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Universal features of spin transport and breaking of unitary symmetries
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When time-reversal symmetry is broken, quantum coherent systems with and without spin rotational symmetry
exhibit the same universal behavior in their electric transport properties. We show that spin transport discriminates
between these two cases. In systems with large charge conductance, spin transport is essentially insensitive to the
breaking of time-reversal symmetry. However, in the opposite limit of a single exit channel, spin currents vanish
identically in the presence of time-reversal symmetry, but are turned on by breaking it with an orbital magnetic
field.
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Introduction. Fifty years ago, Dyson showed that ensembles
of unitary matrices that are invariant under general symmetry
groups reduce to the direct product of three irreducible
ensembles.1 These three circular ensembles are labeled by
an index β = 1,2,4 and are respectively invariant under the
transformations

S → UT SU, orthogonal ensemble, β = 1, (1a)

S → USV, unitary ensemble, β = 2, (1b)

S → WRSW, symplectic ensemble, β = 4, (1c)

where S is an element of the ensemble, U and V are arbitrary
unitary matrices, W is a quaternion2 unitary matrix, UT is the
transpose of U , and WR = σ (y)WT σ (y) is the dual of W .3 Here
and below, σ (μ), μ = x,y,z is a Pauli matrix. This classification
carries over to electronic quantum transport,4 where the three
classes are defined by time-reversal symmetry (TRS), an
antiunitary symmetry. Systems without TRS have a scattering
matrix in the β = 2 ensemble, while systems with TRS are
differentiated by whether the TRS operator squares to +1
(β = 1) or −1 (β = 4). When TRS is preserved, breaking spin
rotational symmetry (SRS) induces a crossover β = 1 → 4,
however, when TRS is broken, breaking SRS only doubles
the size of the scattering matrix as a Kramers degeneracy gets
removed. This does not generate a new ensemble.1,4,5

Quantum corrections to electric transport depend on the
symmetry index β, but are independent of the size N of
the scattering matrix (giving the total number of transport
channels from and to the scatterer) for large N .4 According
to the above classification, universality in charge transport is
therefore mostly determined by the antiunitary TRS. Recent
investigations of spin transport showed that the magnetoelec-
tric spin conductance

T (μ)
ij = Tr[S†

ij σ
(μ)Sij ], (2)

constructed from the transmission block Sij of the scattering
matrix connecting terminals i and j , also exhibits a character
of universality6–10 in that var T (μ)

ij = 4Ni(Ni − 1)Nj/N(2N −
1)(2N − 3) for β = 4. Here, Ni,j gives the number of transport
channels between the system and terminals i,j , and N =∑

i Ni . The spin conductance fluctuates about zero average,
〈T (μ)

ij 〉 = 0, and the resulting, typically nonzero, spin current
is generated by the presence of a SRS breaking field. In the

β = 4 ensemble one usually takes the latter field as a spin-orbit
interaction (SOI). In the absence of SOI, one has T (μ)

ij ≡ 0.
This is the case for β = 1 and, if Dyson’s threefold way applies
to spin transport, for β = 2. In this Rapid Communication we
demonstrate that spin transport discriminates between systems
with and without SRS even when TRS is broken. Accordingly,
a different kind of universality emerges in systems with broken
SRS and TRS, with charge transport properties given by
those of the β = 2 ensemble, but with specific spin transport
properties. The latter are similar to those of the β = 4 ensemble
at large N , a finding already reported in Ref. 11 for specific
four-terminal setups, but deviate from it at small N . Our finding
does not invalidate Dyson’s classification—the latter gives
a complete classification of unitary scattering matrices and
unless one introduces chiral or particle-hole symmetries,12,13

there is no other ensemble to be found. Instead, our point is
that spin-dependent observables define two subensembles of
the β = 2 ensemble, depending on whether they commute or
not with the scattering matrix. In other words, we find that
while universality in charge transport is affected only by the
antiunitary TRS, universality in spin transport depends on both
antiunitary (TRS) and unitary (SRS) symmetries.

The model. We consider a mesoscopic conductor connected
to any number of external electron reservoirs. There is no
ferromagnetic exchange anywhere in the system, nor is there
spin accumulation in the reservoirs, thus injected currents are
not polarized. We neglect spin relaxation in the terminals. The
magnetoelectrically generated spin current due to the presence
of SOI inside the cavity is determined by the spin-dependent
transmission coefficients of Eq. (2). For instance, in the simple
case of a two-terminal setup, the generated spin current in the
right lead along the polarization axis μ = x,y,z is given by

I
(μ)
R = (e2V/h)T (μ)

RL , (3)

with the voltage bias V applied across the sample.
Semiclassical calculation. We first calculate the average

and mesoscopic fluctuations of the spin transmission coeffi-
cients using the semiclassical theory of transport,14,15 extended
to take spin transport into account.16,17 We write (see the
Supplemental Material18)

T (μ)
ij =

∫
i

dy

∫
j

dy0

∑
γ,γ ′

Aγ A∗
γ ′e

i(Sγ −Sγ ′ )Tr[Uγ σ (μ)U
†
γ ′]. (4)
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FIG. 1. (Color online) Semiclassical diagrams determining the
conductance and spin conductance fluctuations to leading order in the
number N � 1 of transport channels. Blue (dark) and red (light) tra-
jectories travel in opposite directions in (b), which consequently van-
ish in the presence of a large magnetic flux piercing the loop. All other
diagrams are insensitive to the breaking of time-reversal symmetry.

The sums run over all trajectories starting at y0 on a cross
section of the injection lead j and ending at y on the exit lead
i. Trajectories have a stability given by Aγ , which includes
a prefactor (2πih̄)−1/2 as well as a Maslov index,19 and Sγ

gives the classical action accumulated on γ , in units of h̄.
SOI is incorporated in the matrices Uγ . The average spin
conductance has been calculated semiclassically in Ref. 17.
In the absence of SOI, spins do not rotate, Uγ = σ (0) is
the identity matrix, and one trivially obtains T (μ)

ij ≡ 0. The
leading-order approximation is to consider Uγ ∈ SU(2), where
SOIs rotate the spin of the electron along unperturbed classical
trajectories.16,20 In this Rapid Communication, we will use this
approximation because, even though it neglects the geometric
correlations reported in Ref. 17, it is appropriate for our search
of universality. At that level, the average spin conductance
vanishes, 〈T (μ)

ij 〉semicl = 0,17 which agrees with the random
matrix theory (RMT) result of Ref. 6.

Having established that the average spin conductance van-
ishes regardless of the presence or absence of TRS and SRS,
we next calculate spin conductance fluctuations. The leading-
order diagrams contributing to var[T μ0

RL ]semicl are shown in
Fig. 1. They are the same as those contributing to the (charge)
transmission fluctuations [substituting σ (μ) → σ (0) in Eq. (2)].
In this case, Ref. 15 found that the sum of contributions shown
in Figs. 1(c)–1(e) cancel out, and furthermore, the contribution
shown in Fig. 1(b) vanishes upon breaking of TRS. This can
be achieved via a magnetic flux piercing the diagram’s loop.
From Fig. 1, we see that the contribution shown in Fig. 1(b) is
the only one that is flux sensitive, because the blue (dark) and
the red (light) trajectories accumulate the same flux phase.
From a semiclassical point of view, this is the origin of
the halving of the universal conductance fluctuations upon
TRS breaking.4 Extending this calculation to var[T μ

ij ]semicl,
we obtain that the contributions shown in Figs. 1(a)–1(c) are
multiplied by a spin-dependent term Tr[U †

γ5
U †

γ3
σ (μ)Uγ3Uγ2 ] ×

Tr[U †
γ2

U †
γ6

σ (μ)Uγ6Uγ5 ], while the contributions shown in
Figs. 1(d) and 1(e) are multiplied by |Tr[U †

γ5
σ (μ)Uγ2 ]|2 (see

the Supplemental Material for the labeling of trajectory
segments).18 All these terms vanish in the absence of SOI.
In the presence of SOI, we evaluate them by averaging over
a uniform distribution of all Uγ ’s over the SU(2) group,
corresponding to totally broken SRS. Following the standard
procedure of performing orbital averages and spin averages
separately, we obtain that, when SRS is totally broken, contri-
butions shown in Figs. 1(a)–1(c) acquire a prefactor [〈· · · 〉SU(2)

indicates an homogeneous average over the SU(2) group]〈
Tr

[
U †

γ5
U †

γ3
σ (μ)Uγ3Uγ2

]
Tr

[
U †

γ2
U †

γ6
σ (μ)Uγ6Uγ5

]〉
SU(2) = 0,

(5)

and thus vanish identically, while the contributions shown in
Figs. 1(d) and 1(e) are multiplied by〈∣∣Tr

[
U †

γ5
σ (μ)Uγ2

]∣∣2〉
SU(2) = 1. (6)

We conclude that the semiclassical contributions to the spin
conductance fluctuations are those with a correlated encounter
at the exit terminal, which in particular has the consequence
that they are not sensitive to the breaking of TRS.

We obtain the variance of the spin conductance coefficients
as the sum of the contributions shown in Figs. 1(d) and 1(e),
i.e.,

var
[
T (μ)

ij

]
semicl = (

NiNjN − NiN
2
j

)/
N3. (7)

The key point is that this result holds both in the absence and
in the presence of TRS, because both relevant contributions
shown in Figs. 1(d) and 1(e) are sensitive neither to magnetic
fluxes piercing their loops, nor to orbital magnetic field effects
that do not alter the ergodicity of the classical trajectories.
Thus, Eq. (7) gives the leading-order semiclassical expression
for the conductance variance, for systems without SRS (with
SOI) in both cases of conserved or broken TRS, as well as in
the intermediate regime of partially broken TRS. Therefore,
to leading order in the number N � 1 of transport channels,
spin conductance fluctuations are insensitive to the breaking
of TRS. Below, this result is confirmed using RMT.

Random matrix theory calculation. We next use the method
of Ref. 21 to calculate the RMT average and fluctuations of
the spin conductance. We write6

T (μ)
ij = Tr

[
Q(μ)

i SQ
(0)
j S†], (8a)

[
Q(μ)

i

]
mη,nν

=
{

δmnσ
(μ)
ην , m ∈ i,

0, otherwise,
(8b)

[
Q

(μ)
j

]
mη,nν

=
{

δmnσ
(μ)
ην , m ∈ j,

0, otherwise,
(8c)

where m and n are channel indices, η and ν are spin indices,
and σ (0) is the 2 × 2 identity matrix. The trace in Eq. (8a) is
taken over both sets of indices. We find that the average of the
spin transmission vanishes in all cases,〈

T (μ)
ij

〉
RMT = 0. (9)

For the β = 4 ensemble, this result was first obtained in Ref. 6.
We further obtain

var
[
T (μ)

ij

]
β=2;SRS = 0 , (10a)

var
[
T (μ)

ij

]
β=2;����SRS = 4

NiNjN − NiN
2
j

N (4N2 − 1)
, (10b)
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var
[
T (μ)

ij

]
β=4 = 4

NiNj (N − 1) − NiN
2
j

N (2N − 1)(2N − 3)
. (10c)

Equation (10c) first appeared in Ref. 6, and expressions
similar to Eq. (10b) appeared in Refs. 10 and 11 for
two-terminal geometries. We see that Eqs. (7), (10b), and
(10c) all agree in the limit Ni,j � 1, however, while the
semiclassical expression Eq. (7) is valid only in that limit,
Eqs. (10) are exact for any number of channels. Most
interestingly, for a two-terminal setup with Ni = 1, Eq. (10c)
gives var[T (μ)

ij ]β=4 = 0. Together with Eq. (9) this gives an
identically vanishing spin conductance, in agreement with
Ref. 22. This restriction no longer applies once TRS is broken,
as reflected in Eq. (10b)—breaking TRS can turn spin currents
in two-terminal geometries, when the exit terminal carries a
single transport channel.

Numerical simulations. We numerically confirm our find-
ings using the quantum mechanical spin kicked rotator
model.23 It is represented by a 2M × 2M Floquet matrix23–25

(see the Supplemental Material18)

Fll′ = (	UXU †	)ll′ , l,l′ = 0,1, . . . ,M − 1, (11a)

	ll′ = δll′e
−iπ(l+l0)2/Mσ0, (11b)

Ull′ = M−1/2e−i2πll′/Mσ0, (11c)

Xll′ = δll′e
−i(M/4π)V (2πl/M). (11d)

The matrix 	 represents free ballistic motion, periodically
interrupted by spin-independent and spin-dependent kicks
given by the matrix X, and corresponding to scattering at
the boundaries of the quantum dot, as well as SOI. We choose

V (p) = K cos(p + θ )σ0 + Kso(σx sin 2p + σz sin p). (12)

The corresponding classical map is chaotic for kicking strength
K � 7.5, and accordingly in our search for universal behavior,
we restrict ourselves to that regime. The SO coupling strength
Kso is related to the SO rotation time τso (in units of the strobo-
scopic period) through τso = 32π2/K2

soM
2.23 From (11), we

construct the quasienergy-dependent scattering matrix as

S(ε) = P [e−iε − F(1 − P T P )]−1FP T , (13)

with P a 2N × 2M projection matrix

Pkα,k′β =
{
δαβ if k′ = l(k),

0 otherwise.
(14)

The l(k) (k = 1,2, . . . ,2N labels the modes) give the position
in phase space of the attached leads. The mean dwell time τD

is given by τD = M/N . The parameter Kso breaks SRS over a
scale Ksoc = 4π

√
2/Mτ

1/2
D corresponding to τso = τD, and θ

breaks time-reversal symmetry over a scale θc = 4π/KMτ
1/2
D

when l0 is finite.23 In our numerics we fix l0 = 0.14. When
K � 1 and θ/θc � 1, the charge conductance properties are
those of the β = 2 ensemble, while for θ = 0 and Kso/Ksoc �
1 they are those of the β = 4 ensemble.23 In our numerics, we
fix Kso/Ksoc = 120 and vary θ to gradually break TRS, starting
from θ = 0. For simplicity, we specify to two-terminal setups
and accordingly calculate the dimensionless spin conductance
defined by Eq. (3) as Gμ = T (μ)

RL for μ = z. We checked, but
do not show, that numerical results remain the same if instead
we consider μ = x,y.
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FIG. 2. (Color online) Weak localization corrections to (top)
and variance of (bottom) the charge (open symbols) and spin
(solid symbols) conductance for the two-terminal quantum kicked
rotator of Eqs. (11). Parameters are τD = 10,20, K = 40,60,80,90,
Kso = 120Ksoc, and M = 128,256,512. The dashed lines indicate
the RMT predicted crossover from β = 4 to β = 2 (Ref. 23). Our
semiclassical prediction of Eq. (7) is illustrated by the straight black
line in the bottom panel. For all data, N > 10.

Figure 2 first shows data for quantum corrections to the
charge and spin conductance, as TRS is gradually broken.
The top panel shows that weak localization corrections to
the charge conductance are damped by a Lorentzian ∼[1 +
(θ/θc)2]−1 as predicted by RMT4 and semiclassics.14 There is
no weak localization correction to the average spin conduc-
tance, both with and without TRS, in agreement with Ref. 6.
The bottom panel shows that charge conductance fluctuations
are halved upon TRS breaking and their behavior agrees well
with theoretical predictions. The situation is entirely different,
however, for the spin conductance fluctuations, which are
essentially insensitive to the breaking of TRS. This is in
agreement with our predictions, Eqs. (7) and (10), for the large
number of channels N > 10 considered in all data in Fig. 2.
The specific universal behavior of spin transport corresponding
to broken SRS and TRS emerges at larger θ , where the charge
conductance corresponds to the β = 2 Dyson ensemble, while
the spin conductance is essentially the same as that of the
β = 4 ensemble.

Figure 3 best illustrates the specific universal behavior of
spin transport. When the exit lead carries a single transport
channel, TRS requires that the spin conductance vanishes,22

regardless of the presence or absence of SRS. Figure 3 shows
that, when SRS is broken, breaking TRS turns spin currents
on, whose variance is given by Eq. (10b) once TRS is totally
broken. Note that the magnitude of the field necessary to
break TRS for NR,L = 1 becomes smaller and smaller in the
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FIG. 3. (Color online) Spin conductance fluctuations for the
quantum kicked rotator with SOI defined in Eq. (11) vs the rescaled
TRS breaking parameter θ/θc for NR = NL = 1. For θ = 0, one
is in the β = 4 ensemble and TRS forces the spin conductance to
vanish (Ref. 22). Breaking TRS results in a finite variance of the
spin conductance. Dashed line: RMT prediction var[Gμ] = 4/30
for NR = NL = 1 [see Eq. (10b)]. Data correspond to K = 45,
Kso = 120Ksoc, with M = 128 (red circles), 256 (blue triangles), and
512 (black diamonds). The curves do not lie on top of one another,
because the rescaling of the horizontal axis with θc assumes NR,L � 1
(Ref. 23).

semiclassical limit, M → ∞, as the dwell time grows in that
limit, τD ∼ M .

Conclusions. By direct calculation we have shown that
the spin conductance is an observable that is sensitive to
the presence or absence of SRS even when TRS is broken.
Breaking of SRS is necessary to magnetoelectrically generate
a spin current, and thus to acquire a finite spin conductance,
but the latter is affected by TRS only when there are very

TABLE I. Universality behavior of charge and spin transport
properties in the four possible cases of broken or unbroken SRS
and TRS. When both symmetries are broken, the spin transport
properties correspond to those of the β = 4 Dyson ensemble in the
limit NR,NL � 1. Deviations from β = 4 are given in Eq. (10) for
the spin conductance variance. They are largest for a small number
of channels.

TRS SRS Charge transport Spin transport

Yes Yes β = 1 β = 1; Gμ ≡ 0
Yes No β = 4 β = 4; Eqs. (9) and (10c)
No Yes β = 2 Gμ ≡ 0
No No β = 2 Eqs. (9) and (10b)

few transport channels. Accordingly, we conclude that the
β = 2 universality class splits into two different subsets for
spin transport. In both cases, charge transport properties
correspond to the β = 2 class, however, the spin conductance
vanishes identically when SRS is preserved, but exhibits a
universal behavior when it is broken [see Eq. (10b)]. Spin
and charge transport universality classes are related to TRS
and SRS in Table I. Examples of systems with broken SRS
and TRS include spin-orbit coupled systems under not too
strong external magnetic fields, systems with spin textures, and
even spin valves with nonaligned magnetizations. Breaking
TRS without breaking SRS is possible in systems with orbital
magnetic field effects stronger than Zeeman effects, such as
few-channel n-doped GaAs quantum dots in fields of the order
of few tens of mT.4
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17İ. Adagideli, Ph. Jacquod, M. Scheid, M. Duckheim, D. Loss, and
K. Richter, Phys. Rev. Lett. 105, 246807 (2010).

18See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.88.041305 for more details on the semiclassical
calculation of spin conductance and spin conductance fluctuations,
as well as on the kicked rotator model of quantum transport.

19F. Haake, Quantum Signatures of Chaos, 2nd ed. (Springer, Berlin,
2001).

20H. Mathur and A. D. Stone, Phys. Rev. Lett. 68, 2964
(1992).

21P. W. Brouwer and C. W. J. Beenakker, J. Math. Phys. 37, 4904
(1996).

041305-4

http://dx.doi.org/10.1063/1.1703863
http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1103/PhysRevLett.87.256801
http://dx.doi.org/10.1103/PhysRevLett.87.256801
http://dx.doi.org/10.1103/PhysRevLett.98.196601
http://dx.doi.org/10.1103/PhysRevLett.98.196601
http://dx.doi.org/10.1088/1367-2630/9/9/352
http://dx.doi.org/10.1103/PhysRevB.78.035338
http://dx.doi.org/10.1103/PhysRevB.78.035338
http://dx.doi.org/10.1088/0953-8984/21/15/155503
http://dx.doi.org/10.1088/0953-8984/21/15/155503
http://dx.doi.org/10.1103/PhysRevB.80.245313
http://dx.doi.org/10.1103/PhysRevB.86.235112
http://dx.doi.org/10.1016/0375-9474(93)90098-I
http://dx.doi.org/10.1016/0375-9474(93)90098-I
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevLett.70.3876
http://dx.doi.org/10.1103/PhysRevLett.70.3876
http://dx.doi.org/10.1103/PhysRevLett.89.206801
http://dx.doi.org/10.1103/PhysRevB.68.233308
http://dx.doi.org/10.1103/PhysRevLett.96.066804
http://dx.doi.org/10.1103/PhysRevB.73.195115
http://dx.doi.org/10.1103/PhysRevB.74.075322
http://dx.doi.org/10.1103/PhysRevB.74.075322
http://dx.doi.org/10.1103/PhysRevB.72.155325
http://dx.doi.org/10.1103/PhysRevB.72.155325
http://dx.doi.org/10.1103/PhysRevB.76.075330
http://dx.doi.org/10.1103/PhysRevLett.105.246807
http://link.aps.org/supplemental/10.1103/PhysRevB.88.041305
http://link.aps.org/supplemental/10.1103/PhysRevB.88.041305
http://dx.doi.org/10.1103/PhysRevLett.68.2964
http://dx.doi.org/10.1103/PhysRevLett.68.2964
http://dx.doi.org/10.1063/1.531667
http://dx.doi.org/10.1063/1.531667


RAPID COMMUNICATIONS

UNIVERSAL FEATURES OF SPIN TRANSPORT AND . . . PHYSICAL REVIEW B 88, 041305(R) (2013)

22A. A. Kiselev and K. W. Kim, Phys. Rev. B 71, 153315 (2005);
F. Zhai and H. Q. Xu, Phys. Rev. Lett. 94, 246601 (2005).

23J. H. Bardarson, J. Tworzydlo, and C. W. J. Beenakker, Phys. Rev.
B 72, 235305 (2005).

24J. Tworzydlo, A. Tajic, H. Schomerus, and C. W. J. Beenakker, Phys.
Rev. B 68, 115313 (2003); Ph. Jacquod and E. V. Sukhorukov, Phys.
Rev. Lett. 92, 116801 (2004).

25F. M. Izrailev, Phys. Rep. 196, 299 (1990).

041305-5

http://dx.doi.org/10.1103/PhysRevB.71.153315
http://dx.doi.org/10.1103/PhysRevLett.94.246601
http://dx.doi.org/10.1103/PhysRevB.72.235305
http://dx.doi.org/10.1103/PhysRevB.72.235305
http://dx.doi.org/10.1103/PhysRevB.68.115313
http://dx.doi.org/10.1103/PhysRevB.68.115313
http://dx.doi.org/10.1103/PhysRevLett.92.116801
http://dx.doi.org/10.1103/PhysRevLett.92.116801
http://dx.doi.org/10.1016/0370-1573(90)90067-C



