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Photoelasticity of crystals from theoretical simulations
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An accurate, fully automated, theoretical ab initio scheme is presented for the calculation of elasto-optic
constants of crystalline systems of any space group of symmetry. The approach is developed within periodic
boundary conditions, exploits both translational and point symmetry, and allows for the use of several one-electron
Hamiltonians, such as Hartree-Fock, Kohn-Sham, or hybrids. Generalized-gradient functionals are found to
improve the agreement with experiments by a factor of 2 with respect to simple local-density ones, commonly
used in the literature so far. The explicit dependence of elasto-optic constants from the electric field frequency
can be evaluated as well, thus allowing for a closer comparison with experimental data that usually refer to
finite frequencies. The relatively large uncertainty associated with experimental measurements, and the use of an
electric field with finite wavelength, make the availability of a predictive theoretical scheme particularly helpful
in interpreting the photoelastic response of crystals. The proposed scheme, which has been implemented in the
CRYSTAL program, proves numerically stable with regard to its computational parameters and accurate with respect
to elasto-optic constants of a set of eight crystals for which consolidated experimental values have been reported.
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I. INTRODUCTION

The variation of the refractive index (dielectric constant)
with respect to internal or applied strain constitutes the so-
called photoelasticity, or elasto-optics, of a crystal.1 Brillouin
scattering, that is, the interaction of light with phonons of
the acoustic branches close to the Brillouin zone center
in reciprocal space, represents an effective experimental
technique for the determination of elastic and elasto-optic
Pockels’ constants. In particular, from the phenomenological
theory of Brillouin scattering, elasto-optic constants are given
in terms of the intensities of Brillouin components.2,3

A microscopic modeling and understanding of this peculiar,
fundamental, optical property of crystals is relevant to the
fields of optics and microelectronics: photoelasticity, indeed,
reduces the efficiency of α-quartz fiber Bragg gratings and
deteriorates the resolution of pure silica optical lenses used to
design transistors by photolithography.4–6

The usual anisotropy of crystalline compounds increases
the information content of many physical properties: the
dielectric constant becomes a second-rank tensor ε and the
phenomenon of birefringence may appear, which corresponds
to light propagating with different speeds along different crys-
tallographic directions.7 The elasto-optic constants become
the components of the fourth-rank Pockels’ tensor P , which
linearly relates the inverse of the dielectric tensor ε−1 to the
second-rank elastic strain tensor η. In general, Pockels’ tensor
has 21 independent components, which the specific symmetry
of the system can further reduce to a minimum of three for
cubic crystals.

From a fundamental viewpoint, in the 1960s and 1970s,
a lot of attention has been devoted to the experimental
characterization of the photoelasticity of very simple crys-
tals as face-centered cubic alkali halides8–10 such as MgO,
NaCl, NaF, LiF, KCl, KBr, and KI, and cubic diamondlike
semiconductors8,11,12 such as Si, SiC, BN, AlN, GaN, and
hexagonal beryl, α-CdS, α-ZnS, and ZnO.13–15 Interesting
features for technological applications and anomalies of the

photoelastic behavior of solids are found in more complex
crystals such as titanium oxide TiO2 rutile,16 barium ti-
tanate BaTiO3 perovskite with critical polarization fluctuations
effects,17,18 potassium dihydrogen phosphate KH2PO4 with
an anomalous Curie-Weiss temperature dependence,19 silicate
glasses,20,21 α-quartz SiO2,22,23 etc. Since most of the peculiar
aspects of photoelasticity manifest in relatively complex
crystalline structures, it is expected that rather sophisticated
theoretical calculations are necessary to confirm or even
predict those features accurately.

The aim of this paper is the presentation of an accurate, fully
automated, ab initio scheme for the simulation and prediction
of photoelastic constants of crystals which is developed within
the formalism of periodic boundary conditions, one-electron
Hamiltonians [Hartree-Fock (HF) or Kohn-Sham (KS)] and
uses atom-centered Gaussian-type function (GTF) basis sets
(all-electron basis sets can easily be used). The most interesting
features of the present implementation are as follows: (i)
generality over space groups of symmetry; (ii) full exploitation
of both point and translational symmetry of the crystal; (iii) the
possibility of separating electronic and nuclear “clamped-ion”
contributions; (iv) evaluation of the electronic contribution
to the static dielectric tensor through an analytical coupled-
perturbed HF or KS scheme (CPHF or CPKS, respectively);
and (v) electric field frequency dependence of Pockels’ tensor.

Few ab initio studies of the photoelasticity of crystals
have been reported in the literature so far: Levine and co-
workers have performed local-density-approximation (LDA)
calculations, with a scissor correction, in the pseudopotential,
plane-wave scheme, on silicon and GaAs;24,25 Detraux and
Gonze have reported a density-functional perturbation theory
study of α-quartz within the LDA with a scissor correction;26

the same formalism has been applied by Donadio et al. to the
study of crystalline and amorphous silica;27,28 and Hounsome
et al. have used scissor-corrected LDA for computing the
electric field dependence of the elasto-optic constants of silicon
and diamond.29
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The fully automated scheme presented here for computing
elasto-optic tensors of crystals has been implemented in a
development version of the CRYSTAL program30,31 for solid-
state quantum chemistry.32 Once provided the space group
of a given crystal, the program performs a full symmetry
analysis and finds which elements of the fourth-rank tensor
are independent and which deformations have to be actually
considered in order to generate them all. Among other
advantages, this scheme allows for the use of a large variety
of density-functional theory (DFT) functionals of different
types: LDA, generalized gradient approximation (GGA) and
hybrids, such as the popular B3LYP (Refs. 33 and 34) and
PBE0 (Ref. 35) hybrids, with 20% and 25% of HF exchange,
respectively.

The structure of the paper is as follows: In Sec. II, the
algorithm for the automated computation of Pockels’ tensor
is illustrated along with the computational details and the
methodology for computing dielectric properties. In Sec. III,
the numerical stability of the proposed scheme is discussed and
the effect of different classes of one-electron Hamiltonians
explored with respect to experimental reference data, on a
number of crystals of different symmetry. Conclusions are
drawn in Sec. IV.

II. COMPUTATIONAL TECHNIQUES AND DETAILS

The elements of Pockels’ elasto-optic fourth-rank tensor P
(i.e., elasto-optic constants {pijkl}) are defined by the relation

�ε−1
ij =

∑
kl

pijklηkl . (1)

In the above expression, �ε−1 is the difference between
the inverse dielectric tensor of a strained and the unstrained
equilibrium configuration; i,j,k,l = x,y,z represent Cartesian
directions. Formally, the dielectric tensor should read ε(η) but
the explicit dependence from the strain status of the system is
omitted and made implicit, as a notation shortcut. In Eq. (1),
η is the pure strain tensor,36

η = 1
2 (C − I) with C = E�E, (2)

where I is the second-rank identity tensor and the position
gradient E is defined in terms of the displacement gradient ε

(not to be confused with the dielectric tensor ε) as

E = I + ε or, in elements Eij = δij + εij . (3)

From the relations above, we can express the Lagrangian finite
strain parameters {ηij } in terms of deformation parameters
{εij } as follows:

ηij = 1

2

[
εij + εji +

∑
λ

ελiελj

]
. (4)

While ε has not been assumed to be symmetric, η is symmetric
by construction, describes only pure strains, and vanishes when
the deformation described by ε is a pure rotation. Given certain
deformation parameters {εij }, several deformations of different
amplitude a (with a being a dimensionless parameter) can be
defined according to ε(a) = aε. As a consequence, η → η(a)
and ε → ε(a).

Both the inverse dielectric tensor ε−1 and the pure strain
tensor η are symmetric; thus P , in general, exhibits 21
independent elements due to these possible permutations
among its indices: (i ↔ j ), (k ↔ l), and (ij ↔ kl). If Voigt’s
notation is used, according to which v,u = 1, . . . ,6 (1 = xx,
2 = yy, 3 = zz, 4 = yz, 5 = xz, 6 = xy),1 then Pockels’
tensor becomes a 6×6 matrix whose elements can be deduced
from Eq. (1) as

pvu = ∂�ε−1
v

∂ ηu

. (5)

For each independent strain ηu, the dielectric tensor ε is
computed for different values of a in such a way that the
elasto-optic constants can be obtained by finite differences
from Eq. (5).

A. The automated scheme

Let us sketch the fully automated procedure that we have
implemented in the CRYSTAL program for the calculation of
elasto-optic constants of crystals of any space group:

(1) Lattice parameters and atomic positions of the crystal
structure are accurately optimized with tight convergence
tolerances (see Sec. II C for their values).

(2) A single-point self-consistent-field (SCF) calculation
is performed on the optimized unstrained structure. The
equilibrium dielectric tensor ε(0) is also computed with the
CPHF/KS scheme, briefly discussed in Sec. II B.

(3) A symmetry analysis is performed in order to find the
minimal set of deformations, out of a maximum of six, which
have to be explicitly applied in order to get all the independent
elasto-optic constants.

(4) Pick one independent deformation:
(a) The deformation is applied and the residual symmetry

determined. Ns strained configurations are defined according
to a strain amplitude a.

(b) For each strained configuration, the atomic positions
are relaxed (default option) or not, depending on whether
one wants to go beyond the “clamped-ion” approximation or
not. An SCF + CPHF/KS calculation is then performed for
computing the dielectric tensor ε(a).

(c) From the set of dielectric tensors {ε(a)}, the Ns tensors
�ε−1(a) = ε−1(a) − ε−1(0) are computed and fitted with
singular-value-decomposition routines; their first derivatives
are determined numerically and coincide with the elasto-optic
constants according to Eq. (5).

(5) Go back to point 4 or exit if all the independent
deformations have been considered.

By default, Ns = 2, corresponding to one “expanded”
and one “contracted” configuration with a strain amplitude
a = 0.015.

B. The dielectric tensor

The electronic contribution to the static dielectric tensor,
at zero electric field frequency ω = 0, is evaluated through
a CPHF/KS scheme37 adapted for periodic systems.38 From
an experimental viewpoint, it corresponds to the dielectric
response of the crystal measured for sufficiently high frequen-
cies of the applied electric field to make nuclear contributions
negligible, but not high enough for generating electronic
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excitations. CPHF/KS is a perturbative, self-consistent method
that focuses on the description of the relaxation of the
crystalline orbitals under the effect of an external electric
field. The perturbed wave function is then used to calculate
the dielectric properties as energy derivatives. Further details
about the method and its implementation in the CRYSTAL

program can be found elsewhere,39–41 as well as some recent
examples of its application.42–46 The electronic dielectric
tensor of a three-dimensional (3D) crystal is obtained from
the polarizability α as

εel = 1 + 4π

V
αel , (6)

where V is the cell volume. With such a scheme, the explicit
dependence of the polarizability and dielectric tensors from the
electric field frequency ω can be computed as well. Nuclear
contributions to the dielectric tensor could be introduced as
follows:

εij = εel
ij + εnuc

ij = εel
ij + 4π

V

∑
p

Zp,iZp,j

ν2
p

, (7)

where the summation runs over the phonon modes, νp is the
phonon frequency of mode p, and Zp is the mass-weighted
mode effective Born vector.47 Atomic Born effective tensors
and mode effective Born vectors are computed through a
Berry-phase approach48,49 in the CRYSTAL program.

We recall that elasto-optic constants can be decomposed
into purely electronic “clamped-ion” and nuclear “internal-
strain” contributions, as for the dielectric tensor, pvu =
pel

vu + pnuc
vu ; the latter measures the photoelastic effect due

to relaxation of the relative positions of atoms induced by
the strain50,51 and can be computed simply by optimizing the
atomic positions within the strained cell.

C. Computational parameters

All the calculations reported in the manuscript are per-
formed with the program CRYSTAL for ab initio quantum
chemistry of the solid state.30,31 All-electron atom-centered
GTF basis sets of triple-ζ valence quality, augmented by a
polarization function (TZVP), are adopted.52 Four different
one-electron Hamiltonians have been considered as represen-
tatives of different classes: the reference HF, a local density,53

and a generalized gradient, namely Perdew-Burke-Ernzerhof
(PBE),54 approximation to the DFT and the hybrid PBE0
functional.

In CRYSTAL, the truncation of infinite lattice sums is
controlled by five thresholds, which are here set to 10,10,10,12,
24. Reciprocal space is sampled according to a sublattice
with shrinking factor of 10. The DFT exchange-correlation
contribution is evaluated by numerical integration over the
cell volume. Radial and angular points of the atomic grid
are generated through Gauss-Legendre and Lebedev quadra-
ture schemes using an accurate predefined pruned grid. The
accuracy in the integration procedure can be estimated by
evaluating the error associated with the integrated electronic
charge density in the unit cell versus the total number of
electrons per cell: 1 ×10−5|e| out of a total number of 90
electrons per cell for α-quartz, for instance. Further details
about the grid generation and its influence on the accuracy
and cost of the calculations can be found elsewhere.55–57 The

convergence threshold on energy for the SCF step of the
calculations is set to 10−10 hartree.

Equilibrium or strained configurations are optimized by
use of analytical energy gradients with respect to both
atomic coordinates and unit-cell parameters or atomic coordi-
nates only, respectively.58–60 A quasi-Newtonian technique is
used, combined with the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) algorithm for Hessian updating.61–64 Convergence
has been checked on both gradient components and nuclear
displacements; the corresponding tolerances on their root
mean square are chosen 10 times more severe than the default
values for simple optimizations: 0.00003 and 0.00012 atomic
units (a.u.), respectively.

III. RESULTS AND DISCUSSION

A. Numerical stability

This section is devoted to the discussion of the numerical
stability of the automated algorithm illustrated in Sec. II A for
the computation of elasto-optic tensors of crystals, with respect
to its two internal parameters, Ns and a. We recall here that Ns

represents the number of strained configurations used per each
independent deformation while a defines the strain amplitude.
As we shall discover below, the algorithm proves extremely
stable with respect to these two parameters. Three prototypical
crystals are here considered that are cubic NaCl, cubic silicon,
and trigonal α-quartz. The effect on the dielectric tensor of
a number of general computational parameters such as the
shrinking factor, the two-electron integrals tolerances, the DFT
integration grid, etc., is not explicitly explored here; we rather
prefer to address the reader to Refs. 39–41, and 65, where
these effects are discussed with regard to a number of crystals.

In order to discuss the numerical stability of elasto-optic
constants, we compare them with elastic constants (i.e., energy
second derivatives with respect to pairs of strains) which can
be computed with CRYSTAL using an algorithm with the same
general structure as that proposed in Sec. II A.66

Crystalline silicon and NaCl have three independent elasto-
optic (p11, p12, and p44) and elastic (C11, C12, and C44)
constants that are reported in Table I, as computed at PBE
level, as a function of the number Ns of strained configurations
per independent deformation. The strain amplitude used is
here a = 0.015. It is clearly seen how insensitive elasto-optic
constants are to the parameter Ns ; when more than two strained
configurations are considered, the photoelastic results are
perfectly converged. This is not the case for elastic constants
that, although in turn are rather stable, show a somehow larger
dependence from Ns (see C11 for NaCl and C44 for silicon, for
instance, which still changes by 0.5% and 0.3% when passing
from Ns = 3 to Ns = 6, respectively).

The six independent elastic and elasto-optic constants of
α-quartz are also reported in Table I as a function of Ns ; the
same considerations made for NaCl and crystalline silicon
hold true also in this case. It is again observed that when
three strained configurations are used, elasto-optic constants
are already converged in all cases but p11, which converges to
the value of 0.161 at Ns = 4.

In order to further investigate the numerical stability of
Pockels’ constants with respect to the number Ns of strained
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TABLE I. Elasto-optic and elastic constants of NaCl, silicon, and α-quartz, computed at PBE level, as a function of the number Ns of
strained configurations per independent deformation. The strain amplitude is a = 0.015.

NaCl Silicon α-Quartz

Ns 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

p11 0.120 0.119 0.119 0.119 0.119 −0.112 −0.107 −0.107 −0.107 −0.107 0.152 0.160 0.161 0.161 0.161
p12 0.163 0.166 0.166 0.166 0.166 0.004 0.010 0.010 0.010 0.010 0.295 0.297 0.297 0.297 0.297
p13 0.163 0.166 0.166 0.166 0.166 0.004 0.010 0.010 0.010 0.010 0.298 0.298 0.298 0.297 0.298
p33 0.120 0.119 0.119 0.119 0.119 −0.112 −0.107 −0.107 −0.107 −0.107 0.106 0.107 0.107 0.107 0.107
p14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.060 −0.059 −0.059 −0.059 −0.059
p44 −0.007 −0.007 −0.007 −0.007 −0.007 −0.054 −0.054 −0.054 −0.054 −0.054 −0.089 −0.089 −0.089 −0.089 −0.089

C11 54.730 60.526 60.603 61.132 60.297 148.092 150.494 150.472 150.334 150.535 88.011 88.990 89.155 89.796 88.429
C12 12.487 12.639 12.646 12.685 12.621 58.390 61.487 61.506 61.626 61.431 12.492 13.980 14.125 14.298 14.144
C13 12.487 12.639 12.646 12.685 12.621 58.390 61.487 61.506 61.626 61.431 19.754 20.488 20.604 21.053 20.283
C33 54.730 60.526 60.603 61.132 60.297 148.092 150.494 150.472 150.334 150.535 111.414 113.999 114.134 114.931 113.740
C14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.734 12.333 12.350 12.347 12.469
C44 12.691 12.691 12.709 12.831 12.665 66.937 66.950 66.979 67.164 66.755 58.702 58.701 58.656 58.342 58.838

configurations, we report in Fig. 1 the quantities �ε−1
xx and

�ε−1
yz for NaCl, crystalline silicon, and α-quartz as a function

of the strain amplitude a along ηxx and along ηyz in the left
and right panels, respectively. From Eq. (5) we can easily see
how the slopes (i.e., first derivatives) of the curves in the figure
represent elasto-optic constants p11 and p44. From inspection
of the figure, it can be noticed that data in the right panel
behave much more linearly than the corresponding data in the
left panel; as a consequence, the corresponding slopes turn
out to be more stable with respect to the number of points
considered. We can check in Table I, indeed, that the p44

constant of the three crystals is very stable with respect to Ns ,
showing converged values already at Ns = 2. This constant
is negative for all three crystals, with a very small value of
–0.007 for NaCl, a larger value of –0.054 for silicon, and
the largest value, –0.089, for α-quartz, as the figure confirms.
Data in the left panel are a bit less linearly distributed and
thus the corresponding elasto-optic constant p11 is found to
be slightly more dependent on Ns , being converged at Ns = 3
for NaCl and silicon and Ns = 4 for α-quartz. In this case, p11

is negative, –0.107, for silicon and positive for NaCl, 0.119,

FIG. 1. (Color online) �ε−1
xx as a function of the strain amplitude

a along ηxx (left panel), and �ε−1
yz as a function of the strain amplitude

a along ηyz (right panel), for NaCl (red circles), crystalline silicon
(green triangles), and α-quartz (blue squares), as computed at PBE
level. The slopes of these curves give elasto-optic constants p11 and
p44 in the left and right panels, respectively.

and α-quartz, 0.161. The higher linearity of the right panel
data is most certainly due to the fact that the deformation ηyz

preserves the cell volume while ηxx does not.
The effect of the adopted strain amplitude a is investigated

in Table II, where elastic and elasto-optic constants of NaCl,
silicon, and α-quartz, computed at PBE level over Ns = 3
strained configurations, are reported for three values of a

(0.005, 0.01, and 0.015). From the table it can be seen how
independent elasto-optic constants are from a. Only the first
four constants of α-quartz show very slight oscillations in
their values. Elastic constants are less stable with respect to
this parameter, showing larger oscillations: up to 1.3% for C11

of NaCl, 0.6% for C13 of crystalline silicon, and 2.3% for C13

of α-quartz.
The two parameters Ns and a are obviously correlated.

We note that if a larger strain range is considered, where an
increased nonlinearity appears (refer again to Fig. 1), then
a larger number of points Ns should be considered so as to
include nonlinear terms in the fitting procedure.

B. The effect of the Hamiltonian

This section is devoted to the analysis of the effect of
the adopted one-electron Hamiltonian on computed elasto-
optic constants of crystals. From previous applications of
the CPHF/KS method to different crystals, we know that
the generalized-gradient approximation to the DFT usually
provides the best agreement with experimental dielectric
tensors, much better than HF and even better than hybrid
schemes.39–41,65 Nevertheless, elasto-optic constants are not
directly proportional to the dielectric constants but rather to
their variation with respect to finite mechanical strains. It
is indeed interesting to see whether the same hierarchy of
one-electron Hamiltonians holds true or not when passing from
dielectric to elasto-optic constants.

In order to do so, a set of eight crystalline systems of
different symmetries is here considered for which accurate
experimental data are available to compare with: simple cubic
sodium chloride NaCl, lithium fluoride LiF, magnesium oxide
MgO and potassium chloride KCl; cubic silicon and diamond;
trigonal SiO2 α-quartz; and tetragonal TiO2 rutile.
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TABLE II. Elasto-optic and elastic constants of NaCl, silicon, and α-quartz, computed at PBE level, as a function of the strain amplitude
a. The number Ns of strained configurations considered is 3.

NaCl Silicon α-Quartz

a 0.005 0.01 0.015 0.005 0.01 0.015 0.005 0.01 0.015

p11 0.119 0.119 0.119 −0.107 −0.107 −0.107 0.160 0.159 0.160
p12 0.166 0.166 0.166 0.010 0.010 0.010 0.297 0.297 0.297
p13 0.166 0.166 0.166 0.010 0.010 0.010 0.298 0.297 0.298
p33 0.119 0.119 0.119 −0.107 −0.107 −0.107 0.107 0.106 0.107
p14 0.000 0.000 0.000 0.000 0.000 0.000 −0.059 −0.059 −0.059
p44 −0.007 −0.007 −0.007 −0.054 −0.054 −0.054 −0.089 −0.089 −0.089

C11 60.465 61.056 60.246 150.502 150.350 150.554 88.914 89.689 88.691
C12 12.636 12.681 12.618 61.476 61.610 61.428 13.861 14.229 14.043
C13 12.636 12.681 12.618 61.476 61.610 61.428 20.506 20.977 20.550
C33 60.465 61.056 60.246 150.502 150.350 150.554 113.959 114.807 113.783
C14 0.000 0.000 0.000 0.000 0.000 0.000 12.297 12.343 12.365
C44 12.679 12.815 12.671 66.942 67.132 66.737 58.638 58.352 58.836

Four one-electron Hamiltonians are considered: the refer-
ence HF method, a LDA and the PBE generalized-gradient
functionals of the DFT, and the hybrid PBE0 scheme. The
dielectric and elasto-optic constants of the above-mentioned
set of crystals, as computed with these four Hamiltonians,
are reported in Table III along with the corresponding exper-
imental values. Elasto-optic constants are obtained by using
three strained configurations (Ns = 3) and a strain amplitude
a = 0.015.

Let us first consider the dielectric constants. From the
table it is clearly seen that HF performs very poorly by
systematically underestimating εel with deviations from the
experimental values as large as 33% for crystalline silicon and
41% for NaCl. The PBE0 hybrid scheme, with its 25% of HF
exchange, significantly ameliorates the dielectric description
with respect to HF but still underestimates the dielectric
response. Pure DFT functionals, LDA and PBE, predict the
dielectric tensors generally quite close to the experimental
ones, even if slightly overestimated, with PBE being a bit
better than LDA in this respect.

With regard to elasto-optic constants, similar considerations
can be done by looking at the data in Table III. An overall index
is reported in the last row of the table that is |�p| = ∑ |pcalc −
pexp|, where the sum runs over all the elasto-optic constants
of the eight crystals in the table. The sum of the absolute
values of the experimental constants is 50.5. The HF method
is definitely not suitable for computing such quantities with
an overall deviation from the experimental values of 18.0. The
hybrid PBE0 scheme gives an overall deviation of 6.2. Again,
pure DFT functionals, LDA and especially PBE, are providing
the best agreement with the experimental values with |�p|
of 4.1 and 1.9, respectively. Thus the photoelastic description
provided by a generalized-gradient functional improves by a
factor of 2 upon that of a simple local-density functional.

It is worth mentioning that, due to relatively large experi-
mental uncertainties associated with the measured elasto-optic
values (as large as 100% in some cases),16 the agreement
between calculated and measured values is not expected to be
perfect for photoelastic constants with small absolute values
(i.e., |p| < 0.05). In this respect, see the discussion in Sec. III C

about the determination of the absolute values of elasto-optic
constants of the simple crystal of MgO.

In order to illustrate which is the nuclear contribution to
the total elasto-optic constants of the set of crystals we have
been considering so far, in Table III we also report the purely
electronic “clamped-ion” contributions (values in parentheses)
as obtained at PBE level by keeping fixed atomic positions in
the strained configurations. From the comparison of the third
and fourth data columns in the table, we see how, as expected
from symmetry considerations, for simple cubic crystals such
as NaCl, LiF, MgO, and KCl the nuclear contribution is
null. Crystalline silicon and diamond are characterized by a
nonvanishing nuclear term in the elasto-optic constant p44

only, whereas α-quartz and rutile show a very large nuclear
contribution in all the independent constants. When nuclear
contributions are included, some elasto-optic constants vary
an order of magnitude (see p13 in α-quartz) while for others a
change in sign even occurs, such as for p11 and p33 for α-quartz
and p11 for rutile.

C. Comparing with experiments: The MgO case

At the end of the previous section, we were mentioning that
a perfect agreement between theory and experiments cannot
be expected for such a property as photoelasticity due to the
relatively high error bars associated with the experimental
values. In order to further investigate which are the actual
reasons for this uncertainty, we shall consider the very simple
case of the MgO cubic crystal. In Table IV we review the
existing experimental studies on MgO, along with our results.
From the analysis of the table, it is clearly seen how scattered
experimental elasto-optic constants are, especially so for p11

and p12. In the table we also report the quantity (p11 − p12),
because this combination, along with p44, can be directly
deduced from accurate birefringence experiments (such as
using the Babinet compensator). Indeed, experimental values
for (p11 − p12) and p44 show a much better agreement among
them. The experimental techniques (for instance, Mueller’s
ultrasonic method) used for determining the p11/p12 ratio are
subject to serious errors. As a consequence, it is not surprising
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TABLE III. Dielectric and elasto-optic constants of several
crystals as computed with different one-electron Hamiltonians
and compared with the experiment. In parentheses, the electronic
“clamped-ion” contribution to PBE elasto-optic constants is also
reported. See text for definition of |�p|.

HF LDA PBE PBE0 EXP.

NaCl
εel 1.395 2.615 2.430 2.330 2.3808

p11 0.308 0.077 0.119 (0.119) 0.136 0.1159

p12 0.194 0.157 0.166 (0.166) 0.185 0.1619

p44 −0.022 −0.002 −0.007 ( −0.007) −0.005 −0.0119

LiF
εel 1.448 2.042 1.975 1.894 1.9408

p11 0.231 −0.044 −0.026 ( −0.026) 0.000 0.02067

p12 0.219 0.139 0.136 (0.136) 0.155 0.13067

p44 −0.045 −0.051 −0.054 ( −0.054) −0.055 −0.06467

MgO
εel 1.848 3.077 3.097 2.868 3.02010

p11 −0.127 −0.218 −0.213 ( −0.213) −0.195 −0.21068

p12 0.091 0.013 0.015 (0.015) 0.037 0.04068

p44 −0.147 −0.075 −0.078 ( −0.078) −0.083 −0.10068

KCl
εel 1.908 2.396 2.199 2.125 2.2208

p11 0.289 0.230 0.257 (0.257) 0.272 0.2339

p12 0.202 0.175 0.181 (0.181) 0.192 0.1699

p44 −0.044 −0.035 −0.046 ( −0.046) −0.044 −0.0269

Silicon
εel 7.952 10.468 12.087 10.409 11.83012

p11 −0.163 −0.111 −0.107 ( −0.107) −0.109 −0.09412

p12 0.000 0.020 0.010 (0.010) 0.021 0.01712

p44 −0.100 −0.056 −0.054 ( −0.093) −0.055 −0.05112

Diamond
εel 4.974 5.668 5.749 5.443 5.81969

p11 −0.302 −0.264 −0.270 ( −0.270) −0.268 −0.24870

p12 0.056 0.076 0.073 (0.073) 0.072 0.04470

p44 −0.214 −0.162 −0.175 ( −0.189) −0.175 −0.17270

α-Quartz
εel
xx 1.935 2.453 2.347 2.209 2.35626

εel
zz 1.950 2.497 2.384 2.238 2.38326

p11 0.168 0.203 0.160 ( −0.202) 0.173 0.16023

p12 0.304 0.289 0.297 (0.073) 0.304 0.27023

p13 0.313 0.299 0.298 (0.029) 0.312 0.27023

p33 0.148 0.112 0.107 ( −0.197) 0.126 0.10023

p14 −0.047 −0.052 −0.059 ( −0.010) −0.055 −0.04723

p44 −0.066 −0.075 −0.089 ( −0.166) −0.081 −0.07923

Rutile
εel
xx 3.404 7.476 7.266 5.478 6.84016

εel
zz 3.934 9.054 9.027 6.684 8.43016

p11 0.008 0.020 0.038 ( −0.042) 0.033 0.01216

p12 0.235 0.137 0.166 (0.104) 0.204 0.14416

p13 −0.011 −0.094 −0.130 ( −0.195) −0.107 −0.14016

p33 −0.040 −0.040 −0.075 ( −0.058) −0.068 −0.05716

p44 −0.023 −0.004 0.000 (0.039) −0.010 ×
p66 −0.067 −0.064 −0.082 ( −0.082) −0.087 −0.06216

|�p| 18.0 4.1 1.9 (3.2) 6.2 –

to find that the individual values of p11 and p12 deduced by
several workers are so different from one another. In particular,
even the sign of p12 is not uniquely determined, with values
ranging from –0.08 to 0.04.

TABLE IV. Elasto-optic constants of the MgO crystal as experi-
mentally measured by various workers, compared with the results of
the present study.

p11 − p12 p44 p11 p12

Giardini and Poindexter68 −0.25 −0.10 −0.21 +0.04
Vedam and Schmidt10 −0.248 × −0.259 −0.011
Cardona et al.71 −0.24 × −0.3 −0.08
Krishna Rao et al.72 −0.24 −0.105 −0.31 −0.07
West and Makas73 −0.253 −0.096 × ×
Present work LDA −0.231 −0.075 −0.218 +0.013
Present work PBE −0.228 −0.078 −0.213 +0.015

Moreover, even if experiments are supposed to measure the
variation of the static dielectric tensor (i.e., at zero electric
field frequency, ω = 0, λ = ∞), they are performed at finite
electric field wavelengths which may not correspond to the
static limit. The experiments reviewed in Table IV have been
carried out in the wavelength range from 540 to 589.3 nm. In
Fig. 2, we report the three independent elasto-optic constants
of MgO, computed at PBE level, as a function of the electric
field wavelength λ. From its inspection we can see that while
p44 is almost wavelength independent, p11 and p12 show a
clear dependence from λ, slowly converging to the static limit
values above 1000 nm. In particular, the value of p12 is found
to pass from negative to positive at around 550 nm. Dashed
vertical lines in the figure identify the experimental range of
adopted electric field wavelengths: both p11 and p12 are still
changing in that range. This aspect is particularly crucial for
the determination of p12 since, within such a range, it is even
changing sign.

The reason is now clear for the uncertainty in the ex-
perimental determination of the value of p12. From this
simple example, the usefulness, and complementarity with
experiments, of the theoretical ab initio scheme presented here

FIG. 2. (Color online) The three independent elasto-optic con-
stants of the MgO crystal as computed at PBE level as a function
of the electric field wavelength λ; continuous lines are intended as
visual guides. The infinite wavelength results are also shown. Dashed
vertical lines represent the experimental wavelength range.
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for the investigation and interpretation of photoelasticity of
crystals is revealed.

IV. CONCLUSIONS

A fully automated ab initio scheme for the computation
of elasto-optic constants of crystals is presented which is
general, takes advantage of a complete symmetry analysis
of the system, works within periodic boundary conditions,
and exploits both translational and point symmetry. Several
one-electron Hamiltonians can be used to compute Pockels’
fourth-rank tensor. An analytical coupled-perturbed Hartree-
Fock/Kohn-Sham technique is used for the calculation of the
dielectric tensor of crystals under finite strains. The numerical
stability and accuracy of the scheme are discussed. Elasto-optic
constants are found to be very stable with respect to internal
parameters of the approach proposed.

Pure density-functional theory functionals are providing
the best description of the photoelastic properties of crystals,
if compared with Hartree-Fock or even hybrid schemes.
In particular, generalized-gradient functionals are found to

improve the agreement with experiments by a factor of 2
with respect to simple local-density functionals, commonly
reported in the literature so far. In order to help in the
interpretation of the photoelastic response of crystals, the
separation of total into electronic and nuclear “clamped-ion”
contributions has been implemented. Moreover, the possibility
of computing the electric field frequency dependence of
elasto-optic constants is shown to constitute a valuable tool
when compared with their experimental counterparts.

The scheme proposed here can be successfully applied
to crystals of any symmetry and size. We are currently
investigating the photoelastic properties of six garnet end
members (namely, pyrope, almandine, spessartine, andradite,
uvarovite, and grossular) and their solid solutions, with 80
atoms in the primitive cell. The results of such an investigation
will be reported in a forthcoming paper.
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