8(b).

As in the case of the simple metals aluminum and silver,
we determine the dispersions of the full plasmons, i.e., the
one related to peaks in the loss function, and the “intraband
plasmon.” Due to their high spin polarization around the
Fermi energy, the two Heusler compounds show no Kramers
degeneracy, and we therefore need not distinguish between
different intraband scattering processes.

B. Plasmon dispersions

In Fig. 9 we show our results for the full and intraband
plasmon dispersions of CFS and CMS. For both materials, the
optical limit of the pure intraband calculation (red squares)
reproduces the intraband plasma frequency calculated from
Eq. (5).19 As in the case of the simple metals the intraband
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FIG. 9. (Color online) Same as Fig. 6 for CFS (a) and CMS (b)
using 133 and 353 �k points in the (full) 1. BZ. The black bars at q = 0
correspond to the range of values obtained by the DFT code (Ref. 19)
and recent calculations (Refs. 49–51).

plasmon shows a negative dispersion due to the finite width
of the conduction bands. The full plasmon, i.e., peak of the
loss function, is a few eVs away and moves to higher energies
for larger momenta q. The behavior of the different plasma
frequencies is in many aspects similar to the case of silver,
regardless of the much more complicated band structure of
the Heusler compounds. Note also that both the full and the
intraband plasmon dispersions get heavily damped when
they reach the intraband electron-hole continuum. Another
difference between the two Heusler compounds can be seen in
terms of the acoustic plasmons indicated as “ + ” in Fig. 9.
In CFS we find three dispersive acoustic plasmons in the
small energy regime, but in CMS only one, which descends
in the total loss function spectrum even for small wave
vectors.

Although the differences between the plasma frequencies
have been known at q = 0, we believe that the momentum
dependent dispersions for both simple metals and compli-
cated Heusler compounds, show the distinction between the
two different plasmon dispersions much more clearly: one
increases and one decreases with q. We stress that there does
not seem to be a clear candidate for “the” plasmon. Thus,
when using plasmon energies as input for calculations or
fitting measurements by plasmon energies, one should clearly
distinguish between intraband and the full plasmon.
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V. CONCLUSIONS

In conclusion, we presented a comprehensive study of
plasmon dispersions in simple metals and Heusler compounds
based on an accurate ab initio evaluation of the RPA dielectric
function. The dynamical dielectric functions were evaluated
for all vector momenta �q and frequencies ω from DFT input
using a wave-vector-dependent linear tetrahedron method. The
dispersion of the plasma frequency was obtained from the full
dielectric function and from a calculation including only intra-
band transitions. We found that the plasma frequency derived
from the intraband dielectric function agrees for q → 0 with
the intraband plasma frequency obtainable from standard DFT
codes, but shows a remarkable negative dispersion. Based
on these results, it was argued that neither the full nor the
intraband plasmon can be put into correspondence with the
single-band electron-gas model at finite q without problems:
The full dielectric function always contains the influence
of interband transitions, and does not always yield a clear
resonance, whereas the intraband plasma frequency yields
a plasmon dispersion with a downward curvature. From the
intraband plasmon dispersion it was also shown that there is
a pronounced spin mixing in aluminum. For the bulk Heusler

compounds CFS and CMS we presented spectra of dielectric
and loss functions in the optical limit and obtained well
defined plasmon resonances from the full dielectric function.
We found that these are actually “optical” plasmon resonances
dominated by interband transitions. For the intraband plasmon,
on the other hand, we found a qualitative behavior that is quite
similar for CFS and CMS even though their band structures
are very different. The intraband plasmon properties are not
much different from those of the simple metals aluminum and
silver: They also show a downward curvature. Furthermore,
we found signatures of acoustic plasmons in all materials. We
stressed that our results provide, in general, a clear qualitative
differentiation between the “full” and intraband plasmons at
finite q vectors that may be blurred at q = 0, where, for
instance, in aluminum, the two plasmons may appear very
similar.
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