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Detection of spinons via spin transport
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The existence of deconfined spinons is the defining property of quantum spin liquids. These exotic excitations
have a (fractionalized) spin quantum number and no electric charge, and have been proposed to form Fermi
surfaces in the recently discovered organic spin liquid candidates. However, direct probes for them are still
lacking. Here we propose to experimentally identify the spinons by measuring the spin current flowing through
the spin liquid candidate materials, which would be a direct test for the existence of spin-carrying mobile
excitations. By the nonequilibrium Green’s function technique we evaluate the spin current through the interface
between a Mott insulator and a metal under a spin bias, and find that different kinds of Mott insulators, including
quantum spin liquids, can be distinguished by different relations between the spin bias and spin current. We also
discuss relations to experiments and estimate experimentally relevant parameters.
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A quantum spin liquid (QSL) was first proposed by
Anderson as an alternative ground state against long-range
magnetic order in frustrated magnets.1 In these systems com-
peting spin-exchange interactions result in a large degeneracy
of classical ground states, and quantum fluctuations among
these states destroy long-range symmetry breaking order.2 A
particular kind of quantum spin liquid, the resonant valence
bond (RVB) state, has also been proposed to be the key to
high-temperature superconductivity in cuprate materials.3,4

After decades of intense research many numerical evidences
of QSL ground states have been found in semirealistic lattice
models,5–15 and many artificial parent Hamiltonians for spin
liquids have been constructed.16–18

On the other hand, the experimental realization of spin
liquids in more than one spatial dimension remains challeng-
ing until several candidate materials have been discovered
recently.2,19 Two two-dimensional (2D) triangle lattice organic
salts EtMe3Sb[Pd(dmit)2]2 and κ-(BEDT-TTF)2Cu2(CN)3,
the kagome lattice herbertsmithite ZnCu3(OH)6Cl2, and a
three-dimensional hyperkagome lattice Na4Ir3O8 are found
to be the most promising candidates for QSLs.20–23 Despite
structural distinctions, they are all Mott insulators with
competing interactions and show no magnetic order down to
temperatures that are much lower than their exchange interac-
tion. Current measurements of magnetic susceptibility, specific
heat, thermal transport, and neutron scattering have provided
vital information about the properties of these materials.24–27

However, a definitive experiment for the identification of
quantum spin liquids is still missing.2

One of the most significant features of quantum spin liquids
is that they have exotic excitations called spinons which are
uncharged, and usually spin-1/2 mobile particles, which may
obey bosonic or fermionic statistics and may or may not have
a gap.2,19 The fermionic spinons may form Fermi surfaces and
are generally accompanied by an emergent gauge field.28,29

This “spinon Fermi sea” state has received strong support
from the observations of metalliclike specific heat and thermal
conductivity30 in the organic candidates at low temperatures.
However, these experiments do not provide a direct proof that
the mobile and possibly fermionic low energy excitations are

spinons. A more reliable proof for the spinon Fermi sea would
be a metalliclike spin transport in these Mott insulators.

In this Rapid Communication, we propose a four-terminal
measurement of spin current through a spin liquid material
(Mott insulator) as evidence for the existence of spinons.
The proposed four-terminal device consists of a spin liquid
material coupled to the left and right normal metal leads and
each lead couples to two ferromagnetic (FM) electrodes, as
shown in Fig. 1.31 A current source is added between the two
right FM electrodes. This is used to create a spin polarized
current flowing from one right FM electrode through the right
lead to another right FM electrode, leading to a spin-solved
chemical potential (i.e., a spin bias VR) in the right lead. Then
this spin bias will drive a spin current flowing from the right
lead through the spin liquid and finally into the left lead by
the spinon-electron spin-exchange interaction at the interfaces
between the spin liquid and the leads. Finally, a voltmeter is
connected to the two left FM electrodes which are in contact
with the left lead. The voltmeter is used to measure the spin
bias VL created by the spin current in the left lead. Here, the
spin bias Vα (α = L,R) is defined as the difference between
the spin-↑ chemical potential μα↑ and the spin-↓ chemical
potential μα↓ in the α lead, i.e., Vα ≡ μα↑ − μα↓.32,33

In the rest of this Rapid Communication, we will first
establish the general result of the spin current through the
interface between a Mott insulator in the middle region and
a metallic right lead with a spin bias (see Fig. 1) by the
nonequilibrium Green’s function technique. We will then
apply the general formalism to show that different Mott
insulators can be distinguished by different relations between
the spin current and the spin bias as well as temperature.
We will also discuss relations to experiments and estimate
experimentally relevant parameters.

The model Hamiltonian and formulation. In our theoretical
analysis, we consider the model of a Mott insulator (a spin
liquid or a collinear antiferromagnet) coupled to two normal
leads under a spin bias on the right lead. The Hamiltonian of
the system is given by H = H0 + HM + HI , where H0, HM ,
and HI are the Hamiltonians of the leads (metal), the middle
region (Mott insulator), and the interfaces, respectively. H0
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FIG. 1. (Color online) Schematic plot of a four-terminal device
for the detection of spin current through a spin liquid. The four small
blue bars indicate ferromagnetic electrodes. A spin polarized current
is injected into the right lead (R-lead) by a current source (Ie), thus
creating a spin bias and driving a spin current through the spin liquid
middle region. The spin bias induced by the spin current in the left
lead (L-lead) is then measured by a voltmeter (V ). We will also
consider other kinds of Mott insulators as the middle region instead
of spin liquids.

and HI are assumed to be

H0 =
∑

α=L,R

∑
k,σ

ξαkσ c
†
αkσ cαkσ (1)

and

HI = JI

∑
r0

SR(r0) · SM (r0) + JI

∑
r1

SL(r1) · SM (r1), (2)

where

Sα(r) = 1

2

∑
μ,μ′

σμμ′c
†
αμ(r)cαμ′ (r),

with SM (r) the (dimensionless) spin operator of the middle
region at the position r . cαkσ (c†αkσ ) is the creation (annihi-
lation) of the spin-σ electron in the α = (L,R) lead. ξαkσ =
εαk − μασ , where εαk is the electron dispersion relation and
μασ=(↑,↓) is the spin dependent chemical potential in the α lead.
The spin-exchange interaction constants JI are determined by
the interface properties of Mott insulator and metal.34 ∑

r0

means the integral over the interface. HM depends on the type
of Mott insulator we consider and will be specified later. We
emphasize that there is no single electron tunneling term in
HI because the middle region is a Mott insulator.

Due to the spin-exchange interaction in HI , the spin current
can flow from the normal lead to Mott insulator and vice versa.
When the right lead is under a spin bias, the spin current Is

flowing into the middle region from the right lead is

Is = −
〈

d

dt
Sz

T

〉
= i

〈[
Sz

T ,H (t)
]〉

= i JI

∑
r0

〈[
Sz

T ,SR(r0) · SM (r0)
]〉

= JI

∑
r0

Re[�<(r0,t,t)], (3)

with Sz
T ≡ (h̄/2)(N↑ − N↓)=(h̄/2)

∑
k(c†Rk↑cRk↑−c

†
Rk↓cRk↓).

Here, we have used the fact that [Sz
T ,H0] = 0 and defined

�<(r0,t,t) = i〈S−
M (r0,t)c

†
R↑(r0,t)cR↓(r0,t)〉 with S−

M (r0) =
Sx

M (r0) − iS
y

M (r0).
In order to solve the Keldysh Green’s functions above,

we first apply the equation of motion technique to solve
�t (r0,k,k′,τ,τ ′) = −i〈Tc{S−

M (r0,τ )cRk↓(τ )c†
Rk′↑(τ ′)}〉.35,36

By keeping the lowest order terms of JI we have

�t (r0,k,k′,τ,τ ′)

= −iJI

2NR

∑
r0

∫
dτ1χ

t (r0,r ′
0,τ,τ1)gt

R↓(k,τ,τ1)

×gt
R↑(k′,τ1,τ

′) exp[−i(k − k′) · r0],

where χt (r0,r ′
0,τ,τ1) = −i〈Tc[S−

M (r0,τ )S+
M (r ′

0,τ1)]〉 and
gt

Rσ (k′,τ,τ ′) = −i〈Tc[c
Rk′σ (τ )c†

Rk′σ (τ ′)]〉 are contour-order
Green’s functions for a spin operator in the middle
region and free electrons in the right lead, respectively.
�<(r0,k,k′,t,t ′)= i〈S−

M (r0,t)c
†
Rk′↑(t ′)cRk↓(t)〉 can be obtained

by an analytical continuation from �t , and a Fourier transform
then produces �<(r0,t,t). Plugging the result into Eq. (3) we
have

Is = J 2
I N⊥

4N2
RN2

M

∑
q,k,k′

AM (q,ξRk′↑ − ξRk↓ + V )δq⊥+k⊥−k′
⊥

× {[1 + nB(ξRk′↑ − ξRk↓ + V )]nF (−ξRk↓)nF (ξRk′↑)

− nB(ξRk′↑ − ξRk↓ + V )nF (ξRk↓)nF (−ξRk′↑)}, (4)

where NM and NR are the number of unit cells in the middle
region and right lead, respectively. Here N⊥ is the number of
transverse modes (parallel to the interface) and V = μR↑ −
μR↓ is the spin bias in the right lead. nB(ω) and nF (ξRkσ )
are the Bose and Fermi distribution functions, respectively.
δq⊥+k⊥−k′⊥ indicates transverse (parallel to the interface)
momentum conservation. The power spectrum AM is de-
fined as AM (q,ω) = ∫

dt〈S−
M (−q,t)S+

M (q,0)〉 exp(iωt)/[1 +
nB(ω)], where S±

M (q,t) is the Fourier transform of S±
M (r,t) =

Sx
M (r,t) ± S

y

M (r,t).
We note that the behavior of the spin current is mainly

determined by the power spectrum AM of the middle region.
Under appropriate conditions the momentum integrations over
q,k,k′ can be approximately separated, and the transverse
momentum conservation factor δq⊥+k⊥−k′

⊥ will provide only a
constant factor.37 The Fermi (Bose) function will be treated
exactly at zero temperature and expanded in a series of
V/(kBT ) at finite temperature. In the following we will apply
Eq. (4) and analyze several kinds of Mott insulators as the
middle region, including several spin liquids.

Spin liquids. Spinons in spin liquids may or may not
be gapped. The gapped spin liquids will have exponentially
vanishing spin transport at low temperature and small spin
bias. Non-spin-liquid phases with a spin gap, as the valence
bond crystals, will show behaviors similar to the gapped spin
liquids. We therefore restrict ourselves to the types of QSLs
with gapless fermionic spinons. We describe such spin liquids
by the following mean-field Hamiltonian,

HM =
∑
k,σ

ζkf
†
kσ fkσ ,

where f are fermionic spinons and ζk = εk − μs with μs the
spinon chemical potential. The spinon dispersion εk may have
a Fermi surface (the “spinon Fermi sea” state28,29) or Dirac
points at the Fermi level.38

First, we consider the two-dimensional (2D) spinon Fermi
sea case, which is the most relevant to the 2D organic
spin liquid candidate materials. The spinon dispersion is
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FIG. 2. In 2D spinon Fermi sea case, the scattered dots are the
spin bias V dependence of Is/V 2 at zero temperature (fitted by the
simple line). The cut point at the origin directly indicates Is ∝ V 3.

εq = h̄2q2/(2ms), with ms the spinon effective mass.39,40 The
density of states of spin excitations is

1

N2
R

∑
q

AM (q,ω) = 2πN2
s

(
Es

F

)
ω ∝ ω.

Thus the spin current Is ∝ V 3 at T = 0 (see Fig. 2), and Is ∝
(kBT )2V at T > 0 with V 
 kBT (see Fig. 3).

Moreover, in the one-dimensional (1D) spinon Fermi sea
case, the transverse momentum conservation factor in Eq. (4)
does not exist. So the 1D case can be regarded as the special
case of 2D with the transverse momentum mode number
N⊥ = 1.
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FIG. 3. (Color online) In the 2D spinon Fermi sea case, (a) the
scattered dots are the temperature T dependence of Is/T (V the spin
bias on the right lead). They can be fitted by simple lines (y ∝ x).
(b) The spin current Is vs spin bias V on the right lead at different
temperatures T (fitted by simple lines). The cut point at the origin
indicates Is ∝ V . (a) and (b) together indicate Is ∝ T 2V at high
temperature kBT � V .

In the two-dimensional Dirac spin liquid case,38 the low
energy spinon dispersion is εq = ±h̄vF |q − qF |, with vF the
Fermi velocity and qF the Fermi vector. At T = 0, since∑

q AM (q,ω)/N2
R ∝ ω3, the spin current Is ∝ V 5. At T > 0,

V 
 kBT , expanding Is in the series of V/(kBT ) directly, we
find Is ∝ (kBT )4V .

Collinear antiferromagnetic Néel order. Antiferromagnetic
(AFM) order is a common competitor for quantum spin liquids.
Let us now consider the simplest AFM ordered state, the
collinear AFM Néel order on a bipartite lattice, and show
that it has a different spin transport behavior as compared to
the previous spin liquid cases. We describe the spin excitations
by a linearized spin wave Hamiltonian,

HM =
∑

k

E0(a†
kak + b

†
kbk + γkakb−k + γka

†
kb

†
−k),

where E0 = 2ZS|J | and γk = ∑
δ cos(k · δ)/Z with δ sums

over the nearest-neighbor lattice sites. Here Z is the co-
ordination number, S is the spin quantum numbers and J

is the spin-exchange constant. bk (b†k) and ak (a†
k), are the

annihilation (creation) of Holstein-Primakoff bosons41 on the
B sublattice and A sublattice, respectively.

Since the spin wave dispersion is Eq = 4
√

2S|J |qa, with
a the lattice constant on the square lattice, the density of states
of spin excitations is

1

N2
R

∑
q

AM (q,ω) ∝ ω2.

The spin current Is ∝ V |V |3 and Is ∝ (kBT )3V at T = 0, and
T > 0 with V 
 kBT , respectively. All the cases we have
discussed above are summarized in Table I.

Numerical estimates of the spin current. We use the
following estimates of the parameters,42 with the interface
exchange coupling JI = 10 meV and spin bias V = 1 K ×
kB ≈ 0.1 meV. The metallic conductivity ρ = 10−8 � m, spin
diffusing length ls = 100 nm, lattice constant a = 0.3 nm, and
Fermi level Ee

F = 1 eV. The effective spinon mass ms ≈ 10me

and Fermi level Es
F = 10 meV. The bias induced in the left

lead is evaluated by VL ≈ (2e/h̄)(Is/N⊥) ∗ ρ ∗ ls , with N⊥ the
number of transverse mode (see Table II).

Discussions. Many factors ignored by our analysis may
affect the results. First we have assumed the conservation of the
z component of spin in the entire system, so the spin current is
well defined. However, in the real materials spin-orbit coupling
(SOC) will generically be present.2 We hope our results can
still be applied to such systems if the linear dimensions of the
sample are much smaller than the inverse of SOC. For the same

TABLE I. Behavior of the spin current through the interface
between different Mott insulators (rows) and a metallic lead with
respect to the spin bias V and temperature T .

T = 0 kBT � V

1D spinon Fermi sea ∝V 3 ∝(kBT )2V

2D spinon Fermi sea ∝V 3 ∝(kBT )2V

2D Dirac spin liquid ∝V 5 ∝(kBT )4V

Collinear antiferromagnet ∝V |V |3 ∝(kBT )3V
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TABLE II. Numerical estimates of the induced spin bias in the
left lead with different kinds of Mott insulator middle regions(rows)
at three different temperatures T = 0, 1, and 10 K. Other parameters
used are given in the main text.

T = 0 K T = 1 K T = 10 K
(nV) (nV) (nV)

1D spinon Fermi sea 0.3 10 1000
2D spinon Fermi sea 0.07 3 300
Dirac spin liquid 2 × 10−7 5 × 10−4 3

reason we did not consider noncollinear AFM orders, e.g., the
120◦ order on a triangular lattice.

Second, we have ignored the emergent U (1) gauge field
(and the induced long-range spinon interactions) in the
spinon Fermi sea and Dirac spin liquid cases. It is well
known40,43 that coupling to this gauge field can significantly
change the low energy behaviors of the (spinon) Fermi sea.
However, such effects have not been found in the specific
heat and thermal conductivity measurements of the organic
spin liquid candidates—conventional Fermi liquid behaviors
were observed instead.24,27,30 This may result from charge
fluctuations which could quench the strong gauge fluctuations
in the presence of the spinon Fermi sea.44 We therefore believe
our results are still valid in these materials. The effect of the
U (1) gauge field is an interesting theoretical question and will
be left for future studies.

Finally we have assumed a clean and free spinon or magnon
system in the middle region, without any scattering of spinons
or magnons by interactions among themselves or impurities.
We think this is not a serious problem for experiments,
according to the large value of 1 μm of the experimentally
estimated spinon mean free path.30

In summary, we have proposed to experimentally identify
the spinons by measuring the spin current flowing through the
spin liquid candidate materials, which would be a direct test
for the existence of spin-carrying mobile excitations. By the
nonequilibrium Green’s function technique we evaluated the
spin current through the interface between a Mott insulator
and a metal under a spin bias. It was found that different kinds
of Mott insulators, including quantum spin liquids, can be
distinguished by different relations between the spin current
spin bias as well as temperature. Although we have studied
only the spinon Fermi sea and Dirac spin liquid, our general
formalism can be applied to other kinds of spin liquids as well.
We hope our results can stimulate more experimental studies
of the spin liquid candidate materials and further promote
the exchange of ideas between different fields (e.g., spin-
tronics and strongly correlated electrons) in condensed matter
physics.
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