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Unconventional superconductivity on the triangular lattice Hubbard model
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Using large-scale dynamical cluster quantum Monte Carlo simulations, we explore the unconventional
superconductivity in the hole-doped Hubbard model on the triangular lattice. Due to the interplay of electronic
correlations, geometric frustration, and Fermi surface topology, we find a doubly degenerate singlet pairing
state at an interaction strength close to the bare bandwidth. Such an unconventional superconducting state is
mediated by antiferromagnetic spin fluctuations along the �-K direction, where the Fermi surface is nested. An
exact decomposition of the irreducible particle-particle vertex further confirms the dominant component of the
effective pairing interaction comes from the spin channel. Our findings suggest the existence of chiral d + id

superconductivity in a hole-doped Hubbard triangular lattice in a strongly correlated regime, and provide insight
into the superconducting phases of the water-intercalated sodium cobaltates NaxCoO2 · yH2O, as well as the
organic compounds κ-(ET)2X and Pd(dmit)2.
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Introduction. Since the discovery of Cu-based high tem-
perature superconductors, the search for new, unconventional
superconductors is among the central topics in condensed-
matter physics.1,2 The water-intercalated sodium cobaltates
NaxCoO2 · yH2O (Refs. 3–5) and two families of organic
charge-transfer salts κ-(ET)2X and Pd(dmit)2 (Refs. 6–11)
are of particular interest. The underlying structure of these
layered materials is the geometrically frustrated triangular
lattice. The competition between electronic correlations and
geometric frustration yields novel phenomena.12–14 For ex-
ample, the most frustrated members of the κ-(ET)2X and
Pd(dmit)2 families are believed to host quantum spin liquid
states,13–15 and the recently discovered 5 K superconducting
phase in NaxCoO2 · yH2O might be a chiral state which
breaks parity and time reversal, giving rise to interesting
edge modes that can carry quantized particle and spin
currents.14,16–21

The layered triangular lattice compound NaxCoO2 · yH2O
has a superconducting dome for x ∼ 0.3, y ∼ 1.3 at Tc ∼
5 K.3–5 Due to intercalation, its electronic structure is ef-
fectively two dimensional. A very rich phase diagram has
been mapped out for a range of Na concentrations,5 however,
the nature of the superconducting phase has remained poorly
understood. Recent measurements on high quality single
crystals22 show that the spin contributions to the Knight shift
decreases below Tc along the a and c axes, supporting the
notion that the Cooper pairs are formed in a spin-singlet
state. The temperature and doping dependence of the Knight
shift and the relaxation rate above Tc provide evidence of
antiferromagnetic correlations.22,23

There are a number of theoretical proposals for the uncon-
ventional superconductivity in the cobaltates. The underlying
triangular lattice allows a doubly degenerate E2 representation
of the superconducting order parameter with dx2−y2 and
dxy degenerate states,1,14,20,24 raising the exciting possibility
of a time-reversal symmetry breaking chiral dx2−y2 ± idxy

superconductor.16,17,25 Earlier studies of the cobaltates draw
analogy to the cuprates and employed either phenomenological

resonating valence bond (RVB) mean-field theory,25,26 or slave
boson mean-field approach18,27 to provide signatures of a
spin-singlet d + id pairing state. Also there are variational
mean-field theory16 and variational Monte Carlo studies.12,17

Recent studies of the sodium cobaltates using a Gutzwiller
projection supplemented by symmetry arguments,19 RVB
mean-field theory,14 as well as the multiorbital functional
renormalization group,21 reveal a rich phase diagram with
an anisotropic d + id phase and a possible topological quan-
tum phase transition through a nodal superconducting state.
However, prior approaches suffer either from their mean-field
nature, or their incapability of capturing correlation effects in
the strong-coupling regime. Hence, there is an urgent need
for unbiased studies, where the interplay of strong electronic
correlations and geometric frustration can be treated in a
nonperturbed fashion.

The simplest model that captures the essential physics
of the cobaltates is the single-band Hubbard model on a
triangular lattice. In this Rapid Communication, we explore the
low-energy properties of this model by large-scale dynamical
cluster quantum Monte Carlo simulations.28 We focus on
the different superconducting instabilities in the hole-doped
side of the phase diagram. This is a study of the hole-doped
Hubbard model on the triangular lattice exploring the pairing
symmetries on different cluster sizes. Clusters up to size
Nc = 12 allow a greater momentum resolution and higher
quality data on the spectral function, self-energy, and different
superconducting susceptibilities. Therefore, we obtain an un-
ambiguous signature of an unconventional doubly degenerate
superconducting state in the strong- to intermediate-coupling
region. By explicitly comparing the pairing susceptibility
in the s-, dx2−y2 -, and dxy-wave singlet channels and the
f -wave triplet channel, we find that the dx2−y2 and dxy

components are most divergent and extrapolate to the same
Tc within our numerical accuracy. We identify that the
pairing is mediated by strong spin fluctuations along the
antiferromagnetically (AF) ordered wave vector on the � to
K direction. The Fermi surface (FS) is nested along this AF
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wave vector, but the system only orders at half filling in the
Heisenberg limit. An exact decomposition of the irreducible
particle-particle vertex furthermore reveals the dominant part
in the effective pairing interaction comes from the spin
channel.

Formalism. The Hamiltonian of the system is H =∑
kσ (ε0

k − μ)c†kσ ckσ + U
∑

i ni↑ni↓, where c
†
kσ (ckσ ) is the

creation (annihilation) operator for electrons with momentum
k and spin σ , μ is the chemical potential, niσ = c

†
iσ ciσ

is the number operator, and the bare dispersion is given
by ε0

k = −2t cos(kx) − 4t cos(
√

3ky/2) cos(kx/2) with t being
the hopping amplitude between nearest neighbor sites, and U

the on-site Coulomb repulsion.
We investigate one- and two-particle properties of the

model using the dynamical cluster approximation (DCA)29

with weak-coupling continuous time quantum Monte Carlo
(CTQMC)30 as the cluster solver. The DCA maps the original
lattice onto a periodic cluster of size Nc embedded in a
self-consistently determined host. Spatial correlations inside
a cluster are treated explicitly while those at longer length
scales are described at the mean-field level. In this work we
choose clusters of sizes Nc = 4, 6, 8, and 12. We study inverse
temperatures up to βt = 16.5. We obtain the cluster self-
energy �(K,ω) via the maximum entropy method31 (MEM)
applied directly to the Matsubara-frequency self-energies
calculated by the DCA-CTQMC.32,33 We then interpolate the
�(K,ω) to obtain the lattice self-energy �(k,ω) and lattice
spectral function A(k,ω).

To obtain various susceptibilities χ (T ), we extract the
irreducible vertex function � via the Bethe-Salpeter equation
from the two-particle Green’s function measured on the
cluster, then employing χ (T ) = χ0

1−�χ0
, where χ0 is the

bare susceptibility constructed from the dressed one-particle
lattice Green’s function. The superconducting pairing sus-
ceptibilities are obtained from the particle-particle channel,
and the charge and spin susceptibilities are obtained from
the particle-hole channel. We further separate the pairing
susceptibilities explicitly into spin-singlet and triplet channels,
where in the singlet channel we project the χ (T )pairing onto s,
dx2−y2 , and dxy waves, and in the triplet channel we project
it onto the f -wave channel, with the corresponding form
factors.1,21

To explore the pairing mechanism we decompose the
particle-particle pairing vertex � into the fully irreducible
vertex 
, the charge (S = 0) particle-hole contribution �c,
and the spin (S = 1) particle-hole contribution �s through
the parquet equation � = 
 + �c + �s .34 We furthermore
project the previous expression using different form factors
such as dx2−y2 and dxy ,

Vdx2−y2 /dxy
= V 


dx2−y2 /dxy
+ V C

dx2−y2 /dxy
+ V S

dx2−y2 /dxy
, (1)

where each term is the projected component of the corre-
sponding term in the parquet equation.35 In this way, we are
able to distinguish which component contributes the most
to the effective pairing interaction. One important point to
note is that as we have controlled information about the
two-particle vertex function in momentum and frequency,
we do not need assume any kind of pairing mechanism a
priori, but can numerically prove which channel is dominant

FIG. 1. (Color online) Cluster spin susceptibility for Nc = 12,
interaction strength U = 8.5t , temperature T = 0.1t , and different
fillings, n = 0.667, 0.8, and 1.

in the pairing interaction. This is a qualitatively improvement
than many weak-coupling approaches where one channel
(usually spin) is always assumed to dominate the pairing
interaction.36–39

Results. Figure 1 displays the cluster spin susceptibility
at different fillings, n = 0.667, 0.8, and 1, and coupling
U = 8.5t . The data are obtained from DCA-CTQMC sim-
ulations with cluster size Nc = 12, and we interpolate the
cluster susceptibility into the entire Brillouin zone (BZ). At
very high hole doping, n = 0.667, the susceptibility is mostly
flat. As the filling increases, n = 0.8, the spin susceptibility
develops six bumps at the K points. When n = 1, the bumps
become more pronounced. The vector connecting � to K

is the antiferromagnetically ordered wave vector (QAF) in
the Heisenberg limit of the half-filled model. The cluster
spin susceptibility demonstrates that the antiferromagnetic
fluctuations become stronger as the filling moves towards
n = 1. The pairing of electrons may be mediated by these
fluctuations.36–41

Figure 2 shows the Fermi surface (FS) at the same fillings
used in the previous figure. Figure 2(a) corresponds to the
noninteracting limit. At n = 0.667, 0.8, and 1 the FS is close to
a perfect circle. The van Hove singularity in the noninteracting
band structure is present at n = 1.5 with saddle points at M .
One-loop renormalization group (RG) calculations42 show the
FS in the hole-doped side is stable against weak Coulomb
interactions. However, under strong interaction, the FS begins
to deform. Figure 2(b) displays the FS at n = 0.667, U = 8.5t ,
which is slightly deformed towards a hexagon. The red arrow
corresponds to QAF, while the pink arrow is this vector shifting
its center to � and rotating it by 60◦. For n = 0.667 the pink
arrow is longer than the diameter of the FS so there is no
nesting effect, and we do not observe superconductivity at
this filling. In Fig. 2(c), n = 0.8, the FS is more deformed,
the QAF now connects significant sections of the FS, and,
as illustrated in Fig. 1, the AF fluctuations are stronger. The
nesting effect and the strong AF fluctuations together give rise
to diverging pairing susceptibilities at filling n = 0.8 and 0.9,
as discussed below. At half filling, n = 1, the FS is further
deformed towards a hexagon, but the spectral weight become
less coherent. Interestingly, the nesting vector now is shorter
than the diameter of the FS. Hence, even though the AF
fluctuations are the strongest here, electrons on the FS are
hard to pair by QAF; the system is rather subject to a Mott
transition, whose features are beyond the scope of this Rapid
Communication.12–14
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FIG. 2. (Color online) (a) First Brillouin zone, the symmetric
path �-M-K-�, and the noninteracting Fermi surface at different
band fillings. (b), (c), (d) Spectral function A(k,ω = 0) on the Fermi
surface for Nc = 12 DCA-CTQMC simulations with U = 8.5t , T =
0.1t , and n = 0.667 in (b), n = 0.8 in (c), and n = 1 in (d). The red
arrow is the AF ordered wave vector (QAF) and the pink arrow is after
shifting its center to � and rotating it by 60◦.

Figure 3 displays the inverse pairing susceptibility as
a function of temperature, 1/χpairing(T ), at filling n = 0.9,
U = 8.5t , and Nc = 6. Here we explicitly project the lat-
tice pairing susceptibility in the s-, dx2−y2 -, and dxy-wave
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FIG. 3. (Color online) Inverse pairing susceptibility 1/χpairing for
Nc = 6, U = 8.5t , and n = 0.9. The singlet s wave and triplet f wave
do not diverge, whereas the singlet pairing channels with dx2−y2 - and
dxy-wave symmetry show a divergency at the same Tc. Note that we
have multiplied by a factor of 7 the s-wave pairing susceptibility
in order to use the same vertical scale. Inset: The superconducting
transition temperature Tc as a function of doping. FL and SC label the
Fermi liquid and superconducting regions, respectively. The nature
of the system is still unclear at half filling, hence a question mark in
the inset.

singlet channels and the f -wave triplet channel by using
the appropriate form factors. Figure 3 shows that the two
singlet d-wave components are the most divergent ones.
Within our numerical resolution their 1/χpairing extrapolates
to zero at the same superconducting transition temperature
Tc. This implies that the superconducting order parameter is
doubly degenerate with components dx2−y2 and dxy . Based
on symmetry arguments any linear combination of both
d-wave components is possible below Tc. However, both
Ginzburg-Landau and BCS-type mean-field approaches favor
superconducting phases that break the time-reversal symmetry
for singlet multicomponent superconductors,43,44 such as the
d + id singlet pairing state predicted in graphene20,24 and the
cobaltates.19,21 Therefore, our findings support the possibility
of a chiral d + id superconducting phase in the hole-doped
triangular Hubbard model. The inset of Fig. 3 shows the
phase diagram for different doping concentrations based on
Nc = 6 DCA-CTQMC simulations. Tc becomes finite for
doping larger than n = 0.7 due to the onset of FS nesting
and strong AF correlations, and increases as n approaches 1,
reflecting that the AF fluctuations become stronger towards
half filling. However, the nature of the ground state at half
filling is still unclear due to a worsened minus-sign problem
in our simulations, hence we put a question mark in the inset,
and are investigating this case at the moment.

To shine light on the dominant contribution to the pairing
interaction, we use the parquet equations to decompose the
irreducible particle-particle vertex function, and project each
term onto its dx2−y2 and dxy components. The results are
presented in Fig. 4 for a DCA-CTQMC simulation with
cluster size Nc = 12, U = 8.5t , and filling n = 0.9. The left
and right panels correspond to the dxy and dx2−y2 projection
of the parquet equations, respectively. In both cases, the
dominant contribution to the effective pairing interactions Vdxy
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FIG. 4. (Color online) Left: dxy projected contributions to the
pairing vertex Vdxy

, from the fully irreducible vertex V 

dxy

, charge

V C
dxy

, and spin V S
dxy

cross channels vs T at n = 0.9, U = 8.5t . Right:
The dx2−y2 -wave projection of the same quantities. In both cases, the
contribution to the pairing interaction from spin channel is clearly
dominant.
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and Vdx2−y2 is from the magnetic, spin S = 1, particle-hole

channel, V S
dxy

and V S
dx2−y2

. In fact, we also find that the pairing

interaction Vdxy/dx2−y2 (k − k′) is peaked at momentum transfer
|k − k′| = |QAF|. The vertex decomposition confirms that
this peak comes from the spin channel V S

dxy/dx2−y2
(QAF) (not

shown). Note that both Nc = 6 and 12 size clusters have
the cluster points connected by QAF. From the BCS gap
equation43

�k = − 1

N

∑
k′

V SC(k − k′)
�k′

2E(k′)
tanh

(
E(k′)

2T

)
, (2)

where E(k) =
√

ε2
k + �2

k , we infer that if the superconducting
pairing interaction V SC(k − k′) is peaked at QAF, the order
parameters �k which correspond to dx2−y2 , dxy , and f waves
are equally favored in the Nc = 6 and 12 clusters. Our results
suggest that dxy and dx2−y2 singlet pairings are favored over
the f -wave triplet pairing, probably because the f wave has a
more complex nodal structure than the two d waves.1

Conclusion. Using large-scale dynamical cluster quantum
Monte Carlo simulations, we find a doubly degenerate singlet
pairing state at interaction strength close to the bare bandwidth
and filling larger than n = 0.7 in the hole-doped Hubbard
model on the triangular lattice. Our findings support the pres-
ence of a chiral d + id singlet superconducting phase in this
model. The pairing mechanism comes from antiferromagnetic
spin fluctuations at the magnetic order wave vector nesting the
deformed FS. A decomposition of the vertex further confirms
that the spin channel contributes the most to the effective
pairing interaction.
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