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Kinetics of excitations on the Fermi arcs in underdoped cuprates at low temperatures
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The Fermi-liquid-like (FL) resistivity recently observed in clean Hg1201 below the pseudogap temperature
was related to carriers at the nodal points on the Fermi surface (FS) (N. Barišić et al., arXiv:1207.1504,
doi:10.1073/pnas.13019891109). We show that this has important implications for the electronic spectrum of
underdoped (UD) cuprates as a whole. Photoemission experiments (angle-resolved photoemission spectroscopy)
in other cuprates picture the spectrum as “metallic arcs” separated from each other by regions with large energy
gaps. We rigorously solve the kinetic equation in such a model. The Fermi arcs’ carriers contribute to the FL
resistivity, if scattering between the opposite nodal points admits the umklapp processes. The Hall coefficient
defines the effective number of carriers on the arcs and at weak magnetic fields it has a positive sign. All parameters
that determine the arcs’ widths are measurable experimentally. We conclude that the T 2 resistivity gives support
to the Fermi arcs’ concept and argue that the idea of a reconstructed FS in UD cuprates is not consistent with the
latter.
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High temperature superconductivity (HTSC) in cuprates
has challenged the condensed matter physics community
for more than 25 years. Besides the fact that the pairing
mechanisms are unknown, even in the paramagnetic phase
cuprates demonstrate a strange non-Fermi-liquid energy spec-
trum. Thus, for underdoped (UD) cuprates photoemission
experiments find the coherent excitations only within narrow
“arcs” at the nodal points of the “bare” Fermi surface (FS)
(for a review, see Ref. 1). While the general consensus is
that strong electron-electron correlations in the vicinity of
the Mott insulating antiferromagnetic phase are responsible
for non-Fermi-liquid behavior, a unifying theory is still
missing.

Recent developments concerning the discovery of quantum
oscillations (QOs) in the vortex state have revealed small
Fermi-liquid (FL) pockets in UD ortho II YBa2Cu3O7−x

(YBCO).2 In the literature the interpretation of these findings
varies from a scenario of the two pockets formed on the “bare”
FS reconstructed in a hypothetical spin- or density-wave phase
transition at higher temperatures2 and the idea of a single
pocket inherent in the details of the band structure.3

Most recently one more feature was reported on for
Hg1201.4 Besides Tc, the temperature of the superconducting
transition and T ∗, the pseudogap temperature, there exists a
new scale, T ∗∗, on the phase diagram of Hg1201 below which
resistivity manifests a distinct T 2 dependence that is typical
for FLs.4 An interval of the order of T ∗∗ itself separates T ∗∗
and T ∗ from each other. Above T ∗ resistivity is proportional
to temperature, as is usual in cuprates.

It was emphasized in Ref. 4 that the new feature is not
unique for Hg1201 and is seen in the resistivity data available
for a few other UD cuprates [YBCO and La2−xSrxCuO4

(LSCO)]. Consequently, the question arises whether the
emergent T 2-resistivity regime4 in Hg1201 has something
in common with small pockets first deduced in Ref. 2 from
low frequency quantum oscillations in ortho II YBCO in high
magnetic fields.

Photoemission [angle-resolved photoemission spectro-
scopy (ARPES)] and the magnetotransport studies are two

independent experimental techniques. In what follows, we
demonstrate that the T 2-FL resistivity4 can be readily ex-
plained in terms of a simple model of normal carriers on
the Fermi arcs. So far the photoemission experiments were
mostly performed on two-layer Bi2Sr2CaCu2O8 (Bi2212),
single-layer Bi2201, and LSCO. Thereby, the analysis below
gives strong support to the supposition that the existence
of the Fermi arcs is an indispensable feature of the energy
spectrum in all UD cuprates. Recall that ARPES finds
single-sided arcs at each of the four nodal points in the
Brillouin zone (BZ), as opposed to two small pockets,
at (0, ± π ),(±π,0) and (±π/2, ± π/2) points expected at
the FS reconstruction via a spin- or a charge-density-wave
(CDW) transition hypothesized first in Ref. 2 (see the recent
review5).

In addition, it is self-evident that the Cooper instability must
be related to pairing of excitations on the opposite arcs. Then,
should electrons on the “arcs,” in point of fact, form closed
pockets, the onset of superconductivity would build on the
latter the d-wave superconducting gap below Tc, contrary to
the linear in T (Ref. 3) electronic specific heat at low
temperature in zero fields. In turn, since it is outside the nodal
points, the pocket3 is too small in size to admit the umklapp
processes and cannot contribute to finite conductivity. Thereby,
carriers at the Fermi arcs and at the small pocket belong to two
different subsystems.

That the new regime4 bears a nontrivial character can
be seen already from the analysis of the Drude formula for
resistivity ρ(T ) = [m∗/ne2τ (T )]. In layered cuprates the FL
T 2 contribution could be conveniently presented as

(s/c)(e2/πh̄)�ρ(T ) = const(T/εF )2 (1)

(c is the lattice constant perpendicular to the CuO2 plane; s is
the number of conducting layers per unit cell).

In theory, the T 2 dependence signifies the FL regime as
long as T � εF in the whole temperature interval, i.e., the
Fermi energy must be large. Substitution of T ∗∗ and use of
the resistivity data, e.g., for YBCO (see Fig. 3 in Ref. 4)
gives εF ≈ (const)1/2290 K at T ∗∗ = 190 K (dimensionless
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const ∼ 1). The fact that the quadratic dependence describes
resistivity of YBCO up to T ∗∗ ≈ (2/3)εF puts the straight-
forward FL interpretation [Eq. (1)] in question. The same
estimates give close results for Hg1201, LSCO, and YBCO
(see the data shown in Ref. 4, Fig. 2). Actually, such an
analysis of the Drude expression was first performed for the
T 2 mobility of carriers in LSCO in Ref. 6, with the same
conclusions that εF is too small for the routine FL physics to
apply.

After searching through various mechanisms, from the
charge-wave order, superconducting fluctuations to the FL
regime via the hypothetic pocket, such as was deduced from
QO in UD YBCO, the authors4 associated the T 2 regime with
carriers at the nodal points on the Fermi surface. Although
qualitative arguments4 in SI (9) of Ref. 4 are somewhat vague,
we adopted this point of view. Below we suggest the model
of the Fermi arcs and solve it rigorously. The T 2-resistivity
regime at low enough temperatures is obtained after taking
explicitly into account the umklapp scattering between the op-
posite nodal points. Forestalling results of the analysis below,
the physics behind it is, loosely speaking, the total number of
carriers on the Fermi arcs that must be taken as the number n

of charge carriers in the Drude formula. After that, the Fermi
energy in Eq. (1) turns out to be large, ε∗

F = p2
F /2m∗, of the

order of the chemical potential (m∗ is the renormalized band
mass).

Before to proceeding further, we note in passing that
discussions regarding whether the ARPES technique distin-
guishes between “arcs” and “pockets” were continued until
recently (e.g., Ref. 7). We adopt the view that arcs are quite
literary “single-sided arcs” without “hidden contours” on their
backside.

In early experiments8 the arc’s length was found to be pro-
portional to temperature at all dopings so that at extrapolation
to T = 0 the arc would collapse onto a single point. Results8

were revised in Refs. 9–11, and it is now well established that
the length of the arcs in the pseudogap phase is finite down
to the lowest temperatures, although the arc shrinks with a
decrease in the dopant concentration. ARPES reveals the large
energy gaps outside the arcs’ end points in the normal phase
directly above Tc.10–12

One must stipulate again that the surface problems continue
to plague ARPES experiments in Hg1201 and especially in
YBCO.13 Yet, the general consensus is that, except for possibly
minor details, the basic physics behind these ARPES results is
of a general character. With that in mind, we suggest that
in clean UD cuprates at low temperature, but still in the
normal phase, the energy spectrum of excitations inside the
Fermi arc is the ordinary ε( �p) = vF (p − pF ). (Actually, there
is a structure in the energy spectrum seen, in particular, as
kinks for the Fermi velocity vF near the chemical potential;
vF changes only by an insignificant numerical factor.14) The
angular dependence (t⊥/2)|cos(kxa) − cos(kya)| of the large
energy gap (pseudogap) that grows from the arc’s ending points
resembles the profile of the d-wave superconducting gap. In
UD cuprates t⊥ is considerable larger than �0, the amplitude
of the superconducting d-wave gap.10–12

ARPES intensity is proportional to the single-particle
spectral function A(ω,�k) (see e.g., Ref. 1). The latter is related
in the following way to the imaginary part of the retarded

Green’s function G(�k; ω) = [ω − ε(�k) + μ − �(�k; ω)]−1:

A(ω,�k)

= − 1

π

Im�(�k; ω)

[ω − ε(�k) + μ − Re�(�k; ω)]2 + [Im�(�k; ω)]2
.

(2)

In the experimental procedure (e.g., Ref. 8) the positions of
the excitations on the ungapped parts of the “bare” FS, in
accordance with Eq. (2), are expected to coincide with maxima
of A(ω,�k) at ω = 0. Inside each arc the Green’s function can be
written in the customary form as first obtained for the electrons
interacting with phonon in metals15 and for the “Kondo lattice”
problem (in the mean field approximation):16

GR(A)( �p; ω) = Z

ω − Z[ε( �p) − μ] ± i/τ (ω)

∼= Z

ω − Zξ ± i/τ (ω)
. (3)

Here ξ = vF (p − pF ) is the perpendicular to the FS com-
ponent of the “bare” energy dispersion, and τ (ω) is the
relaxation time. In (3) the sign ( + ) or ( − ) in front of the
imaginary part stands for the retarded (R) and the advanced
(A) Green’s functions, correspondingly. The residue is Z =
[1 − ∂�(ω)/∂ω]−1; m∗ = Z−1m is the effective mass.15

The temperature dependence of the imaginary part
Im�( �p; ω) can be obtained rigorously by the analytical
continuation of the “skeleton” self-energy diagram with three
internal electronic lines.17 While this is all that one needs
to know for the spectral function A(ω,�k) in Eq. (2), it is
not enough for finding the conductivity. Indeed, contributions
into Im�( �p; ω) come about from all the scattering channels,
whereas the conductivity in metals is finite exclusively due
to the umklapp processes in which electrons transfer the mo-
mentum to the lattice. Although a large enough FS admits the
umklapp scattering, the imaginary part Im�(�k; ω) determines
contributions relevant to conductivity only by the order of
magnitude. In ordinary metals, to calculate the resistivity for
an arbitrary FS, one has to resort to the approximate variational
principle (maximum entropy production). In other words,
measuring resistivity usually gives no specific information on
the Fermi surfaces. Instead, for the model of small arcs, the
behavior of resistivity as a function of temperature and doping
concentration becomes one of the most important means for
verifying the basic supposition.

To simplify equations, we calculate the conductivity using
the kinetic equation. In hindsight the rigorous Green’s function
formalism allows to express the final results via renormalized
masses and the strength of interactions. The kinetic equation
reads

e

(
�E + 1

c
[�v × �H ]

)
�∇�pn( �p) =

(
dn

dt

)
coll

, (4)

where n( �p) is the distribution function for carriers with charge
e, and �E and �H are the electric and the magnetic fields, cor-
respondingly. The consensus is that strong electron-electron
correlations determine the fundamentals of the cuprates’
physics. Correspondingly, at least, as far as phonons with large
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momenta are “frozen out” at lower temperatures, the kinetics
will be due to strong Coulomb (e-e) interactions as well.

The textbook integral (dn/dt)coll balances “gains” and
“losses” at the (e-e) collisions:

(
dn �p
dt

)
coll

= 2
∫∫

|V ( �p1 �p3; �p �p2)|2 d2 �p1d
2 �p2

(2π )4

× δ (ε1 + ε3 − ε − ε2) {(gains) − (losses)} , (5)

where εi ≡ εi( �pi), gains = n( �p1)n( �p3)[1 − n( �p)][1 − n( �p2)],
and the expression for losses follows after the obvious
permutations.

Assuming that Fermi arcs in UD cuprates are located
not far from the four points (±π/2, ± π/2) in the BZ,
consider the system in a weak electric field �E along the
diagonal (−π, − π ) − (π,π ). Then the contribution into the
current from the pair of nodal points on the perpendicular
diagonal can be neglected. Substituting ε( �p) → ε( �p) − �p · �u
in n0( �p) = (eε( �p)/T + 1)−1 (where �u is the drift velocity) gives
the Fermi distribution in the presence of a nonzero current.
Expanding over small �u, n ( �p) ≈ n0 ( �p) + n1 ( �p) for n1 ( �p),

one has

n1 ( �p) = ( �p · �u)

(
1

4T

)
cosh−2

( εp

2T

)
. (6)

The conservation law p‖ + p
‖
2 = p

‖
1 + p

‖
3 − K‖ for the mo-

mentum components along the diagonal invokes the umklapp
vector �K = (2π/a,2π/a) (for the perpendicular components
p⊥ + p⊥

2 = p⊥
1 + p⊥

3 ). With the energy spectrum ε ( �p) near
the two opposite nodal points,

ε( �p) = ±vF (p‖ ∓ pF ) + (p⊥)2/2m, (7)

it gives

p‖ + p
‖
2 − p

‖
1 − p

‖
3 − K‖

= v−1
F [ε ( �p) + ε ( �p2) + ε ( �p1) + ε ( �p3) − �] = 0. (8)

In (8),

� ≡ {(p⊥)2 + (p⊥
2 )2 + (p⊥

1 )2 + (p⊥
3 )2}/2m∗ − 4A. (9)

Here A = vF pF [(K/4pF ) − 1] ≡ (vF pF ) κ .
It follows from (8) that the δ function δ (ε1 + ε3 − ε − ε3)

in (5) can be written in either of the two forms:

δ (ε1 + ε3 − ε − ε2) = (1/2)δ (ε1 + ε3 − �/2) or δ (ε1 + ε3 − ε − ε2) = (1/2)δ (ε + ε2 − �/2) . (10)

The right-hand side (rhs) in Eq. (5) which is linear in �u with the help of Eq. (10) acquires the form

rhs =
∫∫

|V (1; 2)|2 d2 �p1d
2 �p2

T (4π )4

( �K · �u)δ (ε + ε2 − �/2)

cosh(ε/2T )cosh[(ε − �/2)/2T ]cosh (ε1/2T ) cosh [(ε1 − �/2) /2T ]
. (11)

[In (11), |V (1; 2)|2 ≡ |V ( �p1 �p3; �p �p2)|2.] Since d2 �p1d
2 �p2 =

dp⊥
1 dp⊥

2 dp
‖
1dp

‖
2 ≡ v−2

F dp⊥
1 dp⊥

2 dε1dε2, one can directly inte-
grate over dε1 in (11):∫

dε1

cosh [ε1/2T ] cosh [(ε1 − �/2) /2T ]
= �

sinh(�/4T )
.

(12)

Combining (11) with the linear in the electric field term in
(4), rhs = evF E(dnp,o/dε), and integrating both sides over �p
(d2 �p ≡ v−1

F dp⊥dε) gives

−eE

∫
�p⊥

dp⊥ = (Ku)T
∫∫∫

|V (1; 2)|2 dp⊥dp⊥
1 dp⊥

2

42π4v3
F

×
(

�/4T

sinh(�/4T )

)2

. (13)

The integral on the left-hand side is over the “arc width” δ =
2�p⊥ = (�ϕ)pF . The exact definition would depend on the
details of the arc’s structure.14 In what follows, δ is the model
parameter.

At low temperatures the main contribution into the integral
Eq. (13) comes from the small � of Eq. (9): 〈(p⊥/pF )2〉 ≈
(K/4pF − 1). Correspondingly, for p⊥ to lie inside the arc’s
length δ, the square root κ1/2 = √

K/4pF − 1 has to be small
enough. (For the umklapp processes to be effective at low T ,
A must be positive: A = vF pF [(K/4pF ) − 1] > 0.)

Reduction of the quadratic in momenta term in � [Eq. (9)]
to the diagonal form simplifies the threefold integral in (13) to

I ≡
∫∫∫

dp⊥dp⊥
1 dp⊥

2

(π )4

(
�/4T

sin h(�/4T )

)2

= 2
√

2

π3

∫ ∞

0

√
vdv

[ {(v/4mT ) − A/T }
sin h{(v/4mT ) − A/T }

]2

. (14)

Then

I = 2
√

2

π3

∫ ∞

−4m�

√
(s + 4mA)ds

[
s/4mT

sinh(s/4mT )

]2

, (15)

and at low temperatures (T � A)

I ∼= 8p3
F

3π

√
A

εF

(
T

εF

) (
1 − π2T

40A
− · · ·

)
. (16)

With matrix elements |V (1; 2)|2 ≡ |V ( �p1 �p3; �p �p2)|2 in the
dimensionless form, |V (1; 2)|2 = |Ṽ (1; 2)|2ν−2

0 (εF ) [here
ν0(εF ) = (m/2πh̄2) is the “bare” two-dimensional (2D)
density of states for one spin direction], one has eEδ =
upF (|Ṽ (1; 2)|2/v3

F )T (π/m)2I ; that gives for the drift velocity

u = −eEδv3
F

|Ṽ (1; 2)|2TpF (π/m)2I
. (17)

Substitution of n1 ( �p) in its form in Eq. (6) into the expression
for the current, j2D = 4e

∫
vF

d2 �p
(2π)2 n1 ( �p), after trivial trans-
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formations, and using d2 �p ≡ v−1
F dp⊥dε gives the in-layer

resistance

ρ2D(T ) =
(

πh̄

e2

)
4π2|ZṼ (1; 2)|2

3(�ϕ)2

√
A

ε∗
F

(
T

ε∗
F

)2

. (18)

(Electrons on the two opposite arcs contribute equally into the
current, hence, the additional factor 2 in j2D above is beside
the spin.)

The T 2-dependent resistivity, Eq. (18), is the central result
of this Rapid Communication. Notice that renormalization
of the interaction Ṽ (1; 2) → ZṼ (1; 2) and of the mass
m∗ = Z−1m is already taken into account in Eq. (18). The
combination ε∗

F = p2
F /2m∗ is the renormalized band Fermi

energy; here and below ε∗
F is the convenient shorthand notation

for the actual expansion parameter. In Eq. (18) |ZṼ (1; 2)|
is the only parameter that characterizes the strength of
interactions between carriers. In fact, all other matrix elements
for scattering between the arcs at different nodal points do not
involve the umklapp processes and drop out from Eqs. (5) and
(11) at calculations of conductivity.

Let us do some estimates. First, taking m∗ ≈ 4m and the lat-
tice parameter a � 3.86 × 10−8 cm for YBCO, one would ob-
tain ε∗

F ≈ 3000 K and T ∗∗/ε∗
F ≈ 1/15. [For comparison, the

Fermi energy of Tl2201 estimated from data on QO (Ref. 18)
is εF ≈ 5000 K.] In Eq. (18), A/ε∗

F = 2|K/pF − 1| ≡ 2κ .
Substitution of the same data for YBCO (p = 0.09)4 gives
for the arc a reasonable estimate, �ϕ ≈ 0.37κ1/4 ≈ 21◦κ1/4

[assuming |ZṼ (1; 2)| ∼ 1]. There, only ARPES can determine
positions of the nodal points in the BZ, however, even if κ were
small, κ1/4 ∼ 1.

In the theoretical formulas the deviations from the quadratic
T dependence [Eq. (18)] occur at T ≈ (40/π2)A ∼ 8κε∗

F

[see Eq. (16)]. Such a value of T ∗∗ would seem to be too
high. In the estimates above it was implicitly assumed that
in actual fact, T ∗∗ is due to switching on other mechanisms,
say, scattering on the phonons or the pseudogap diminishing
at T ≈ 200 K.4,12 With regard to the 1/p dependence on p,
the dopants’ concentration for the FL resistivity in Hg2201,4

notice the factor (�ϕ)2 in the denominator of Eq. (18): If the
arcs have had two sides, (pF �ϕ)2 would be proportional to
the “area” of the “enclosed pocket”.

Let us turn to the Hall effect. In nonzero magnetic fields H

the Lorentz force causes the flow of excitations perpendicular
to the electric field on arcs on the second diagonal. Calculations
of the transverse drift velocity are identical to the ones for
conductivity. The Hall coefficient RH is

RH = π2

ec(δpF )
. (19)

In literature, the FS of UD cuprates is routinely called the
holelike FS centered at (π,π ). In semiconductors the concept
of holes emerges when the chemical potential is close to the
top of an electronic band. This point of view is not applicable
to UD cuprates because the underlying “bare” FS is not small.
Instead, since the system with the electronically half-filled BZ
is in the insulating Mott state, I argue that, counting off from
the insulating limit, the carriers on the Fermi arcs are holes,
e > 0 and RH > 0. [In Eq. (19), δpF /π2 = �ϕ(p2

F /π2) stands
for the effective number of carriers on the Fermi arcs.]

All the parameters in (18) and (19) are experimentally
accessible. In fact, leaving aside for a moment the matrix
element in Eq. (18), ARPES directly measures the difference
(K/4pF ) − 1 at (π/2,π/2) (e.g., for LSCO see Ref. 12).
From the experimental data on resistivity one then determines
the dependence of the arc width �ϕ in Eq. (18) on the
concentration of doped holes p. �ϕ can be independently
obtained using the expression for the Hall coefficient, Eq. (19).
After that, even the value of the matrix element can be found.

Recent experiments19–21 reveal the tendency to form
the competing charge ordered phase in UD cuprates. So
far, however, the field-induced charge-density wave is ei-
ther ordered at too low a temperature19 or charge order
manifests itself in the fluctuation regime.20,21 It was also
pointed out that the tendency to a CDW order may have
something in common with the stripe ordering in the
La2−xBaxCuO4 (214) compounds at x = 1/8.22 On the phase
diagram of Hg1201 the T 2 regime in Ref. 4 is limited by
p ≈ 0.12–0.13 (Fig. 4A in Ref. 4) and is not in conflict with the
observations.19–21

The derivation of Eq. (19) assumes the classical regime
ωcτ � 1 [ωc = (eH/m∗c)]. The singularity of the situation is
that by the order of magnitude τ is typically τ ∝ εF /T 2, i.e.,
can be very large in clean samples. For example, at T = 100 K
the magnetic field must be much smaller than 3–5 T. Most
published data for RH in Hg1201 and YBCO in such a
temperature range are only known for the considerably higher
fields (see Ref. 23 and references therein). The theoretical
interpretation of the Hall effect in strong fields and the
energy spectrum consisting of the Fermi arcs for charged
carriers is absent. [In the context of the model one can
suggest another interpretation to the provision ωcτ � 1.
The transverse momentum component obeys the equation
∂p⊥/∂t = (epF /cm∗)H . Then the deviation �p⊥ � ωcpF τ

in the transverse direction for the time period τ should not
exceed the arc’s length δ.]

Finally, we make a few comments about what is known
concerning the paramagnetic phase in UD cuprates below the
pseudogap temperature T ∗: Tc < T < T ∗. In the introductory
part it was argued that experiments3 disprove the case of
the Fermi surface reconstructed via a spin- or charge-wave
transition in UD ortho II YBCO. For Hg2201 and YBCO
there are experimental evidences in favor of the transition
into the so-called “loop current phase “(see Ref. 24 and the
experimental reference therein). By its symmetry,25 such an
order parameter would only break the tetragonal symmetry
in the positions of pairs of the nodal points in the BZ, and
one would expect no other changes in the above results
except an anisotropy in the T 2-resistivity contribution. [An
uncertainty regarding the structure of the electronic spectrum
in the pseudogap phase, however, was brought about recently
by observation of the two phase transitions in the (nearly)
optimal doped single-layer Bi2201 at T = Tc and T = T ∗.26

To conclude, for temperatures above the superconducting
dome the analysis of ARPES data9–12 makes it possible to
develop the model in which in the normal state carriers in
the Fermi arcs occupy narrow valleys in the momentum space
restricted on each side by regions with the large energy gap.
Inside each valley the excitations’ spectrum is close to the
ordinary energy spectrum of free holes. Strong short-range
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electron-electron interactions are assumed to prevail for clean
UD cuprates in the pseudogap phase in relaxation between
carriers on the Fermi arcs. Scattering of carriers between four
arcs at the nodal points in the BZ was treated in the framework
of the semiclassical kinetic equation. Renormalization of the
FL parameters owing to the electron-electron correlations is
taken into account in the final results. The explicit treatment of
the umklapp processes gave the finite value for conductivity.
At low enough temperatures the calculated resistivity of the
normal phase is proportional to T 2, in excellent agreement
with the experimental data.4 It is shown that the Hall effect in
clean UD cuprates is extremely sensitive to the value of the

magnetic fields at these temperatures. Presumably, even the
sign of the Hall coefficient may depend on the magnetic field
strength. Experimental data for the Hall coefficient for low
magnetic fields are missing.
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to O. Vafek for many stimulating discussions of the problem
and to I. Kupčić and S. Barišić for sharing their unpublished
theoretical results on the magnetotransport in HTSC. The work
was supported by the NHMFL through NSF Grant No. DMR-
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