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Suppression of Brewster delocalization anomalies in an alternating
isotropic-birefringent random layered medium
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We investigate the polarization dependence of localization length in alternating isotropic-birefringent stacks
with uncorrelated thickness disorder. The birefringent layers can be positive uniaxial, negative uniaxial, or a
mixture of both. Stacks which contain a mixture are shown to suppress the Brewster delocalization anomalies
and, over all incident angles, exhibit p-polarization localization length maxima that are of similar magnitude to
normal incidence. Furthermore, we propose a parameter set that enables the p-polarization localization length to
monotonically decrease with angle of incidence. This investigation was inspired by weakly polarizing mirrors on
the sides of silvery fish and provides a generic means to produce polarization-insensitive, broadband reflections
from a random, all-dielectric layered medium.
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Localization is a concept that explains how quantum
wave functions and classical electromagnetic waves become
spatially confined due to disorder.1,2 It arises entirely due to
multiple scattering and interference,3 and is most strongly
apparent in 1-dimensional (1D) random layered media. In
these 1D “stack” systems, all scalar stationary quantum
wave states are proven to localize.4,5 However, exceptions
to localization occur for the stationary states of vectorial
electromagnetic waves referred to as “Brewster delocalization
anomalies.”6–12 This effect corresponds to the pronounced
suppression, and in some special circumstances complete
inhibition, of localization at oblique incidence for p-polarized
light. It is a highly robust behavior present in both strongly
disordered stacks (e.g., where there is uncorrelated layer
thicknesses6–8), and weakly disordered stacks (e.g., where
there is uniform disorder about a mean thickness11).

Broadband, mirror-like reflections from a random dielectric
medium are a physical realization of the localization of elec-
tromagnetic waves.13 The principles of localization have sub-
sequently been used to inform the design of high-performance
broadband mirrors, which have a broader reflection band than
periodic systems with the same refractive indices (e.g., Refs. 14
and 15). If a stack system could be devised that was effective
at localizing both s- and p-polarized light over all angles of
incidence, it would provide a means to produce polarization-
insensitive, broadband reflections. This is a highly desirable
optical property and existing nonpolarizing dielectric mirrors
have applications that include waveguides and thermoelectric
devices.16

In this Rapid Communication, we demonstrate that stacks
which include both positive and negative uniaxial birefringent
layers can suppress the Brewster delocalization anomalies,
and subsequently provide a mechanism to produce broadband,
polarization-insensitive reflections. Our model system was
motivated by our previous analysis of the nonpolarizing reflec-
tions from the birefringent guanine and isotropic cytoplasm
multilayer structure found in some species of silvery fish.17

While the investigation of animal photonics continues to be of
great inspiration for the design of practical optical devices,18–20

our study aims to illustrate how such biological optical
structures can also inspire systems of interest to theoretical
physics.

The general model of our stack system consists of alter-
nating isotropic and uniaxial birefringent layers embedded in
an isotropic medium (Fig. 1). The birefringent layers are a
mixture of randomly ordered negative and positive types, with
refractive index vectors

n− = (na,na,nb), n+ = (nb,nb,na). (1)

The isotropic layers and external media both have refractive
index n0. It is assumed that na � nb � n0. This criterion
ensures that light is able to access all angles of incidence at each
isotropic-birefringent interface in the stack, and consequently
that critical angle screening does not occur. This stack mimics
the guanine-cytoplasm structure in fish skin where there are
two different types of birefringent guanine crystal present
with isotropic cytoplasm gaps.17 However, this stack has
been simplified from the biological system to be rotationally
symmetric about the z axis (the direction of stacking), which
is a sufficient condition for the s- and p-polarization modes to
be separable.

The general matrix formalism for anisotropic layered
media21,22 enables us to calculate numerically the exact
transmission of the stacks. The 2 × 2 transfer matrix for each
polarization mode, M , is of the form

Mi =
[

cos(δi) − i
βi

sin(δi)

−iβi sin(δi) cos(δi)

]
, M =

∏
i

Mi, (2)

where βi are transverse refractive indices defined by

βi =
⎧⎨
⎩

ni,xni,z√
n2

i,z−n2
0 sin2(θ)

p-polarization,√
n2

i,y − n2
0 sin2(θ ) s-polarization,

(3)
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FIG. 1. (Color online) The system geometry. The red and blue
regions represent negative and positive uniaxial layers respectively,
while the gray regions represent the isotropic layers and external
media. The orientation of the principle axes for the birefringent layers
is shown, with the y coordinate into the page and the z coordinate
aligned with stacking direction. θ denotes the angle of incidence.

and δi are phase thicknesses defined by

δi =
⎧⎨
⎩

(
2π
λ

)
aini,x

√
1 − (

n0 sin(θ)
ni,z

)2
p-polarization,(

2π
λ

)
aini,y

√
1 − (

n0 sin(θ)
ni,y

)2
s-polarization,

(4)

with i indexing each layer, x,y,z indexing each Cartesian co-
ordinate direction, λ the wavelength, a the layer thickness, and
θ the angle of incidence. It is assumed that the s-polarization
is aligned with the y direction. The stack transmission, Ts,p, is
then calculated using standard formulas.22 Equations (2)–(4)
generalize to birefringent-birefringent interfaces and biaxial
layers where the principle axes and polarization components
are aligned with the Cartesian coordinate directions.

To calculate the localization length, ξs,p, we use the
definition23

ξs,p = −
〈

2L

ln Ts,p

〉
, (5)

where L is the system length and 〈 〉 denotes ensemble average.
The localization length can also be defined as a non-self-
averaging quantity for an infinite stack length.24 Equation (5)
is valid for systems where the number of layers in the stacks
is � ξs,p and provides a more practical means to numerically
compute ξs,p by using log-linear regression of Eq. (5) and
sampling over a random set of stack configurations.

In the guanine-cytoplasm multilayer of fish skin the layer
thicknesses are assumed to be uniformly distributed about a
mean value.17 However, here we chose to adapt an existing
analytical model for strong uncorrelated thickness disorder.6–8

This has the advantage of enabling us to make the clearest
connection between the localization length and reflection
coefficients of the individual scattering layers. This model
is a weak scattering limit of a general formulation for the
transmission of waves through one-dimensional systems8

and assumes that the reflection coefficients are � 1. The
layer thicknesses are sampled from an exponential probability
distribution,

P (a) = exp

(
a

a0

)
, (6)

where a0 is the mean layer thickness. The wavelength-
independent expression for ξs,p (in units of a0) is

given by7,8

ξs,p

a0
= 2

r2
s,p

, (7)

where r2
s,p is the average interfacial intensity reflection

coefficient in the system. As this formula is valid for stacks
with an arbitrary refractive index distribution, it subsequently
can be applied to stacks with birefringent layers where the
polarization modes are separable. For our alternating isotropic-
birefringent stack,

r2
s,p = (1 − f )r2

s+,p+ + f r2
s−,p−, (8)

where 0 � f � 1 is the mixing ratio of negative to positive
birefringent layer types. The intensity reflection coefficients
are obtained by substituting the refractive index vectors, (1),
into the generalized isotropic-birefringent Fresnel relations:22

r2
s+,− =

⎛
⎝n0 cos(θ ) −

√
n2

i,y − n2
0 sin2 θ

n0 cos(θ ) +
√

n2
i,y − n2

0 sin2 θ

⎞
⎠

2

, (9)

r2
p+,− =

⎛
⎝n0ni,xni,z cos(θ ) − n2

0

√
n2

i,z − n2
0 sin2(θ )

n0ni,xni,z cos(θ ) + n2
0

√
n2

i,z − n2
0 sin2(θ )

⎞
⎠

2

. (10)

The angular dependence of ξs,p for binary isotropic-
birefringent stacks (corresponding to isotropic-positive uni-
axial stacks for f = 0 and isotropic-negative uniaxial stacks
for f = 1) is shown in Fig. 2(a) for na = 1.83, nb = 1.46,
n0 = 1.33. It is clear that there is a very close agreement
between the numerical transfer matrix simulations and the
weak scattering approximation over all angles of incidence.
The localization lengths of the stack system can therefore be
well understood from the properties of the s and p reflection
coefficients of the respective isotropic-birefringent interfaces
[(9), (10), and Fig. 3(a)]. The divergence in ξs,p occurs at the
generalized anisotropic Brewster angle

tan(θB) =
(

ni,z

n0

)√(
n2

0 − n2
i,x

n2
0 − n2

i,z

)
(11)

(Ref. 25), where the interfacial reflection coefficients for
p-polarized light are zero and Ts,p = 1. In this scenario, the
necessary scattering and interference required for localization
to occur is completely inhibited. Both curves in Fig. 2(a)
are qualitatively similar to isotropic binary structures,6,7,10,11

with both nonmonotonic behavior and fully divergent Brewster
anomalies for ξp, and monotonically decreasing ξs with angle
of incidence. However, the freedom in the shifting of the
angular position of θB from Eq. (11) is far more pronounced
than isotropic-isotropic interfaces where tan(θB) = (

ni,z/n0
)

with ni,z = ni,x . It follows from (11) that in the most general
form of our model, θB can be anywhere between 0◦ and 90◦
with θB > tan−1(ni,z/n0) for the isotropic-negative uniaxial
interfaces and θB < tan−1(ni,z/n0) for the isotropic-positive
uniaxial interfaces. The set refractive index values follow the
ordinary and extraordinary indices of the biogenic guanine
crystals and cytoplasm in fish skin26 and have θB ≈ 33◦,67◦
for f = 0,1 mixing ratios respectively.
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FIG. 2. (Color online) Angular dependence of ξs,p (in units of a0)
for na = 1.83, nb = 1.46, n0 = 1.33. (a) Binary stacks (f = 0,1) and
logarithmic scale. (b) Mixed stacks (f = 0.5,0.75) and linear scale.
The weak scattering approximations are indicated by the continuous
curves and the transfer matrix simulations are indicated by the discrete
symbols. Red solid curves and cardinal crosses, p-polarization for
f = 0 in (a) and f = 0.5 in (b); blue short-dashed curves and oblique
crosses, s-polarization for f = 0 in (a) and f = 0.5 in (b); purple
long-dashed curves and asterisks, p-polarization for f = 1 in (a) and
f = 0.75 in (b); green dotted curves and solid circles, s-polarization
for f = 1 in (a) and f = 0.75 in (b). The simulations were averaged
over 103 stack configurations and for λ = a0.

The angular dependence of ξs,p for mixed stacks with
both types of birefringent layer present is shown in Fig. 2(b)
for f = 0.5, f = 0.75 and the same set of refractive index
values as Fig. 2(a). It is clear that the maximum values of
the ξp curves are of similar magnitude to the values at normal
incidence. This is in contrast to isotropic stacks with fluctuating
refractive indices where the localization length maxima are
always at least 2 orders of magnitude greater than at normal
incidence (as confirmed by both simulation6 and mathematical
analysis11). Again, due to the agreement between the weak
scattering approximation (7) and the simulations, this can be
readily explained through the properties of the p-polarization
reflection coefficients [(10), Fig. 3(a)]. It is also apparent from
Figs. 2(b) and 3(a) that it is possible to control the angular
position of the maxima of ξp by using different values of
f . It is important to emphasize that our particular set of
refractive index values are not important for this form of
behavior to occur. Qualitatively similar effects are observed
whenever the birefringence (na − nb) is of the order of the
planar interlayer refractive index difference (ni,x − n0) and
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FIG. 3. (Color online) p-polarization reflection coefficients for:
(a) na = 1.83, nb = 1.46, n0 = 1.33 (corresponding to Fig. 2);
(b) na = 1.83, nb = 1.33, n0 = 1.33 (corresponding to Fig. 4). Black
short-dashed curves: isotropic-positive uniaxial interface; green
dotted curves: isotropic-negative uniaxial interfaces; red long-dashed
curves: f = 0.5; blue solid curves: f = 0.75.

the angular separation between interfacial Brewster angles,
(11), is sufficiently great (∼25◦ or more).

For the limiting “index-matching” case of our model
where nb = n0, the p-polarization reflection coefficient for
the isotropic-negative uniaxial layers is constant with angle
of incidence. We would therefore predict that for f = 1,
ξp should be constant at all angles of incidence and equal
to 2a0(na + n0)2/(na − n0)2, from (7) and (10). However,
an unusual delocalization effect occurs for the numerically
exact transfer matrix simulations at large angles of incidence
[Fig. 4(a)]. A physical argument for the origin of this behavior
can be reached by considering the refraction angle for the
p-polarization in the birefringent layers in the structure. As
the p-polarization refractive index

np = nanb√
n2

a sin2(θ ) + n2
b cos2(θ )

(12)

→ n0 for nb = n0 and θ → 90◦, the mean-free path between
scattering events in the stack → ∞ as θ → 90◦. Consequently
the mixing between stationary states required in system that
is necessary for localization is inhibited. It is important to
note that this delocalization effect is a particular peculiarity
of our index-matching alternating isotropic-birefringent stack
system, and in general does not occur where there is a
p-polarization refractive index contrast at θ = 90◦. We do
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FIG. 4. (Color online) Angular dependence of ξs,p (in units of a0)
for na = 1.83, nb = 1.33, n0 = 1.33: (a) binary stack (f = 1), (b)
mixed stacks (f = 0.5,0.75). The weak scattering approximations are
indicated by the continuous curves and the simulations are indicated
by the discrete symbols. Purple long-dashed curves and asterisks: p-
polarization for f = 1 in (a) and f = 0.75 in (b); green dotted curves
and solid circles: s-polarization for f = 1 in (a) and f = 0.75 in (b);
red solid curves and cardinal crosses, p-polarization for f = 0.5 in
(b); blue dotted curves and oblique crosses: s-polarization for f = 0.5
in (b). The simulations were averaged over 103 stack configurations
and for λ = a0.

not show the more trivial case for f = 0 stacks, which
have divergent ξp at θ = 0 and infinite ξs at all angles of
incidence.

For mixed index-matching structures there is an excellent
agreement between the transfer matrix simulations and the
weak scattering approximation over all angles of incidence
[Fig. 4(b)]. Due to the positive uniaxial layers having np = na

for θ = 90◦ from (12), localization is no longer inhibited
as θ → 90◦. These mixed index-matching stacks have the
unusual property that ξp is finite and monotonically decreases
with angle of incidence, and is an effect that can be readily un-
derstood from the averaging of the index-matching interfacial
reflection coefficients [Fig. 3(b)].

Our mixed stack system provides a generic means to
effectively localize both s- and p-polarized light over all
angles of incidence in random layered dielectric medium.
This includes a complete suppression (in the sense that, in
a similar fashion to ξs , ξp monotonically decreases with angle)
of the Brewster anomaly effect. We should highlight here that
no critical angle screening is required for this to occur and
that, for our model of uncorrelated thickness disorder, the

engineering of the properties of the localization length can
be achieved simply through the averaging of the interfacial
reflection coefficients in the stack. It has often been remarked
that Brewster delocalization anomalies can only occur due to
the higher dimensional, vectorial nature of electromagnetic
waves (e.g., Refs. 10 and 11), and the problem therefore not
being a purely 1D system. Perhaps it is only natural that another
higher dimensional property, birefringence, can be exploited
to reverse this anomalous behavior and effectively localize all
the stationary states in the system.

To the best of our knowledge our study is the first time that
the polarization dependence of localization length has been
assessed in layered systems that include birefringence. We
anticipate that our study will stimulate analysis of birefringent
systems that have weak disorder and a wavelength dependance
to their localization length, including further examples of bio-
photonic structures. Given the general robustness of Brewster
anomaly effects in dielectric media with a range of weak
and strong disorder,6–12 we expect that the Brewster anomaly
suppressing effects could also be achieved for many different
forms of thickness disorder. In turn, this could then inform
the design process of a new class of polarization-insensitive
mirror based upon the averaging of the interfacial reflection
coefficients in the structure. These devices would provide an
alternative mechanism to produce nonpolarizing reflections,
in addition to periodic omnidirectional mirrors which require
critical angle screening.27 While practical mirrors based upon
localization properties only correspond to a single realization
of a statistical ensemble, unbroken high reflection regions
are none-the-less likely to be achievable for sufficiently thick
structures.14,15 A suitable class of materials with the necessary
high birefringence required for such a disordered isotropic-
birefringent mirror is high refractive index polymers.28

As a final comment, both disorder29,30 and
birefringence17,19,31 are remarkably common properties
of biological photonic structures. However, despite the fact
that localization is fundamental to our understanding of the
way that waves behave in random media, no studies have as
yet explicitly investigated localization of light in a biological
system. While the suppression of Brewster delocalization
anomalies explains the key physics that underlies the
mechanism of weakly polarizing reflections from silvery
fish,17 we envisage that the mathematical framework as
set out above provides the necessary foundation for future
investigations into the localization of light in biological
structures that include both weak structural disorder and
birefringent layers. Revisiting such structures within the
context of localization could provide great insight for the
theoretical study of how complex optical systems use disorder
and birefringence to enhance desirable optical properties.
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