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We theoretically consider the carrier density dependence of low-temperature electrical conductivity in high-
quality and low-disorder two-dimensional (2D) “metallic” electronic systems such as 2D GaAs electron or hole
quantum wells or doped/gated graphene. Taking into account resistive scattering by Coulomb disorder arising
from quenched random charged impurities in the environment, we show that the 2D conductivity σ (n) varies
as σ ∼ nβ(n) as a function of the 2D carrier density n where the exponent β(n) is a smooth, but nonmonotonic,
function of density n with possible nontrivial extrema. In particular, the density scaling exponent β(n) depends
qualitatively on whether the Coulomb disorder arises primarily from remote or background charged impurities or
short-range disorder and can, in principle, be used to characterize the nature of the dominant background disorder.
A specific important prediction of the theory is that for resistive scattering by remote charged impurities, the
exponent β can reach a value as large as 2.7 for kF d ∼ 1, where kF ∼ √

n is the 2D Fermi wave vector and d

is the separation of the remote impurities from the 2D layer. Such an exponent β (>5/2) is surprising because
unscreened Coulomb scattering by remote impurities gives a limiting theoretical scaling exponent of β = 5/2,
and naively one would expect β(n) � 5/2 for all densities since unscreened Coulomb scattering should nominally
be the situation bounding the resistive scattering from above. We find numerically and show theoretically that the
maximum value of α (β), the mobility (conductivity) exponent, for 2D semiconductor quantum wells is around
1.7 (2.7) for all values of d (and for both electrons and holes) with the maximum α occurring around kF d ∼ 1.
We discuss experimental scenarios for the verification of our theory.
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I. INTRODUCTION

It is well known that carrier scattering by background
quenched disorder arising from random impurities and defects
limits the T = 0 (i.e., low-temperature) residual conductivity
of a metal or doped semiconductor. This “residual resistivity,”
i.e., the extrapolated T = 0 value of the electrical resistivity
obtained from the measured low-temperature transport data,
provides information about the extrinsic disorder in the
material limiting transport properties. In three-dimensional
(3D) metals, this residual resistivity is not of much intrinsic
fundamental interest except for the fact that very pure defect-
free single crystals, where the background disorder is presum-
ably very low, could have extremely low residual resistivity
leading to very long electron mean free paths. In particular, the
residual resistivity of different samples (with different levels
of sample purity, i.e., different impurity or defect content) of
the same metal could differ by orders of magnitude, and a
metallic resistivity uniquely defining a particular metal (e.g.,
Cu, Al, or Ag) is meaningful only at higher temperatures
(�100 K), where phonon scattering dominates the electrical
resistivity over impurity/defect/disorder scattering. At low
temperatures, each metallic sample would have a unique
resistivity reflecting its specific impurity content signature,
and as such characterizing a metal by a unique resistivity is
useless at low temperatures (i.e., each sample of the same metal
would have different resistivity at T = 0). In fact, the low-
temperature resistivity of a particular sample typically depends
on the preparation history of the sample, and annealing to
room temperatures (where all samples of a particular metal

do have the same resistivity) and then cooling down to low
temperatures could substantially modify the sample resistivity
as the impurity/disorder configuration could change due to
annealing. Theoretical statements1 about residual resistivity
(or, equivalently, low-temperature resistivity) of 3D metals
thus focus on first-principles calculations of the quantitative
aspects of the local disorder potential arising from various
defects or disorder in the metal (where the specific types
of defect or impurity have to be specifically assumed) and
then estimating the resistivity arising from various postulated
disorders in terms of resistivity due to some specified impurity
or defect content on an atomic percentage basis. Typical values
of calculated residual resistivity for most simple metals fall in
the ∼0.1–1 μ� cm range per atomic percentage of impurities,
and thus a metal with 99.999% (e.g., Cu) purity could have
an extremely low residual resistivity of 10−10 � cm, leading
to elastic mean free paths of ∼1 cm, although the typical
phonon-limited room-temperature mean free paths in most
metals are only 1–10 Å, with the room-temperature phonon-
limited resistivity of most metals being around ∼μ� cm.

Thus, theoretical studies1,2 of disorder-limited residual
resistivity of metals focus entirely on the quantitative modeling
of various types of defect scattering in the metal using detailed
material-specific band structure and Boltzmann transport
theories. No systematic dependence of the residual resistivity
of metals on various metallicity parameters (e.g., the Wigner-
Seitz radius rs or lattice constant or Fermi energy) can, in
general, be discussed qualitatively, and there is no metallic
density scaling of conductivity that one can speak of since the
carrier density cannot be tuned by an external gate voltage
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in metals (as it can be in 2D semiconductor systems or in
graphene). In principle, there is only a modest variation in rs

(∼2–6) among different 3D metals (since rs ∼ n−1/3, where
n is the effective metallic free electron density), but the band
structure variation in going from a metal to another would
typically swamp any systematic rs dependence of the residual
resistivity. Thus, the only systematic trend of the residual
resistivity in metals which is discussed in the literature1,2 is
the dependence of the T = 0 impurity-limited resistivity of
a particular metal on the atomic type (e.g., atomic number)
of the various impurities or on the type of defects causing
the resistive scattering. It is basically a subject of quantitative
details based on serious numerical calculations.

In the current work we are interested in discussing
qualitatively the impurity-limited “metallic” residual (i.e.,
T = 0) resistivity as a function of the electron density of
the metal. In particular, we want to understand the density
dependence of the T = 0 metallic resistivity assuming that
the metallic density can be tuned continuously keeping all
other parameters (e.g., disorder, band structure) fixed. Of
course, such a situation is practically impossible in 3D
metals since the electron density is fixed in each metal and
cannot be tuned at all. However, as is well known, such a
tunable carrier density situation is routine in 2D “metallic”
systems such as Si metal-oxide-semiconductor field-effect
transistors (MOSFETs), gated semiconductor heterostructures
and quantum wells, and gated graphene. In principle, a variable
carrier density can be achieved in 3D doped semiconductor
systems by changing the doping level (but keeping the same
dopant element) in different samples, but this is not ideal
for our purpose of a qualitative understanding of the density
scaling of the metallic T = 0 saturated resistivity since there is
always the possibility of unknown sample-to-sample variation
beyond just the carrier density variation since doping level
cannot be tuned continuously in a single sample, as can be
done in 2D systems. We do, however, briefly consider the
density scaling properties of 3D impurity-limited saturated
resistivity for the sake of completeness although most of the
current work focuses on 2D semiconductor structures (and
graphene) where the carrier density can be easily tuned in the
same sample by applying an external gate voltage, and thus
the density-dependent conductivity is a meaningful concept
in 2D “effective metallic” systems existing in semiconductor
structures and graphene.

Obviously, the T = 0 conductivity (≡ρ−1, where ρ is
resistivity) would manifest different density dependencies for
different types of background disorder, i.e., different types of
impurity-electron interaction. The main resistive disorder scat-
tering in relatively pure 3D metals is due to defects, vacancies,
and impurities which scatter primarily through the short-range
(essentially) δ-function-type scattering potential (although
there are extended defects which could produce anisotropic
longer range disorder potential). Disorder scattering by δ-
function-type point scatterers gives rise to rather uninteresting
density scaling of electrical conductivity, again making 3D
metals unsuitable for studying the density dependence of
conductivity. Our main interest in this work is to obtain the
density scaling of 2D T = 0 “metallic” conductivity arising
from Coulomb disorder induced by random quenched charged
impurity centers in the environment. Quenched Coulomb

disorder is the dominant extrinsic resistive scattering mecha-
nism in all semiconductor systems (2D or 3D) at low tempera-
tures since doping by impurities is essential in inducing carriers
in a semiconductor (whereas metals, by definition, have free
carriers at the Fermi level even at T = 0), leading to the
inevitable existence of background Coulomb disorder. Thus,
a key distinction between low-temperature transport in metals
and semiconductors is that short-range disorder (arising from
very strong metallic screening) dominates metallic transport,
whereas long-range Coulombic disorder (arising from random
localized charged impurities) dominates transport in (both
2D and 3D) doped semiconductors. The density-dependent
conductivity in doped semiconductor structures (or graphene)
arises from the carrier screening of background Coulombic
disorder which depends sensitively on the dimensionless ratio
qTF/2kF where qTF and kF are respectively the (density-
dependent) screening wave vector and Fermi wave vector of
the system. The variation in the carrier screening properties as
a function of the carrier density eventually leads to the density
dependence of the resistivity.

Of course, in doped semiconductors, one must worry
about the additional complications of disorder-induced
Anderson localization and/or low-temperature carrier freeze-
out and/or possible percolation transition associated with
charged impurity-induced charge puddle formation. In the
current work, we ignore all of these complications uncritically,
focusing primarily on extremely high-quality modulation-
doped 2D GaAs quantum well structures (and high-quality
suspended graphene) where these complicating circumstances
are absent down to very low carrier densities and very low
temperatures. Our theoretical results presented in this paper,
based on Drude-Boltzmann semiclassical transport theory,
should apply to experimental systems above carrier densities
(and temperatures) where localization (and related effects)
become operational. The neglect of carrier localization and
freeze-out is not a particularly significant issue for our 2D
theory and results because high-quality 2D semiconductor
systems (and graphene) are not susceptible to these problems
except perhaps at extremely low temperatures and carrier
densities of little practical or experimental interest. On the
other hand, our low-temperature and low-density transport
results for 3D doped semiconductors are given here purely for
the purpose of completeness and comparison with 2D results
since 3D doped semiconductors typically become insulating
at low carrier density (as well as low temperature) because of
localization and carrier freeze-out. Our focus and most of our
presented results, as the title of our article clearly indicates,
are on low-temperature density-dependent metallic transport
properties of very high-quality 2D systems where the concept
of density scaling of conductivity is both theoretically and
experimentally meaningful.

One may wonder about the fact that the scaling theory of
localization predicts that all 2D systems are strictly speaking
Anderson insulators, and have, in principle, zero conductivity
at T = 0 for infinite samples at all carrier densities. (This is
theoretically true even for graphene when disorder-induced
intervalley carrier scattering is taken into account.) For our
purpose in the current work, where we are specifically
interested in very high-mobility 2D structures with very low
background disorder, the scaling localization is a nonissue
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because (1) the samples are finite in size and the temperature,
although low, is still finite, and (2) more importantly, the
elastic mean free path is extremely long, making the effective
2D localization length much larger than the system size (or
the phase-breaking length, whichever is shorter). Thus, we
are specifically considering the density dependence of the
semiclassical part of the 2D resistivity in the situation where
the semiclassical resistivity is much larger than the quantum (or
weak localization) contribution to the resistivity. This limit is
generic in high-mobility 2D GaAs semiconductor systems and
in graphene, and therefore our work is of wide validity. Thus,
we are, strictly speaking, considering the density dependence
of the zeroth-order semiclassical conductivity in the situation
where the quantum contribution to the resistivity is negligible.

We emphasize that the density dependence (or scaling)
of electrical transport properties is rarely discussed in the
theoretical literature mainly because (as discussed above)
such a density dependence of electrical conductivity is neither
relevant nor interesting in 3D metals. Indeed, it is universally
believed that the only aspect of electrical conductivity where
studying the carrier density dependence is a meaningful
endeavor is in the study of density-tuned Anderson localization
as a (T = 0) quantum phase transition, exactly the physical
phenomenon we are excluding in the current work where we
focus entirely on the Drude-Boltzmann part of the conductivity
in high-quality samples assuming quantum localization effects
to be negligible. Thus, the density scaling of our theory is
not connected with quantum criticality at all, but with the
behavior of the density dependence of the background disorder
arising from nontrivial screening properties. In contrast to
the density dependence, which is rarely discussed in the
literature except in the context of metal-insulator transition,
the temperature dependence of transport properties has been
extensively discussed for electronic materials (including many
experimental and theoretical papers in 2D systems3–7) because
the temperature-dependent electrical resistivity generically
contains qualitative information about the underlying resistive
scattering mechanism. For example, a linear-in-T higher tem-
perature metallic resistivity is the hallmark of acoustic phonon
scattering in both metals and semiconductors (and in both
2D or 3D systems), whereas acoustic phonons typically lead
to strongly suppressed high power laws (∼T η with η ≈ 4–7
depending on the details) in the (2D or 3D) metallic resistivity
below a system-dependent Bloch-Grüneisen temperature TBG.
Our current work focuses entirely on temperatures well
below the Bloch-Grüneisen temperature (T � TBG) so that
phonons are completely ineffective in limiting the electrical
conductivity. Optical phonons, which are often relevant in
semiconductor transport at higher temperatures and indeed
limit the room-temperature resistivity of 2D GaAs-based
semiconductor structures8 and are exponentially suppressed
as e−h̄ωLO/kBT at low temperatures (where h̄ωLO ∼ 450 K
in GaAs), are completely irrelevant for our low-temperature
transport considerations.

It is well known that high-quality low-density 2D semicon-
ductor systems (as well as graphene) often manifest a strong
temperature dependence in its low-temperature resistivity,3–7

which arises from the strong temperature dependence of the
screened Coulomb disorder9 at low carrier densities. Again,
our theoretical work at T = 0 is completely free from any

temperature-induced complications in the resistivity since our
interest is in understanding the density dependence of the
T = 0 resistivity/conductivity, which can be obtained from the
low-temperature experimental data by extrapolation to T = 0
or by sitting always at a constant very low temperature (e.g.,
50 mK) in obtaining the density dependence of the transport
properties. In any case, the question in which we are interested
is perfectly well defined as a matter of principle: How does the
T = 0 Drude-Boltzmann semiclassical conductivity of a 2D
(or 3D) “metallic” system vary as a function of its carrier
density in the presence of background screened Coulomb
disorder being the main resistive scattering mechanism?

In the rest of this article, we provide a detailed theoretical
answer to the question posed in the preceding sentence.

II. BACKGROUND

The T = 0 conductivity σ (n) of a 2D metallic system is
typically written as9,10

σ (n) = e2v2
F

2
D(EF )τ (EF ), (1)

in the Boltzmann theory, where EF , vF are, respectively, the
Fermi energy and the Fermi velocity, D(EF ) is the carrier
density of states at the Fermi surface, and τ is the so-called
relaxation time (or the scattering time) for the relevant resistive
scattering mechanism. [The factor 2 in the denominator of
Eq. (1) is replaced with 3 for 3D systems.] It is assumed that
vF , EF , and D are known as functions of the carrier density n

from the relevant band structure information (and we consider
only the parabolic and the linear band approximations, with the
linear approximation used for obtaining our graphene transport
results). The whole theory then boils down to a calculation
of the transport relaxation time τ at the Fermi surface using
the appropriate microscopic scattering mechanism (which we
describe in detail in Sec. III of this paper).

For parabolic bands with E(k) = h̄2k2/2m we can write
EF = mv2

F /2, where m is the carrier effective mass, and
Eq. (1) simply reduces to the celebrated Drude-Boltzmann
transport formula,

σ (n) = ne2τ

m
, (2)

where τ ≡ τ (EF ) and n is the relevant (2D or 3D) carrier
density. For graphene, Eq. (2) requires a slight modification,9

which we discuss later when we come to describing our
graphene results. From this point on, unless otherwise stated,
our explicit equations and formula are given for parabolic
band 2D systems; we consider the very special linear band
case of graphene separately at the appropriate juncture.
Most of our results focus on 2D semiconductor systems,
specifically 2D GaAs electron or hole quantum wells where
the parabolic approximation applies well. We point out
the corresponding 3D parabolic band analytic results as
appropriate, concentrating on presenting the equations and
formulas mainly for 2D quantum well systems since most
of our presented results are for 2D semiconductor systems,
where the corresponding experiments are feasible.

We note that one can, instead of discussing the conductivity
σ , equivalently discuss the relaxation time τ or the resistivity
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ρ = σ−1 or the mobility μ, which is defined as

μ = eτ

m
= σ

ne
. (3)

Obtaining the density-dependent conductivity σ (n) now
becomes equivalent to obtaining the density dependence of
τ or μ since σ ∝ nμ (or nτ ). We write

τ ∝ nα, i.e., μ ∝ nα, (4)

and therefore

σ ∼ nβ=α+1. (5)

In general, we can define the conductivity exponent β, or
equivalently the mobility exponent α through the relation

α(n) = d ln μ

d ln n
, (6)

and

β(n) = α(n) + 1 = d ln σ

d ln n
. (7)

We note that, in general, the mobility exponent α ≡ αμ

and the relaxation rate exponent ατ may be unequal (e.g.,
graphene) except that for parabolic bands we have αμ =
ατ = α. However, the relation β = αμ + 1 = α + 1 always
applies. The main goal of the current work is to calculate the
exponent α(n) for various specified disorder mechanisms and
discuss/contrast how the density scaling exponent depends
on the type of disorder controlling the resistive scattering
mechanism.

We obtain α(n) analytically in various limiting situations
in our theoretical study. However, the main technique would
be to obtain μ(n) or σ (n) numerically from the Boltzmann
theory and then calculate α(n) or β(n). Experimentally, the
way to estimate the exponent α(n) is to plot the measured
low-temperature μ(n) against n and then to estimate α(n) by
carrying out the logarithmic differentiation. In general, α(n)
will depend strongly on the background disorder and will vary
smoothly as a function of carrier density as different scattering
mechanisms are operational in different density regimes and
as the background Coulomb disorder is screened differently
at different carrier densities through the variation in qTF/2kF .
An important surprising finding of our theory is an interesting
nonmonotonic variation in the scaling exponent α(n) as a
function of carrier density.

It is important to point out at this stage that graphene,
because of its linear dispersion with a constant Fermi velocity
(vF ≡ v0), does not obey9 the exponent scaling relation β =
ατ + 1 connecting the density scaling between conductivity
(β) and relaxation rate (ατ ). Instead, for graphene,9 we have
β = ατ + 1/2 if ατ is defined by τ−1 ∼ nατ , which follows
from the constancy of vF and the fact that D(EF ) ∝ EF ∝√

n in graphene. Putting D(EF ) ∝ kF ∝ √
n in Eq. (17), we

get for graphene σ (n) ∼ √
nτ (n), i.e., β = ατ + 1/2. Thus,

whereas in ordinary parabolic systems the exponent α (≡ ατ ≡
αμ) is the same for both mobility (μ) and the relaxation rate
(τ−1), in graphene, by virtue of its linear band dispersion, α =
αμ = ατ − 1/2, but the relationship between the conductivity
exponent (β) and the mobility exponent (α) is still given by
β = α + 1 since by definition σ = neμ.

III. MODEL AND THEORY

The central quantity to obtain theoretically in the semi-
classical Boltzmann transport theory is the relaxation time
τ or equivalently the relaxation rate τ−1, which is given by
the following expression for 2D systems, within the leading-
order Born approximation, for carrier scattering at T = 0 by
disorder:9,10

1

τ
= 2π

h̄

∑
γ

∫
N

(γ )
i (z)dz

∫
d2k′

(2π )2

∣∣V (γ )
k−k′(z)

∣∣2

× (1 − cos θkk′)δ[E(k) − E(k′)]. (8)

Here N
(γ )
i (z) is the 3D density of random impurities of the

γ th type (in general, there could be several different types of
impurities present in the system: near and far, 2D or 3D, long
or short range), with z being the direction perpendicular to the
plane of the 2D system (which lies in the x-y plane); Vq(z) is
the electron-impurity interaction (in the 2D wave vector space
defined by q). k,k′ are, respectively, the incoming and outgoing
2D carrier wave vectors involved in the scattering process with
a scattering angle θkk′ between them and k − k′ being the
scattering wave vector; E(k) = h̄2k2/2m is the carrier energy.
Note that our disorder model assumes a random distribution
of impurities in the 2D x-y plane although it is easy to include
correlations in the 2D impurity distribution if experiment
indicates the importance of such correlations.

Once the scattering potential Vq(z) is defined, the problem
of calculating the 2D conductivity becomes simply a question
of evaluating the 4D integral given in Eq. (8). Note that we
are restricting to the T = 0 case (or to low temperatures);
otherwise, a thermal average would be required in defining
τ−1, necessitating a 5D integration. We note that although
Eq. (8) applies only to 2D systems, a very slight modification
gives us the corresponding expressions for 3D systems and
graphene, which we do not show here. We note here that for
graphene there is a well-known additional form factor of (1 +
cos θkk′) inside the integral in Eq. (8) arising from chirality.9

It is worthwhile to point out here that the theoretical
idea of a meaningful universal density scaling behavior of
conductivity applies as a matter of principle only when the
resistive scattering is dominated by a particular disorder
mechanism. If there are many different types of disorder (i.e.,
several γ types) contributing equivalently to the resistivity,
then the net resistivity will be given by the Matthiessen’s rule:
τ−1(n) = ∑

γ τ−1
γ (n) and ρ(n) = ∑

γ ργ (n), i.e., σ−1(n) =∑
γ σ−1

γ (n), where ργ , σγ , and τγ are, respectively, the
resistivity, conductivity, and scattering time for the γ th type
of disorder arising from N

(γ )
i (z) in Eq. (8). In such a situation,

unless one particular type of disorder (i.e., one specific γ )
dominates scattering, the resulting density dependence of the
total σ (or μ) will manifest complex crossover behavior arising
from the combination of all different scattering processes
contributing with different strength, and there will not be
only universal density-dependent scaling behavior of σ (n) or
μ(n). To exemplify this important point, we consider a strict
2D electron gas being scattered by three different types of
disorder (i.e., γ = 1, 2, 3) given by remote random charged
impurities at a distance d from the 2D system, background
charged impurities at the 2D layer, and zero-range disorder in
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the layer, each with their respective conductivity exponent βγ

with γ = 1, 2, 3, respectively. We can formally write

σ−1(n) = σ−1
1 + σ−1

2 + σ−1
3

= A1n
−β1 + A2n

−β2 + A3n
−β3 , (9)

where Aγ ∝ ni,γ is the strength of each independent physical
scattering process (i.e., ni,1, ni,2, ni,3 denote, respectively,
the remote and background charged impurity density and the
short-range defect density). If we now define the net con-
ductivity exponent β(n) through the usual β = d ln σ/d ln n

definition using the total conductivity σ (n), then obviously
β(n) will be a complex (and opaque) function not only of β1,
β2, and β3, but also of the disorder strength ni,1, ni,2, ni,3.
Thus, the extraction of a universal density exponent β (or α)
makes sense only when one scattering mechanism dominates;
generically, the conductivity/mobility exponent β/α (=β − 1)
is nonuniversal and depends in a complex manner on both the
individual scattering mechanism and the relative strengths of
different operational scattering mechanisms.

We consider below theoretically several different disorder
potentials which may be operational in real 2D and 3D systems,
obtaining asymptotic analytical expressions for the exponents
α and β in the process as applicable.

A. Zero-range disorder

Zero-range disorder, Vq ≡ V0 (a constant), corresponds to
pure δ-function real space scatterers distributed randomly
spatially. Without any loss of generality, we can drop the
z dependence of the disorder (since the electron-impurity
interaction is spatially localized), and assume the 2D electron
system to be of zero thickness in the z direction interacting
with the random zero-range scatterers situated in the same
plane. For 3D systems we, of course, assume the scatterers to
be randomly distributed three dimensionally.

For the constant Vq model potential it is straightforward to
do the momentum integration in Eq. (8) to obtain the following
results for 2D and 3D semiconductor systems and graphene:

τ ∼ n0 2D, (10a)

τ ∼ n−1/3 3D, (10b)

τ ∼ n−1/2 graphene. (10c)

We note that in graphene the mobility exponent (α ≡ αμ)
differs from the relaxation rate exponent ατ by αμ = ατ − 1/2.
In obtaining the density dependence of the relaxation time
above we use the standard expressions for kF and EF for
parabolic 2D and 3D systems and graphene:

kF = (2πn)1/2; EF = h̄2πn/m : 2D, (11a)

kF = (3π2n)1/3; EF = h̄2(3π2m)2/3/2m : 3D, (11b)

kF = (πn)1/2; EF = h̄v0(πn)1/2 : graphene. (11c)

We use n throughout to denote the relevant 2D or 3D carrier
density of the “metal,” and v0 in Eq. (11c) is the constant
graphene Fermi velocity defining its linear energy-momentum
relationship, E = h̄v0k (v0 ≈ 108 cm/s). We assume a spin
degeneracy of 2 throughout and an additional valley degener-
acy of 2 for graphene in defining kF and EF . We note that the
transport properties of multivalley 2D systems (such as Si) with
the parabolic band are not identical with those of graphene with

linear energy dispersion (although they both have degenerate
multivalley ground state) due to the difference of the carrier
energy band.9

For zero-range δ-function disorder which is equivalent to
assuming an uncorrelated white-noise disorder (often also
called in the literature “short-range disorder,” somewhat
misleadingly), we therefore have (we define α = αμ always
as the mobility exponent)

α = 0 (2D), −1/3 (3D), −1 (graphene); (12)

and

β = α + 1 = 1 (2D), 2/3 (3D), 0 (graphene). (13)

These results for a 2D parabolic system and graphene are
known9,10 and show that the conductivity grows linearly
with carrier density in 2D systems and becomes a density-
independent constant in graphene when transport is limited or
dominated by zero-range white-noise-type δ-function back-
ground disorder. The zero-range transport result for the 3D
systems (metals or doped semiconductors) does not appear to
be as well known (perhaps because the density dependence
of conductivity is not of much experimental interest in 3D
systems, as discussed in the Introduction of this paper) and
shows surprisingly a sublinear ∼n2/3 increase in σ (n) in 3D
systems for δ-correlated short-range white-noise disorder.

We now move on to the more interesting and experimentally
more relevant Coulomb disorder and discuss a number of
disorder models pertaining to Coulomb disorder in the next
two sections.

B. Unscreened (long-range) Coulomb disorder

In most semiconductor systems (2D or 3D), the dominant
background disorder arises from quenched random charged
impurities in the environment. Thus, the bare electron-impurity
interaction is invariably the long-range 1/r Coulomb interac-
tion arising from the electric potential of the charged impurity.
The charged impurity could be an intentional dopant impurity
introduced to provide the doping necessary to create free
carriers in the semiconductor or an unintentional charged
impurity invariably present even in the cleanest semiconductor.
In general, the Coulomb disorder from the random charged im-
purities should be screened by the free carriers themselves so
that the effective (screened) Coulomb disorder is short ranged
(this is the infrared regularization necessary for handling the
long-range nature of Coulomb interaction). We consider the
screened Coulomb disorder in the next three sections, focusing
here on the unscreened bare Coulomb disorder for the sake of
theoretical completeness.

The disorder potential Vq(z) is given by the following
equations for the unscreened Coulomb interaction:

Vq(z) = 2πZe2

κq
e−q|z| (14)

for 2D systems and graphene and

Vq(z) = 4πZe2

κq2
(15)
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for 3D systems. Here q = |q| in Eqs. (14) and (15) is the
appropriate 2D and 3D wave vector, Z is the atomic number
of the charged impurity center with Ze being its charge (we
consider Z = 1 throughout), and κ is the background static
lattice dielectric constant. The coordinate z in Eq. (14) denotes
the spatial separation of the charged impurity from the 2D
confinement plane of the electron layer (taken to be located
at z = 0 in the x-y plane). We note that Eqs. (14) and (15)
are simply the Fourier transform of the 1/r 3D Coulomb
interaction [with r ≡ (x,y,z) a 3D space vector] in 2D and
3D systems.

For 3D systems, unscreened Coulomb disorder leads to the
following expression for the scattering rate:

τ−1 = 2πNi

h̄

∫
d3k′

(2π )3

[
4πe2

κ|k − k′|2
]2

× (1 − cos θkk′)δ(Ek − Ek′), (16)

where all wave vectors are now 3D and Ni is the 3D
impurity density. The momentum integration in Eq. (16) is
straightforward, and it is well known11,12 that the integral has
a logarithmic divergence arising from the long-range nature
of bare Coulomb interaction (i.e., an infrared singularity). We
get

τ−1 ∼ (n ln b)−1 → ∞, (17)

with b = 4k2
F /q2

TF → 0, where kF = (3π2n)1/3, and qTF,
which, in principle, is the 3D screening wave vector, goes to
zero in the unscreened approximation, leading to a logarithmic
divergence without the screening cutoff of the long-range
Coulomb interaction. There are several ways of cutting off this
long-range logarithmic Coulomb divergence (e.g., Conwell-
Weiskoff approximation or Brooks-Herring-Dingle approx-
imation), which has been much discussed in the transport
literature on doped semiconductors.11,12 Since our interest
is mainly focused on 2D systems where the carrier density
can be tuned continuously (in contrast to 3D systems), we do
not further discuss the implications of Eq. (17) for 3D doped
semiconductors.

For 2D systems, one must distinguish among (at least)
three different kinds of Coulomb disorder: random 2D charged
impurities in the 2D plane of the carriers [i.e., z = 0 in
Eq. (14)], random charged impurities in a 2D layer parallel
to the 2D carriers with a separation d (i.e., z = d), and 3D
random charged impurity centers in the background (where z

varies over a region in space). We refer to these three situations
as 2D near impurities, remote impurities, and 3D impurities,
respectively, throughout this paper.

We first consider the 2D near-impurity case with z = 0
assuming unscreened impurity-electron Coulomb interaction
in the 2D plane:

Vq(z = 0) = 2πe2

κq
. (18)

This then gives (with ni now as the 2D impurity density)

τ−1 = 2πni

h̄

∫
d2k′

(2π )2

[
2πe2

κ|k − k′|
]2

× (1 − cos θkk′)δ(Ek − Ek′). (19)

The 2D integral in Eq. (19), in contrast to the corresponding
(divergent) 3D integral defined by Eq. (16), is convergent:

τ−1 ∼ k−2
F ∼ n−1. (20)

Thus, α = 1 in 2D systems for the unscreened 2D impurity
case (while the corresponding 3D case is logarithmically
divergent). The exponent β = α + 1 = 2 for the unscreened
2D Coulomb impurity in 2D “metallic” systems.

Next we consider the 2D system with 2D remote impurities
(z = d �= 0). The relaxation rate [Eq. (8)] is now given by

τ−1 = 2πni

h̄

∫
d2k′

(2π )2

[
2πe2e−|k−k′|d

κ|k − k′|
]2

× (1 − cos θkk′)δ(Ek − Ek′). (21)

The integral in Eq. (21) can be rewritten in a dimensionless
form,

τ−1 ∼ k−2
F

∫ 1

0
dx

e−2xd0

√
1 − x2

, (22)

where d0 = 2kF d is dimensionless. [We note that putting
d0 = 0 for d = 0 gives us the 2D near-impurity results of
Eq. (20).] The asymptotic carrier density dependence (kF ∝√

n) implied by Eq. (22) depends sensitively on whether kF d

[≡d0 in Eq. (22)] is small (kF d � 1) or large (kF d � 1). For
kF d � 1 we get from Eq. (22)

τ−1 ∼ k−2
F ∼ n−1, (23)

and for kF d � 1 we get from Eq. (22)

τ−1 ∼ k−3
F ∼ n−3/2. (24)

Thus, α = 1 (3/2) for kF d � 1 (�1) and therefore β = 2
(5/2) for kF d � 1 (�1) for 2D carriers in the presence of
remote Coulomb scatterers.

Finally, we consider the 2D carrier system with a 3D
random distribution of charged impurity centers. The integral
for the 2D relaxation rate [Eq. (8)] now becomes with qTF → 0

τ−1 ∼ k−3
F ln

(
qTF

2kF

)
∼ n−3/2 ln

(
qTF

2kF

)
, (25)

which has the same logarithmic divergence for the unscreened
Coulomb disorder as the corresponding 3D case considered
above in Eq. (17), but with a different 2D density expo-
nent (∼n−3/2) from the corresponding 3D density exponent
(∼n−1/3) in Eq. (17). Thus, 2D carrier systems with unscreened
3D Coulomb disorder would have logarithmically divergent
resistivity necessitating a length cutoff on the long-range part
of the bare Coulomb potential similar to the well-known
situation for long-range bare Coulomb disorder in 3D systems
(e.g., doped semiconductors).

It is important to emphasize our interesting theoretical
finding that, although 3D unscreened Coulomb disorder leads
to logarithmic long-range divergence in the resistivity of both
2D and 3D systems independent of the carrier density (i.e.,
τ−1 diverges logarithmically), the corresponding situation
for 2D carrier systems with 2D Coulomb disorder has no
divergence and does not require any cutoff-dependent infrared
regularization. It turns out that 2D metals with unscreened
Coulomb disorder arising from random 2D charged impurities
are perfectly well defined within the Boltzmann transport
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theory. Of course, the unscreened Coulomb disorder model
is not realistic and the calculated conductivity may not agree
with the experimental data, but theoretically it is perfectly
well-defined with the density exponents α (β) being 1 (3/2)
and 2 (5/2), respectively, depending on whether kF d � 1 or
�1, where d is the location of the impurities with respect to
the 2D carrier layer.

One may wonder about the fundamental reason underlying
the necessity for infrared regularization for the 3D unscreened
case and not for the 2D unscreened case. This arises from the
3D bare Coulomb potential (∼1/q2) being much more singular
in the long wavelength q → 0 limit than the corresponding
2D Coulomb potential (∼1/q). It turns out that this difference
between 2D and 3D is sufficient to make the 3D Coulomb
disorder case infrared divergent, whereas the 2D case being
nondivergent without infrared regularization.

We do not discuss here the unscreened Coulomb disorder
case for graphene since for graphene the density scaling of
the conductivity is the same for both unscreened and screened
Coulomb disorder (and we consider screened Coulomb disor-
der in the next section) by virtue of graphene screening wave
vector qTF (∝kF ) being proportional to the Fermi wave vector,
leading to both screened and unscreened Coulomb disorder
having the same carrier density dependence in the conductivity.

C. Screened Coulomb disorder

This is the most realistic (as well as reasonably com-
putationally tractable) model for calculating the resistivity
due to Coulomb scattering within the Boltzmann transport
theory. The basic idea is to use the appropriately screened
Coulomb potential in Eq. (8) for calculating the relaxation
rate. We use the conceptually simplest (static) random phase
approximation (RPA) for carrier screening of the long-range
electron-impurity Coulomb interaction. This means that the
screening functions in 2D and 3D parabolic systems are
the static dielectric functions first calculated by Stern13 and
Linhard,14 respectively. For graphene, we use the dielectric
screening function first calculated in Ref. 15.

The relevant screened Coulomb disorder potential is given
by

Vq ≡ vq

ε(q)
, (26)

where vq is the long-range Coulomb potential and ε(q) is
the appropriate static RPA dielectric function. In general, the
screened Coulomb potential can be rewritten as

Vq = 2πe2

κ(q + qTF)
(27)

for 2D systems and graphene and

Vq = 4πe2

κ
(
q2 + q2

TF

) (28)

for 3D systems. The screening wave vector qTF, sometimes
referred to as the Thomas-Fermi wave vector, is given by the
following expression (obtained in a straightforward manner
from the corresponding static polarizability function or the

dielectric function in Refs. 13–15):

qTF = 2me2

κh̄2 2D, (29a)

qTF =
(

4me2kF

πκh̄2

)1/2

3D, (29b)

qTF = 4e2kF

κh̄v0
graphene. (29c)

We have used a valley degeneracy of 1 (2) for 2D/3D
(graphene) systems in Eqs. (29), and chosen a spin degeneracy
of 2. We note the (well-known) results that in the 2D parabolic
electron system the screening wave vector is a constant,
whereas in graphene (3D parabolic system) it is proportional
to kF (

√
kF ).

It may be worthwhile to discuss the dimensionless screen-
ing strength characterized by the parameter qs = qTF/2kF ,
which is given by

qs = 2me2

κh̄2kF

∼ n−1/2 2D, (30a)

qs =
(

4me2

πκh̄2kF

)1/2

∼ n−1/6 3D, (30b)

qs = 4e2

κh̄v0
∼ n0 graphene. (30c)

We note the curious (albeit well-established) result that the
dimensionless screening strength increases (very slowly in 3D
∼ n−1/6) with decreasing density (∼n−1/2 in 2D) except in
graphene where qTF ∝ kF , leading to a density-independent qs .
Thus, the strong (weak) screening limit with qs =qTF/2kF �1
(�1) is reached at low (high) carrier density in 2D and
3D metallic systems. This peculiar density dependence of
screening has a qualitative repercussion for the transport
exponents α and β as a function of density.

We now rewrite Eq. (8) for the 2D relaxation rate τ−1 in
terms of screened Coulomb disorder obtaining

τ−1 =
(

nim

πh̄3k2
F

)(
2πe2

κ

)2

I22(qs,d0), (31)

with

I22(qs,d0) =
∫ 1

0

e−2xd0x2dx

(x + qs)2
√

1 − x2
(32)

for 2D carriers and 2D impurities (with impurity density ni

per unit area) with qs = qTF/2kF and d0 = 2kF d (with z = d

defining the impurity locations)

τ−1 =
(

Nim

8πh̄3k3
F

)(
2πe2

κ

)2

I23(qs), (33)

with

I23(qs) =
∫ 1

0

dx

(qs + √
1 − x2)2

, (34)

for 2D carriers and 3D impurities (with impurity density Ni per
unit volume). We note that putting qs = 0 (i.e., no screening)
immediately produces the density scaling exponents obtained
in the last section.
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For 3D carriers with (obviously) 3D random charged
impurity distribution, we get

τ−1 =
(

Nim

8πh̄3k3
F

)
I33(qs), (35)

where

I33(qs) =
∫ 1

0
dx

1 − x

(1 − x + 2q2
s )2

. (36)

Again, putting qs = 0 in the 3D result above produces the
logarithmically divergent relaxation rate discussed in Sec. III B
for the 3D unscreened Coulomb disorder.

Finally, for graphene we write the relaxation rates for
scattering by screened Coulomb disorder arising from 2D and
3D charged impurity distributions, respectively, by following
the standard references,9,16

τ−1 =
(

ni

πh̄2v0kF

)(
2πe2

κ

)2

IG2(qs,d0), (37)

where

IG2 =
∫ 1

0
dx

x2
√

1 − x2

(x + qs)2
e−2xd0 (38)

for 2D charged impurities located a distance d (with d0 =
2kF d) from the graphene plane and, for 3D disorder,

τ−1 =
(

Ni

πh̄2v0k
2
F

)(
2πe2

κ

)2

IG3(qs), (39)

with

IG3 =
∫ 1

0
dx

x
√

1 − x2

(x + qs)2
, (40)

and Ni being the 3D impurity density. In the 3D Coulomb
disorder case for graphene, the random charged impurities are
distributed in the graphene substrate with a uniform random
3D distribution with a 3D impurity density of Ni .

For our numerical calculations of transport properties
(presented in the next section), which would focus entirely
on 2D systems with 2D impurities (both near and remote),
we include the realistic width of the quantum well through a
subband form factor modifying the Coulomb matrix element
arising from the finite thickness of the quantum well in the
z direction. This is a nonessential complication (making our
numerical results compatible with and comparable with the
experimental low-temperature transport data in GaAs quantum
wells) which does not affect our theoretical conclusions about
the carrier density scaling of the 2D transport properties since
the quasi-2D quantum well form factor is independent of the
carrier density in the leading order.

Below we obtain the asymptotic density exponents (based
on the results given above) α and β for screened Coulomb
disorder in the strong (qs � 1) and weak (qs � 1) screening
situations considering both near and remote 2D impurities and
3D impurities.

D. Strong-screening (qs � 1) and
weak-screening (qs � 1) limits

It is straightforward to carry out the asymptotic expansions
of the various integrals in Eqs. (31)–(40) to obtain the

strong-screening (qs � 1) and the weak-screening (qs � 1)
limiting behaviors of the relaxation rate τ−1 for the different
systems under consideration. Remembering that τ−1 ∼ n−α

and β = α + 1 (α + 1/2 for graphene), we get the following
results by taking qs � 1 and qs � 1 limits of Eqs. (31)–(40)
in various situations.

(i) 2D carriers with 2D impurities.
For 2kF d � 1 (i.e., near impurities):
α = 0 (β = 1) for strong screening (qTF � 2kF ),
α = 1 (β = 2) for weak screening (qTF � 2kF ).
For 2kF d � 1 (i.e., remote impurities):
α = 3/2 (β = 5/2) for both weak (qTF � 2kF ) and

strong (qTF � 2kF ) screening.
(ii) 2D carriers with 3D impurities.

α = 1/2 (β = 3/2) for strong screening (qTF � 2kF ),
α = 3/2 (β = 5/2) for weak screening (qTF � 2kF ).

(iii) 3D carriers with 3D impurities.
α = 1/3 (β = 4/3) for strong screening (qTF � 2kF ),
α = 1 (β = 2) for weak screening (qTF � 2kF ).

(iv) Graphene with 2D impurities (remembering α = ατ −
1/2 = αμ).

For 2kF d � 1 (i.e., near impurities) ατ = 1/2; α = 0
(β = 1) for both strong and weak screening.

For 2kF d � 1 (i.e., remote impurities) ατ = 1;
α = 1/2 (β = 3/2) for both strong and weak screening.

We note that for graphene α = αμ = ατ − 1/2 (and
β = α + 1) by virtue of its linear dispersion. Also, for
graphene strongly screened, weakly screened, and unscreened
Coulomb disorders manifest the same density exponent in
the conductivity and the mobility since qTF ∝ kF , and thus
qs is density independent. (Of course, the actual numerical
values of the conductivity and the mobility are very different
in the three approximations except for having the same
power law dependence on the carrier density depending only
on whether the random 2D charged impurities are near or
far.)

(v) Graphene with screened 3D impurities.
ατ = 1; α = 1/2 (β = 3/2) for both strong and weak

screening.
We note that graphene with unscreened 3D Coulomb

disorder (qs = 0) has the same logarithmic divergence in
the relaxation rate τ−1 (and hence in the resistivity) for
all carrier densities as in the corresponding 2D and 3D
parabolic electron systems for unscreened 3D disorder. The
unscreened 3D Coulomb disorder is thus unphysical, always
necessitating an infrared regularization as was already realized
in the 1950s in the context of 3D doped semiconductor
transport.11,12

In Table I we summarize our asymptotic analytic findings
for the density scaling of conductivity and mobility for 2D
and 3D parabolic systems and 2D graphene in various limiting
situations involving Coulomb disorder arising from random
charged impurities in the environment.

IV. RESULTS

In this section we present our numerical results for the
T = 0 density-dependent transport properties of 2D systems
within the Boltzmann transport theory in order to obtain the
full density dependence of the exponent α(n) for mobility
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TABLE I. Asymptotic values of α. By considering the Coulomb disorder arising from random charged impurities in the environment, the
asymptotic density scaling exponent (α) for the carrier mobility (μ ∼ nα) in various limiting situations and for various types of disorder is
given. The corresponding conductivity exponent (β) with σ ∼ nβ is given by β = α + 1.

2D 3D Graphene

2D Coulomb disorder with near Strong screening (qs � 1) 0 N/A 0
impurities (2kF d � 1) Weak screening (qs � 1) 1 N/A 0

Unscreened (qs = 0) 1 N/A 0

2D Coulomb disorder with Strong screening (qs � 1) 3/2 N/A 1/2
remote impurities (2kF d � 1) Weak screening (qs � 1) 3/2 N/A 1/2

Unscreened (qs = 0) 3/2 N/A 1/2

3D Coulomb disorder with 3D Strong screening 1/2 1/3 1/2
impurity distribution Weak screening 3/2 1 1/2

Unscreened Log-divergent Log-divergent Log-divergent

Zero-range disorder with δ-function impurities Concept of screening inapplicable here 0 −1/3 −1

and equivalently the exponent β(n) for conductivity, obtaining
in the process the density regimes where the analytical
asymptotic exponents obtaining in the last section apply. The
reason we focus on the 2D carrier system is that it is the
most convenient system for the experimental investigation of
the density dependence of transport properties. In 3D semi-
conductor systems, the carrier density cannot be continuously
tuned as it can be in 2D systems.

We first note that the strong (weak)-screening condition
implies low (high) values of carrier density in the system.
Using Eqs. (11) and (29), we find qs = qTF/2kF � 1 implies
2me2/κh̄2 � 2(2πn)1/2, 2D; (4me2/πκh̄2)1/2(3π2n)1/6 �
2(3π2n)1/3, 3D; (4e2kF /κh̄v0) � 2kF , graphene; i.e.,

1

8π

(
2me2

κh̄2

)2

� n 2D, (41a)

1

2π2

(
4me2

πκh̄2

)3

� n 3D, (41b)

(
2e2

κh̄

)
� v0 graphene. (41c)

Equation (41) defines the low-density regime where the strong-
screening condition would be satisfied except for graphene,
which has qs independent of carrier density since qTF ∝ kF .
From Eq. (41) we conclude that the strong (weak)-screening
situation (within RPA) for T = 0 transport properties would
be satisfied under the following conditions for the different
systems under consideration:

n � (�)

(
m

meκ

)2

× 1.14 × 1016 cm−2 2D, (42a)

n � (�)

(
m

meκ

)3

× 7.4 × 1021 cm−2 3D, (42b)

κ � (�) 4.4 graphene. (42c)

Using the band effective mass for GaAs electrons
(m = 0.07me) and holes (m = 0.4me), we get (using κ = 13

for GaAs-AlGaAs quantum wells)

n � (�) 3.3 × 1011cm−2 for 2D n-GaAs, (43a)

n � (�) 9.5 × 1013cm−2 for 2D p-GaAs, (43b)

and

n � (�) 1.5 × 1015cm−3 for 3D n-GaAs, (44a)

n � (�) 2.8 × 1017cm−3 for 3D p-GaAs. (44b)

We note (again) that in graphene (as Table I indicates) the
exponents α, β do not depend on weak/strong screening or
on the carrier density. The density range for GaAs-based 2D
systems, which we would consider numerically in this section,
is the experimentally relevant 109–1012 cm−2 density range in
high-mobility GaAs-AlxGa1−xAs 2D quantum well structures,
and thus for 2D electron systems (2D n-GaAs) the crossover
from the low-density strong-screening to high-density weak-
screening behavior may be experimentally relevant. On the
other hand, for 2D p-GaAs hole quantum wells, the crossover
density (∼1014 cm−2) is too high to be relevant experimentally,
and thus the laboratory 2D hole systems are likely to be always
in the strongly screened situation.

The 2D transport exponents α and β depend on an additional
dimensionless parameter (i.e., in addition to qs = qTF/2kF )
d0 = 2kF d, which depends on both the carrier density through
kF ∼ √

n and the separation (d) of the random charged
impurities from the 2D system. This dependence on kF d, the
dimensionless separation of the impurities from the carriers in
the z direction (which has no analog in the corresponding
3D disordered case), is experimentally always relevant in
high-mobility 2D semiconductor structures for three reasons:
(1) In high-mobility modulation-doped 2D quantum well
structures, scattering by remote dopants (which are introduced
intentionally at a known distance d from the quantum well) is
always present; (2) in principle, it is always possible to place
ionized impurities at a set distance d from the 2D quantum
well using the computer-controlled molecular beam epitaxy
(MBE) growth technique which is used to produce high-quality
semiconductor quantum wells to begin with; (3) in realistic
experimental samples with a finite quasi-2D thickness, d is
always finite.
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FIG. 1. (Color online) Calculated mobility, μni , as a function of
density n of a n-GaAs quantum well with a well width a = 200 Å for
various d = 0, 200, 400, 600, 800 Å (from bottom to top). Here ni is
the 2D random charged impurity density located a distance d away
from the quantum well. The mobility is calculated at T = 0 K.

In general, the experimental 2D mobility/conductivity
could be limited by various types of Coulomb disorder17:
near/far 2D Coulomb disorder (2kF d � 1/� 1); 3D Coulomb
disorder in the background. According to Table I, the asymp-
totic density dependence in each case should be different. In
Figs. 1 and 2 we show our directly numerically calculated
n-2D GaAs mobility for quantum well electrons assuming
2D random charged impurity scattering from quenched point
scattering centers located a distance d away from the quantum
well (including the d = 0 case). The numerically calculated
mobility exponent α(n) = d ln μ/d ln n is shown in Fig. 2
for the corresponding μ(n) shown in Fig. 1; we note that
n ∝ k2

F , and therefore the parameter kF d ∼ √
n for a fixed

value of d. The results shown in Figs. 1 and 2 correspond
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FIG. 2. (Color online) Calculated mobility exponent α in μ ∝ nα

(i.e., α = d ln μ/d ln n) for the corresponding μ(n) in Fig. 1.

to the zero-temperature case, but are indistinguishable from
the corresponding low-temperature results for T = 300 mK
(which we have verified explicitly). We note that the numerical
results presented in Figs. 1 and 2 are realistic (as are all other
numerical results shown in this paper) in the sense that they are
obtained from the full numerical integration of the Boltzmann
theory expression for the relaxation rate [as given in Eq. (8)
in Sec. III] with the additional sophistication of including
the finite thickness of the quantum well through the finite
well-thickness form factors fi(q) and f (q) which modify the
Coulomb disorder matrix element [i.e., |V |2 → |V |2fi(q)] and
qTF → qTFf (q), respectively, and they are given by

fi(q) = 4

qa

2π2(1 − e−qa/2) + (qa)2

4π2 + (qa)2
,

(45)

f (q) = 3(qa) + 8π2/(qa)

(qa)2 + 4π2
− 32π4[1 − exp(−qa)]

(qa)2[(qa)2 + 4π2]2
,

where a refers to the quantum well width taken to be 200 Å
for the results in Figs. 1 and 2. We note that the form factor
fi(q) simply reduces the Coulomb impurity potential from
its q−1 behavior by a q-dependent (but density-independent)
function determined by the thickness a of the GaAs quantum
well. The form factor f (q) reduces the 2D screening through
the modification of the electron-electron interaction due to
the finite thickness of the quantum well. Since the quantum
well form factors do not depend on the carrier density in the
leading order, this quasi-2D form-factor effect does not in any
way modify the asymptotic exponents α and β given in Table I
(and theoretically defined in the preceding section), but the
form factors do modify the actual calculated values of the
mobility/conductivity/resistivity, making them more realistic,
and therefore any comparison with experimental transport data
necessitates the inclusion of the quasi-2D form-factor effect.
All our numerical results for 2D electrons and holes in GaAs
quantum wells presented in this paper include the realistic
quantum well form factors in the theory, taking into account
the finite well width effect in both the electron-impurity
interaction and the electron screening [with qTF being modified
to qTFf (q)].

In Fig. 1 we show (we actually show the calculated μni

since μ ∼ 1/ni) our calculated mobility μ for 2D n-GaAs as
a function of carrier density n for different impurity locations
(d), whereas in Fig. 2 we show the corresponding mobility
exponent α(n) = d ln μ/d ln n. The asymptotic high-density
results, α → 3/2 for n → ∞ (i.e., qTF � 2kF ) and kF d � 1
as given in Table I, are clearly obeyed in all cases with α ≈ 3/2
for larger d and n values satisfying 2kF d � 1. For 2D GaAs
systems,

2kF d ≈ 5d̃
√

ñ, (46)

where d̃ is measured in 1000-Å units and ñ in units of
1010 cm−2. Thus, even for d = 100 Å, 2kF d � 1 already
for n � 2 × 1010 cm−2, and thus the 2kF d � 1 condition
is quickly reached at higher carrier density in all 2D GaAs
systems for any type of relevant background 2D Coulomb
disorder (since typically n ≈ 109 cm−2 is a lower limit for
the achievable carrier density in 2D semiconductor systems).
One may wonder if the d = 0 situation corresponds to the
2kF d ≡ 0 situation considered in Table I. This is certainly true
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for the strict 2D limit (i.e., a = 0 limit of the quantum well).
However, for any finite value of a, the d = 0 impurity location
refers only to the distance of the 2D charged impurities from
the GaAs-AlGaAs interface, and thus the average impurity
separation from the electrons is always finite except in the
a → 0 limit. Thus, even the d = 0 case in our theoretical
calculation has an effective finite value of d0 = 2kF d because
of the finite layer thickness effect (e.g., d ≈ a/2 effectively in
the d → 0 limit).

The most important conclusions from Figs. 1 and 2 are as
follows: (i) The 2kF d � 1 condition dominates the mobility
exponent except for rather low-mobility samples with very
small values of d; (ii) even for the nominal d = 0 case in
Fig. 1 (where in the strict 2D case, α � 1 always), α eventually
approaches the asymptotic α → 3/2 value for n � 1011 cm−2

because of the finite layer thickness effect (i.e., finite a);
(iii) for scattering purely by very remote dopants (d � 500 Å),
the mobility exponent α > 1 always because 2kF d � 1 con-
dition is always satisfied; (iv) the low density limit (2kF d � 1,
qs � 1), where α → 0 according to Table I, would be achieved
in 2D n-GaAs systems only for n � 109 cm−2, and in all
realistic situations, α > 0.5 always as long as transport is
dominated by 2D Coulomb disorder.

In Figs. 3 and 4 we show (again for a = 200 Å) our
calculated mobility in the presence of both 2D and 3D (unin-
tentional background) disorder, neglecting remote scattering
effects (assuming the intentional remote dopants to be too
far, d > 1000 Å, for them to have any quantitative effects,
as would apply to gated undoped HIGFET structures or to
extreme high-mobility modulation-doped structures where the
intentional dopants are placed very far away). In Figs. 3 and
4, the 2D impurities (ni2D) are put right at the GaAs-AlGaAs
interface, whereas there are two different types of 3D Coulomb
disorder: inside the GaAs well [ni3D (GaAs)] and inside the
barrier AlGaAs [ni3D (AlGaAs)]. Again the corresponding
critical exponents increase with carrier density, approaching
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FIG. 3. (Color online) Calculated mobility of n-GaAs quantum
well (a = 200 Å) with unintentional charged impurities. Here the
2D impurities (ni2D = 109 cm−2) are at the GaAs-AlGaAs interface,
whereas there are two different types of 3D Coulomb disorder: inside
the GaAs well [ni3D = 1014 cm−3 (GaAs)] and inside the barrier
AlGaAs [ni3D = 1015 cm−3(AlGaAs)].
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FIG. 4. (Color online) Calculated mobility exponent α in μ ∝ nα

(i.e., α = d ln μ/d ln n) for the corresponding μ(n) in Fig. 3.

α = 3/2 for high density, consistent with the analytic theory.
When the dominant background disorder is that arising from
ni3D(GaAs), i.e., unintentional background impurities in the
well itself, typically α ≈ 0.5–0.8, which is between weak-
and strong-screening situations.

In Figs. 5 and 6, we show our 2D p-GaAs results for
hole-doped high-mobility GaAs quantum wells. All things in
Figs. 5 and 6 are identical except for using two different hole
effective mass values, mh = 0.3m0 (Fig. 5) and mh = 0.4m0

(Fig. 6), since the hole effective mass in GaAs quantum wells
is somewhat uncertain.18 The precise value of mh affects
qTF ∝ m and thus determines the value of qs = qTF/2kF ,
leading to some difference between the results in Figs. 5 and
those in 6. For the holes, we show the individual mobility
and exponent for each scattering process as well as the
total mobility and total exponent obtained by adding the two
resistivities (or equivalently, the two scattering rates arising
from the two scattering mechanisms). We deliberately refrain
from showing the hole results (Figs. 5 and 6) in the same
format as the electron results (Figs. 1 and 2), since they would
all look identical except for some changes in the numbers.

In Figs. 5(a) & 5(c) and 6(a) & 6(c) we show the calculated
2D hole mobility μ(n) limited by 3D Coulomb scattering
(ni3D) and 2D remote Coulomb scattering (ni) for a = 200 Å
with the only difference being ni = 8(4) × 1011 cm−2, respec-
tively, in Figs. 5(a) & 5(c) and 6(a) & 6(c), showing explicitly
the quantitative importance of 2D remote Coulomb scattering
vis à vis 3D Coulomb scattering. The corresponding critical
exponent α(n), shown in Figs. 5(b) & 5(d) and 6(b) & 6(d),
respectively, is completely consistent with Table I with α for
remote scattering quickly reaching the asymptotic unscreened
value of 3/2 as 2kF d � 1 and α for 3D Coulomb disorder
increasing slowly from the very strongly screened low-density
situation (α3D � 0.1 for n < 2 × 109 cm−2) to α ∼ 1 for very
high hole density (n ∼ 1012 cm−2), where screening weakens.

The total exponent in Figs. 5 and 6 shows complicated
nonmonotonicity as a function of carrier density since the
low-density (high-density) situation is more strongly affected
by remote 2D (background 3D) Coulomb scattering and
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FIG. 5. (Color online) (a) Hole mobility as a function of hole
density (n) of a p-GaAs quantum well with a width a = 200 Å and
the hole mass of m = 0.3. Here the background unintentional charged
impurities with a density ni3D = 3 × 1013 cm−3 are located inside the
quantum well and 2D remote charged impurities with a density ni =
8 × 1011 cm−2 are located at d = 150 Å from the interface. In this
figure the black solid curve indicates the total mobility and the blue
dot-dashed (red dashed) curve indicates the mobility limited by only
background scattering (remote charged scattering). (b) The exponents
(α) for the corresponding mobilities in (a). (c) Hole mobility with the
same parameters of panel (a) except the remote charged impurity
density ni = 4 × 1011 cm−2. (d) The exponents (α) of corresponding
mobilities of (c).

the density-dependent crossover between the two scattering
regimes is completely nonuniversal depending precisely on
the relative amounts of 2D and 3D Coulomb disorder (i.e.,
on ni3D, ni , and d). The only concrete statement one can
make is that α(n) increases at low carrier density generally
to a value larger than unity, whereas at intermediate to high
density it tends to stay below unity. Again, all of these results
are completely consistent with the asymptotic exponents given
in Table I (as long as various scattering mechanisms with
different exponents are combined together).

So far we have discussed our numerical results of Figs. 1–6
in terms of their consistency with the theoretically analytically
obtained critical exponents given in Table I with the mobility
exponent (μ ∼ nα(n)) α showing the expected behavior in
the asymptotic density regimes of 2kF d � 1 (�1) and qs �
1 (�1), as the case may be. Remote scattering by 2D
ionized dopants dominates transport at low density (2kF d < 1)
crossing over to a background impurity scattering dominated
regime at higher density, leading to α > 1 (<1) at low (high)
density.

Now we discuss perhaps the most interesting aspect of
our numerical results in Figs. 1–6, which appears to be at
odds with our asymptotic theoretical analysis of Sec. III (and
Table I). This is the intriguing result that α(n) due to remote
2D impurity scattering can actually exceed the asymptotic
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FIG. 6. (Color online) (a) Hole mobility as a function of hole
density (n) of a p-GaAs quantum well with a width a = 200 Å and
the hole mass of m = 0.4. Here the background unintentional charged
impurities with a density ni3D = 3 × 1013 cm−3 are located inside the
quantum well and 2D remote charged impurities with a density ni =
8 × 1011 cm−2 are located at d = 800 Å from the interface. In this
figure the black solid curve indicates the total mobility and the blue
dot-dashed (red dashed) curve indicates the mobility limited by only
background scattering (remote charged scattering). (b) The exponents
(α) for the corresponding mobilities in (a). (c) Hole mobility with the
same parameters of panel (a) except the remote charged impurity
density ni = 4 × 1011 cm−2. (d) The exponents (α) of corresponding
mobilities of (c).

unscreened 2D Coulomb scattering value of α = 3/2. It is clear
in Figs. 2, 4, 5(b), 5(d), 6(b), and 6(d) that there is a shallow
maximum in α(n) at some intermediate density where the
numerically calculated mobility exponent α > 3/2 = 1.5 (and
therefore the corresponding conductivity exponent β > 2.5),
which is remarkable since the unscreened Coulomb scattering
(applicable in the high-density regime defined by 2kF d �
1 and/or qs � 1) by remote impurities produces α = 3/2.
This nonmonotonic behavior of the exponent α(n) in the
intermediate density regime (neither high- nor low-density
asymptotic regime considered in Table I) with an exponent
value larger than the corresponding unscreened Coulomb
exponent 3/2 is unexpected and highly intriguing. We provide
a theoretical explanation for this intriguing nonmonotonic
behavior of remote Coulomb scattering at intermediate density
with a mobility exponent exceeding the unscreened value of
1.5 in the next section.

Before concluding this section on numerical results, we
provide, for the sake of completeness, our numerically cal-
culated mobility exponent for 2D graphene transport under
the remote Coulomb scattering situation. In Fig. 7 we show
our calculated graphene mobility exponent α(n) obtained
from the numerically calculated graphene mobility, α(n) =
d ln μ/d ln n, for various locations (d) of the 2D impurity layer
in relation to the 2D graphene layer. We note that graphene
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FIG. 7. (Color online) Panel (a) shows the calculated graphene
mobility exponent α(n) obtained from the numerically calculated
graphene mobility, α(n) = d ln μ/d ln n, for various locations (d)
of the 2D impurity layer in relation to the 2D graphene layer. In
(b) the exponent for d = 30 nm shows a shallow local maximum at
n ∼ 1012 cm−2.

is a strictly 2D system and hence there is no quasi-2D form
factor correction. It is clear that α(n) goes asymptotically to
the unscreened Coulomb value of 3/2 as n (and therefore kF d

increases) except for the trivial d = 0 case where α(n) = 0
(i.e., β = 1) for all density, as is already well known in the
literature9,16 and is well verified experimentally.19

The calculated graphene mobility exponent α(n) shown in
Fig. 7 agrees completely with the analytical exponent values
given in Table I. (We mention again that in graphene the
mobility exponent αμ = α and the relaxation rate exponent
ατ differ with α = αμ = ατ − 1/2 and β = α + 1 = αμ + 1
by definition, whereas in 2D and 3D parabolic systems, where
μ ∝ τ , αμ = ατ = α = β − 1.) We note that in graphene, for
impurities away from the 2D graphene plane (i.e., d �= 0), the
asymptotic conductivity exponent β for high carrier densities
(kF d � 1) is 3/2 and thus σ ∝ n3/2 in graphene layers
dominated by far-away Coulomb impurities. An experimental
verification of such a σ ∼ n3/2 behavior in graphene due
to Coulomb scattering by remote impurities is a direct
verification of our theory.

V. NONMONOTONICITY OF TRANSPORT SCALING

We now theoretically discuss (and explain analytically)
our surprising numerical finding in Sec. IV, not anticipated
at all in the asymptotic theory of Sec. II or in any of the
substantial earlier literature on 2D transport, that the density
scaling exponent α (β) of 2D mobility (conductivity) has an
intriguing nonmonotonicity as a function of carrier density in
the intermediate density regime (between the asymptotic low-
and high-density regimes discussed in Sec. III and tabulated
in Table I).

We first note that the nonmonotonicity in α(n) arises from
the subtle fact that although the exponent α (or β) depends on
only one explicit external variable (namely, the carrier density
n), it depends theoretically on two independent dimensionless
variables qs = qTF/2kF and d0 = 2kF d since, in reality, there
are two independent external variables in the problem: carrier
density (n) and the impurity location (d). The dependence on
two independent variables is the key feature allowing for the
presence of nonmonotonicity in α(n) as well as its maximum
possible value being larger than the unscreened exponent value
α → 3/2. Indeed, in the strict 2D limit with d = 0 (see, e.g.,
the graphene result in Fig. 7), there is no maximum allowed in
α(n). This is true for both graphene and the 2D parabolic
system; in graphene, α(n) = 0 for all values of n in the
d = 0 limit, whereas in the strictly 2D parabolic system α(n)
monotonically increases from α = 0 in the low-density limit
(qs � 1) to precisely α = 1 in the high-density limit (qs � 1)
for d = 0, as one would expect theoretically (we have verified
this strict 2D limit with d = 0 result explicitly numerically).

For d �= 0 (i.e., 2kF d �= 0), however, the behavior of
transport properties depends nontrivially on the variable
d0 = 2kF d, and there is no obvious theoretical reason why
the low-density (α = 0 or 1 depending on strong or weak
screening) and high-density (α = 3/2 always) asymptotic
limits must be the lower and upper bounds, respectively, on
the exponent. In fact, as our numerics show, and we establish
theoretically below, α(n) does have a peak (exceeding the
unscreened α = 3/2 value) at an intermediate density around
2kF d ≈ 1.

As shown in our numerical results presented in the
preceding section, α(n) defined by μ ∼ nα(n) can exceed the
unscreened exponent value α = 3/2 reached in the asymptotic
high-density (2kF d � 1) limit. To verify whether this finding
is a numerical artifact or real, it is sufficient to consider the
unscreened remote 2D Coulomb disorder in the strict 2D
electron layer limit where the free carriers and the charged
impurities, both confined in infinite zero-thickness 2D layers
in the x-y plane, are separated by a distance d in the z direction.
(This is the model explicitly used in Sec. III.) As n → 0,
α(n) → 1 (unscreened 2kF d � 1 limit), whereas as n → ∞,
α(n) → 3/2 (unscreened 2kF d � 1 limit). The zero-density
limit would be modified to α = 0 if screening is included in the
theory, but we are interested here in the intermediate-density
behavior, not the zero-density regime.

The scattering rate τ−1 in this case is given by [see Eqs. (31)
and (32)]

τ−1 = C

n

∫ 1

0

e−bx
√

n

√
1 − x2

dx, (47)
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where we have shown the explicit density (n) dependence
everywhere (C and b are unimportant carrier density-
independent constants for our purpose) and have used the fact
that kF ∼ √

n. We rewrite Eq. (47) as

τ−1 = C

n
I (n), (48)

where

I (n) =
∫ 1

0

e−bx
√

n

√
1 − x2

dx. (49)

It is obvious that τ−1 is a monotonic function of n decreasing
continuously with increasing density with no extrema whatso-
ever since both 1/n and exp(−bx

√
n) decrease with increasing

n continuously. This can be easily checked explicitly by
showing that the equation dτ−1(n)/dn = 0 has no solution.
The monotonic decrease of τ−1(n) with n simply implies
that μ(n) ∝ τ (n) increases monotonically with increasing
density, as is obvious from our numerical results in Sec. IV:
For Coulomb disorder, 2D mobility and conductivity always
increase monotonically with increasing density.

To figure out whether α(n) = d ln μ/d ln n has nonmono-
tonicity (or extrema) as a function of n, we must use μ(n) ∝
τ (n) and write

α = d ln μ

d ln n
= n

d ln μ

dn
= 1 − n

I

dI

dn
, (50)

where I (n) is the integral defined by Eq. (49). It is straight-
forward, but messy, to show that the condition dμ/dn = 0
with α(n) defined by Eq. (50) has a solution at an intermediate
value of n, and thus α(n) has an extremum; it is still messier
to show that d2α/dn2 < 0 at this extremum so that α(n) has a
maximum at an intermediate density as is found numerically in
Sec. IV. For our purpose, however, it is much easier to simply
establish that the function α(n) defined by Eq. (50) approaches
the high-density n → ∞ limit of α(n → ∞) = 3/2 from
above, thus definitively proving that the mobility exponent
α exceeds 3/2 at some intermediate density (and thus must
have a maximum in the 0 < n < ∞ or equivalently in the
1 � kF d � 1 regime).

As n → 0, we have from Eq. (49)

I (n) = π − b
√

n, (51)

leading to

α(n → 0) = 1 + b
√

n/π. (52)

As n → ∞, we have

I (n) = 1

b
√

n

[
1 + 1

b2n

]
, (53)

leading to

α(n → ∞) = 3/2 + 1/2b2n. (54)

From Eqs. (31), (32), (47), and (48) we have b = 2
√

2πd,
and thus b ∝ d is positive definite (except for the d = 0
explicitly left out here). We, therefore, immediately conclude
that α(n) approaches its asymptotic value of α = 3/2 for
n → ∞ from above with α(n → ∞) ≈ 3

2 + 1
16πd2

1
n

, and the
leading possible correction to the exponent in the n → ∞
limit is of O(1/n) with a coefficient 1/16πd2 ∝ d−2. We also

find that the correction to the n → 0 value of α(n = 0) = 1
is of O(

√
n) with a positive coefficient of 2

√
2πd/π ∝ d.

Thus, we now have a complete theoretical understanding
of the intriguing (and hitherto unexpected in the literature)
numerical finding in Sec. IV that, although the mobility μ(n)
itself is a monotonically increasing function of increasing
carrier density, its power law exponent α(n) shows a maximum
(around 2kF d ∼ 1, in fact) approaching the asymptotic high-
density (n → ∞; 2kF d � 1) value of α = 3/2 from above,
allowing α(n) to be larger than 1.5 at some d-dependent value
α > 1.5.

One feature of our theory presented in Eqs. (47)–(54) is
worth mentioning and comparing with the numerical results
of Sec. IV. This is our finding in Eq. (54), that the asymp-
totic high-density (n → ∞) exponent α(n → ∞) = 3/2 is
approached from above as α(n → ∞) = 3/2 + 1/(16πd2n),
implying that the maximum possible values of α, αmax scale
approximately as (d2nmax)−1 ∝ (kFmd)2, where nmax and kFm

are, respectively, the carrier density and the corresponding
Fermi wave vector at the maximum. This implies that the max-
imum value αmax ≈ 1.7 (≈3/2 + 1/16π ) is approximately
independent of the value d and of the carrier effective mass
with the value of the carrier density nmax (where the maximum
occurs) scaling roughly as nmax ∼ d−2. This strong prediction
is approximately consistent with our numerical results; in fact,
αmax ∼ 1.7 is clearly independent of whether the system is
a 2D electron or hole system and of the precise value of
d. In fact, αmax ∼ 1.7, being approximately independent of
electrons/holes and the value of the separation distance d, is
a striking theoretical result which is consistent with the full
numerical results of Sec. IV.

Because of the striking nature of our finding that αmax ∼ 1.7
always (for remote impurity scattering) for 2D electron/hole
carrier systems, we carried out additional numerical cal-
culations using the realistic Boltzmann theory (including
both quasi-2D finite thickness and screening effects) for 2D
n-GaAs wells of thickness a = 300 Å (different from the
case of a = 200 Å used in Sec. IV) and incorporating both
remote impurity scattering with 2D impurity densities nd and
separation d and also (different values of nd is used) with
near-impurity scattering with 2D impurity density ni with
d = 0 (i.e., interface impurities). The calculated exponents
for the individual scattering mechanisms αd and αi (for nd

and ni , respectively) are shown in Fig. 8, where each panel
corresponds to different sets of values for nd and a fixed ni . In
each case, the individual exponents αd/αi as well as the total
exponent α are shown as a function of density. The exponent
is extracted from a full numerical evaluation of μ(n) and
then using α(n) = d ln μ(n)/d ln n, where the total exponent
is extracted by adding the two individual resistivities, i.e.,
μ−1 = μ−1

d + μ−1
i . The rather amazing fact to note in Fig. 8

is that each individual exponent αd and αi has a maximum
value ∼1.7, albeit the maximum for remote (near) impu-
rities occurring at low (high) carrier densities because the
effective d values are much higher (lower) for remote (near)
impurities. (We note that d = 0 for ni impurities still has
an effective d value of roughly a/2 ≈ 150 Å, whereas the
effective d for the nd impurities is d + a/2 in each case.)
Figure 8 is a striking direct numerical verification of our
theory.
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FIG. 8. (Color online) The calculated mobility exponent as a
function of density for 2D n-GaAs wells of thickness a = 300 Å.
The mobility is calculated by incorporating both remote impurity
scattering with 2D impurity densities nd and separation d and
near-impurity scattering with 2D impurity density ni . Here we use
d = 500 Å and ni = 3 × 108 cm−2 for all figures, but different
values of nd , i.e., (a) nd = 2 × 1010 cm−2, (b) nd = 1 × 1010 cm−2,
(c) nd = 0.5 × 1010 cm−2, (d) nd = 0.22 × 1010 cm−2. The calculated
exponents for the individual scattering mechanisms αd and αi (for nd

and ni , respectively) and the total exponent α are shown as functions
of density.

Before discussing the same physics for graphene, which we
do next, we mention that including screening in the theory is
straightforward (but extremely messy). All we need to do is to
modify Eq. (49) to

I (n) =
∫ 1

0

x2e−bx
√

ndx

(x + c/
√

n)2
√

1 − x2
, (55)

with c = 0 giving the unscreened formula of Eq. (47). The
inclusion of screening strongly affects the low-density n →
0 behavior, changing α(n → 0) exponent to zero (for c �=
0) from unity (c = 0), but does not affect the intermediate-
or high-density behavior at all (as is obvious from Table I,
where the 2kF d � 1 asymptotic results are independent of the
screening constant qs = qTF/2kF ∝ 1/

√
n). Since the extrema

behavior of interest to us is not a low-density phenomenon, our
analysis based on Eq. (49) is appropriate (as is verified by its
agreement with the full numerical results).

Now we consider the corresponding graphene case, which
also has a maximum in α(n) at some intermediate carrier
density with αmax (>1.5) being larger than the corresponding
infinite density unscreened exponent value of 3/2 (see Fig. 7).
For graphene, with the charged impurities located in a 2D layer
a distance d from the graphene layer, the scattering rate τ−1 is
given by [see Eq. (38)]

τ−1 = A
√

n

∫ 1

0
dx

x2
√

1 − x2

(x + qs)2
e−b̃x

√
n, (56)

where A, b̃ = 2
√

πd are density-independent constants and
qs = 4e2/κh̄v0 is also density independent. Direct expansions
for Eq. (56) in the low (n → 0) and high (n → ∞) limits give

τ−1(n → 0) = A0√
n

(
1 − 16d

3π

√
πn

)
, (57)

and

τ−1(n → ∞) = A∞d

(kF d)2(qTFd)2

(
1 − 6

qTFd

)
, (58)

where A0 and A∞ are constants independent of n and d. For
graphene μ(n) ∼ τ/

√
n, and, therefore, we get for n → 0

μ(n) ∼
(

1 + 16d

3π

√
n

)
, (59)

and for n → ∞
μ(n) ∼ n3/2d3

(
1 + 3

2rsd
√

πn

)
, (60)

where rs = e2/(κh̄v0) is the so-called graphene fine structure
constant.

Equations (56)–(60) imply that the mobility μ(n) starts at
low density (n → 0) with α = 0, but with a leading-order
correction going as O(

√
n) with a positive sign. For large

n (i.e., kF d � 1), α(n → ∞) becomes 3/2, but has a posi-
tive leading-order correction of O(1/

√
n). This immediately

implies that α(n) must have a local maximum at some
intermediate density with α being only logarithmically larger
than the asymptotic (n → ∞) value of 3/2. This conclusion is
consistent with numerical results presented in Fig. 7. We note
that the maximum in α(n) for graphene is much shallower and
weaker than in the 2D parabolic system.

VI. EXPERIMENTAL IMPLICATIONS

We now discuss the possible experimental relevance of
our theoretical findings in this section. The fact that the
mobility μ(n) or the conductivity σ (n) = neμ of 2D carrier
systems shows a density scaling behavior with μ ∼ nα(n)

and σ ∼ nβ(n) with β = α + 1 has been known for a long
time in the experimental 2D transport literature.10 Although
our current work is purely theoretical, focusing entirely on
the fundamental questions of principle involving the detailed
behavior of the exponent α(n) and β = α + 1 for various types
of disorder affecting transport properties, we believe that it
is appropriate for us to comment on experiments, making
connection with the existing data in the literature as well
as making some concrete predictions for future experiments
[particularly in the context of our unexpected finding of a
maximum in α(n) with an almost universal value of 1.7 for 2D
semiconductor quantum wells].

We first summarize the serious difficulties in making direct
quantitative connection or comparison between experiment
and theory in 2D semiconductor systems with respect to
low-temperature disorder-limited transport properties. In fact,
these caveats apply to all disorder-limited transport properties
in all systems, not just to 2D transport in semiconductor
quantum wells. The key problem is that the detailed nature
of disorder (either qualitative or quantitative) in a sample is
never precisely known from independent measurements—in
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the context of our transport theory in this paper, relative
amounts of 2D near and remote Coulomb disorder, 3D
Coulomb disorder, and short-range disorder are simply not
known. Thus, a quantitative or even a qualitative theory
for calculating the mobility or the conductivity of a given
sample exists only as a matter of principle, but not in practice
since the details of the underlying disorder contributing to
resistive scattering are a priori unknown and often are figured
out indirectly based on quantitative comparisons between
transport experiment and theory. The situation is worsened
by the fact that the relative magnitudes of various independent
scattering mechanisms vary strongly with carrier density; for
example, Coulomb disorder weakens with increasing carrier
density, making short-range scattering relatively stronger at
high carrier density. Thus, all 2D semiconductor transport
would eventually be dominated by short-range scattering
(e.g., interface roughness, alloy disorder) at very high carrier
density (where α ≈ 0 in 2D systems), and the only question
is how high in density one must go to reach this asymptotic
zero-range disorder-limited regime where Coulomb disorder
has virtually been screened out. This, of course, is completely
nonuniversal and depends entirely on the relative amount of
Coulomb impurities and short-range disorder in particular
samples. This discussion shows that in a 2D semiconductor we
have α(n → 0) = 0 and α(n → ∞) = 0 purely theoretically
with the zero-density limit and the infinite-density limit
being dominated by completely screened Coulomb disorder
(kF d � 1, qs � 1) and zero-range disorder, respectively,
although these strict theoretical limits are unlikely to apply
to real samples at any finite carrier density.

The difficulty of applying the pristine theory to specific
experimental situations is obvious from our numerical results
presented in Figs. 5 and 6 (for 2D holes) and Fig. 8 (for 2D
electrons). In each case, the mobility exponent α for individual
near and far Coulomb impurities follows our theoretical
prescription perfectly with the expected low- and high-density
exponents agreeing with the results of Table I, but the total
exponent α (which is the only one relevant for the experimental
data) may not follow any well-defined pattern and could vary
strongly depending on the relative strengths of near and far
Coulomb disorder, showing strong nonmonotonicity (Figs. 5
and 6) or weak/no nonmonotonicity (Fig. 8). This reinforces
the point made earlier by us that the universal density scaling
behavior in transport applies only to individual scattering
mechanisms, with the overall transport being dominated by
crossover behavior, and is generically nonuniversal due to the
existence of several different operational scattering processes.

In spite of the above serious caveats arising from our igno-
rance about the underlying disorder contributing to resistive
scattering mechanisms, some general statements can be made
about the implications of our theory to experimental data. We
discuss this below.

(i) For very dirty (and low-mobility) samples, the back-
ground Coulomb disorder arising from the unintentional
charged impurities in the quantum well should dominate trans-
port properties, leading to αe ∼ αh ∼ 0.5 for a wide range of
intermediate densities. (ii) When transport is limited by remote
dopants, which would always be true in modulation-doped
samples for kF d < 1, αe ∼ 1.5 and αh ∼ 1–1.5 depending on
the hole effective mass, but αe/αh will decrease with increasing

density as kF d > 1 regime is reached. (iii) For modulation-
doped structures with kF d � 1, background disorder again
dominates at intermediate density giving αe ∼ αh ∼ 0.5–1.

The above situation seems to describe the existing exper-
imental situation for 2D quantum well transport reasonably
well, as discussed below. Focusing on specific experimental
results in the literature in the context of our transport theory,
we make the following remarks discussing some specific
experimental publications in 2D GaAs-based electron and hole
systems.

(1) In Ref. 20, the measured αe ≈ 0.6–0.7 in a n-GaAs 2D
system with no intentional remote dopants (the sample is a
gated undoped sample) in the density range ∼1010–1011 cm−2

(i.e., qs � 1; 2kF d < 1) agrees quantitatively with our theoret-
ical results given in Figs. 3, 4, and 8 with background 2D and
3D unintentional charged impurities being the main disorder
mechanism, as expected for an undoped 2D system.

(2) In a similar gated undoped 2D p-GaAs sample Manfra
et al.21 found αh ∼ 0.7 for density �1010 cm−2, again agreeing
with our results given in Figs. 3 and 4 for background
scattering.

(3) In Harrell et al.22 gated undoped n-GaAs 2D samples,
α ≈ 0.6 was found for n � 1011 cm−2 and α ≈ 0.33 was
found for n < 5 × 1010 cm−2. This is both quantitatively and
qualitatively consistent with our numerical findings in Figs. 3,
4, and 8, where scattering by background charged impurities
in the layer leads to α ≈ 0.3–0.7 in the n = 1010–1011 cm−2

density range with α(n) decreasing with decreasing carrier
density.

(4) Melloch et al.23 found α ≈ 0.6–0.7 for n > 1011 cm−2,
which is consistent with our background impurity scattering
results.

(5) Pfeiffer et al. studied24 modulation-doped high-mobility
2D GaAs electron systems24 obtaining α ∼ 0.7 around
n ∼ 3 × 1011 cm−2 for modulation-doped structures (d =
1000–2000 Å) with μ � 107 cm2/Vs. Again, remote impurity
scattering is completely ineffective here because kF d � 1
rendering mobility limited only by remote impurity scattering
to be around 108 cm2/Vs according to our numerical calcu-
lations. The dominant scattering mechanism in this sample is
by background unintentional charged impurities, leading to
α ≈ 0.7 around n ∼ 3 × 1011 cm−2 according to our Fig. 4,
which is in precise agreement with the data of Pfeiffer et al.24

(6) In a similar high-mobility modulation-doped 2D n-
GaAs sample, Shayegan et al.25 found α ≈ 0.6 in samples with
μ ≈ 106 cm2/Vs for n � 1011 cm−2 with the spacer thickness
d = 1000–2000 Å. Again, remote scattering by the intentional
dopants is ineffective as a resistive scattering mechanism
here with the dominant scattering being by unintentional
background impurities in the GaAs quantum well. From Fig. 4
of our presented results, we find α ≈ 0.6 for n � 1011 cm−2, in
agreement with the experimental finding of Shayegan et al.25

(7) Most of the high-mobility experimental samples dis-
cussed above are dominated by the background unintentional
charged impurities in the 2D layer itself, leading to α < 1 by
virtue of the fact that the intentional dopants introduced for
modulation doping are rather far away in these high-quality
samples (this is a generic feature of all high-mobility 2D
samples with μ > 106 cm2/Vs, where α < 1 prevails by virtue
of the background disorder being dominant). By contrast,
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early work on modulation-doped 2D samples invariably had
lower values of d and achieved much lower mobility μ <

106 cm2/Vs. Such samples are almost always dominated by
remote scattering by the intentionally introduced dopants,
leading to α values typically exceeding unity as our theory
predicts. As a typical example, we consider the work of
Hirakawa and Sakaki26 on modulation-doped 2D n-GaAs
samples with μ ∼ 104–5 × 105 cm2/Vs for d ≈ 0–180 Å
in the n ≈ 1011–5 × 1011 cm−2 density range. Assuming
transport to be limited entirely by the intentional ionized
dopants in the modulation layer (i.e., no background disorder
scattering), our results of Fig. 1 predict α ≈ 1 for d = 0 and
α ≈ 1.1–1.3 for d = 100 Å. Hirakawa and Sakaki reported26

α ≈ 1.1–1.3 for d ≈ 0–100 Å, in essential agreement with our
theory. In addition, these authors reported α ≈ 1.7 for d ≈ 200
Å, an anomalous mobility exponent (i.e., d > 3/2) which has
remained unexpected in the literature for more than 25 yr. Our
current work provides a definitive explanation for α ≈ 1.7 as
arising from the maximum in α(n) for remote scattering, as is
apparent in Fig. 1. We note that kF d ∼ 1–2 for n ∼ 1011 cm−2

and d ∼ 100–200 Å, and thus our theory predicts α ∼ 1.7 for
d ≈ 200 Å in the Hirakawa-Sakaki experiment.26 We believe
that the experimental finding of α ∼ 1.7 by Hirakawa and
Sakaki is a direct verification of our intriguing prediction
of α > 3/2 for kF d � 1 in transport dominated by remote
scattering.

(8) Finally, we discuss some recent unpublished exper-
imental work by Pfeiffer and West,27 who, motivated by
our theoretical work, carried out low-temperature transport
measurements in a series of high-quality (i.e., ultrapure GaAs
with very little background disorder due to unintentional
impurities) MBE-grown 2D n-GaAs samples with variable
values of d. Since these experiments were performed with the
specific goal of checking our low-temperature 2D transport
theory predictions, Pfeiffer and West made undoped gated
samples of highest quality with little background disorder and
a nominal low-temperature mobility of μ > 107 cm2/Vs. Then
they systematically introduced charged impurities at specific
separation (d) from the 2D layer by inserting carbon atoms in
the GaAs layer (d = 0) or in the AlGaAs barrier layer (d �= 0).
First they explicitly verified that the introduction of different
amounts of impurity centers without changing d affects only
the 2D mobility through the expected niμ scaling behavior
(i.e., μ ∝ n−1

i ) without changing α(n) by changing the inserted
carbon atoms by a factor of 5, keeping d fixed [which
changed the 2D mobility by a factor of 5 without changing the
exponent α(n) in the same carrier density range]. Thus, they
measured α(n) for d = 0 and d = 150 Å, finding α(n) ≈ 0.8
and 1.8, respectively, for n ∼ 1011 cm−2. Our calculated α(n ≈
1011 cm−2) ≈ 0.8 for d = 0 in Fig. 2 is in perfect agreement
with the experimental data. For d = 150 Å, kF d ≈ 1 for
n ≈ 1011 cm−2, and we predict α(n) ≈ αmax = 1.7 in this
situation, which compares well with the experimental exponent
of 1.8. Thus, this experimental investigation of our theoretical
predictions appears to have strikingly verified our finding that
α > 3/2 in the kF d ∼ 1 intermediate density regime where
the shallow maximum occurs in α(n) in our theory.

(9) Before concluding our discussion of experimental
implications of our theory we describe the very recent 2D
hole transport data in high-mobility p-GaAs systems by the

Manfra group.28,29 These 2D p-GaAs samples with hole
mobility >2 × 106 cm2/Vs are the world’s highest mobility
hole samples ever and, taking into account the effective mass
difference (∼ a factor of 5) between GaAs electrons and
holes, compare favorably with the best (∼15 × 106 cm2/Vs)
available 2D electron mobilities. The main finding of the
work28 is that the mobility exponent α(n) increases from
0.7 at high hole density (∼1011 cm−2) to 1.7 at low density
(�1010 cm−2) for a modulation-doped sample with d = 800 Å.
Since the mobility remains high throughout (�105 cm2/Vs),
localization effects should not be playing a role. We therefore
believe that the experimental finding of Watson et al.28 is
a direct confirmation of the α(n) behavior for 2D holes
presented in our Figs. 5 and 6, where the total calculated α(n)
increases monotonically as the 2D hole density decreases from
n ∼ 1011 cm−2 to n ∼ 1010 cm−2. In fact, even the explicit α

values measured by Watson et al. agree well with our 2D
hole theoretical results presented in Figs. 5 and 6 with α

(n ∼ 1010 cm−2) increasing above the unscreened α = 3/2
value, reaching essentially the measured value of α ∼ 1.7
around n � 1010 cm−2. Thus, our theory provides a qualitative
explanation of the Watson et al. experimental results, including
the surprising finding of the intermediate-density α being
around 1.7 (>1.5).

(10) We conclude this section on the experimental relevance
of our theory by discussing graphene briefly. There has been
substantial research activity on studying the density-dependent
graphene conductivity,9,30 which is well beyond the scope of
our current work and has already been covered elsewhere. It
is known that scattering by near random charged impurities
located on the surface of the graphene layer or at the
graphene-substrate interface leads to a σ (n) ∝ n [i.e., μ(n) ∼
constant] in the intermediate density (kF d < 1) region, and in
the high-density regime σ (n) becomes sublinear most likely
because of short-range defect scattering, which gives σ (n) ∼
constant (i.e., μ ∼ 1/n); see Table I for details. Theory predicts
(Table I) that for kF d � 1, i.e., remote Coulomb disorder, μ(n)
and σ (n) should cross over to μ(n) ∼ √

n and σ (n) ∼ n3/2 in
graphene. This clear prediction could be verified by putting an
impurity layer (e.g., a SiO2 film) at various values of d from the
graphene layer and measuring σ (n) to check if the low-density
(2kF d � 1) σ (n) ∼ n behavior indeed crosses over to the
high-density σ (n) ∼ n3/2 behavior, as we predict theoretically.
In graphene, with a valley degeneracy of 2, 2kF d ≈ 2.5d̃

√
ñ,

where d̃ = d/1000 Å, and ñ = n/1010 cm−2. Hence, for n =
1012 cm−2 and d = 100 Å, 2kF d ≈ 2.5. Thus, the condition
2kF d � 1 would require an impurity layer at d ≈ 1000 Å
(with consequent very weak Coulomb disorder scattering)
which may lead to the complication that the subsequent
graphene resistivity will be entirely dominated by any underly-
ing short-range disorder (with σ ∼ n0), masking any σ ∼ n3/2

behavior arising from charged impurity scattering. One possi-
bility would be to put suspended graphene near a thick layer
(of thickness L) of disordered substrate with a 3D charged
impurity distribution, which would lead to [see Eqs. (38)–(40)]

τ−1 = Ni

πh̄2v0k
2
F

(
2πe2

κ

)2 ∫ 1

0
dx

x
√

1 − x2

(x + qs)2

× [1 − e−2L0x], (61)
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with Ni being the 3D impurity density in the impurity layer and
L0 = 2kF L, giving σ (n) ∼ n3/2 for kF L � 1 and σ (n) ∼ n

for kF L � 1. Such a 3D impurity layer underneath graphene
may manifest the superlinear σ (n) ∼ n3/2 conductivity behav-
ior predicted by the theory, but observing the shallow maxi-
mum in the exponent β/α for kF d ∼ 1 may still be difficult.

VII. OTHER EFFECTS

In this section, just before our conclusion in the next section,
we discuss “other effects” completely left out of our theoretical
considerations which may compromise and complicate direct
quantitative comparisons between our theory and experiment
although we believe that our theoretical conclusions should
apply generically to transport in high-mobility 2D semicon-
ductor systems at low enough temperatures.

First, phonon effects are neglected in the theory since
we explicitly consider the T = 0 situation (in practice,
T = 50–300 mK is the typical low-temperature experimental
situation mimicking the T = 0 theoretical situation). For
consistency between theory and experiment, the transport data
must therefore be taken at a fixed temperature T < TBG, where
TBG is the so-called Bloch-Grüneisen temperature, so that
acoustic phonon scattering contribution to the resistivity is
negligible compared with disorder scattering even in the high-
mobility 2D semiconductor structures under consideration in
this work. (Optical phonon transport is of no relevance for low-
temperature transport since kBT � h̄ωLO is explicitly satisfied
as h̄ωLO > 100 K typically.) TBG is given either by the Debye
temperature (for 3D metals) or by the energy of the acoustic
phonons with 2kF wave vector (for 2D semiconductors),
whichever is lower. We therefore have kBTBG = 2h̄kF vph,
where vph is the relevant acoustic phonon velocity in the
material. Putting in the appropriate sound velocity (vph), we
get TBG ≈ 2

√
ñ K and 10

√
ñ K in 2D GaAs and graphene,

respectively, where ñ is measured in units of 1010 cm−2. Thus,
down to carrier density n ∼ 109 cm−2, it is reasonable to
ignore phonon effects in transport at T ≈ 100 mK. Acoustic
phonon scattering has been considered elsewhere in the
literature.8

Second, we have used the Born approximation in calculat-
ing the scattering time and the RPA in calculating the screened
Coulomb disorder throughout. Both of these approximations
surely become increasingly quantitatively inaccurate at lower
carrier density although they should remain qualitatively valid
unless there is a metal-insulator transition (obviously, our
Drude-Boltzmann transport theory would not apply at or
below any metal-insulator transition density). RPA screen-
ing theory becomes increasingly quantitatively inaccurate as
carrier density (or the corresponding rs ∼ n−1/2 parameter)
decreases (increases), but there is no well-accepted systematic
method for incorporating low-density electronic correlation
effects going beyond RPA screening. Including low-density
correlation effects in Hubbard-type local field theories does
not change any of our qualitative conclusions. As for multiple
scattering effects31 beyond Born approximation, they typically
lead to higher order corrections to the resistivity so that
ρ ∝ ni , where ni is the impurity density, is no longer valid
and one must incorporate high-order nonlinear corrections to
the resistivity going as O(n2

i ) and higher. These nonlinear

multiscattering corrections become quantitatively important
for n � ni and can be neglected for the n > ni regime,
which is of our main interest in this paper. Our neglect
of multiscattering corrections beyond Born approximation is
consistent with our neglect of strong localization effects, both
of which will become important in the very low carrier density
regime (n < ni), where the Drude-Boltzmann theory becomes
manifestly inapplicable.

Third, we ignore all nonlinear screening effects, which have
been much discussed in the recent graphene literature,32 where
charged impurity-induced inhomogeneous electron-hole pud-
dle formation plays an important role at low carrier density,
since they are important only at very low carrier density
(n < ni), where our whole Boltzmann theoretical approach
becomes suspect anyway. For the same reason we also do
not take into account any scattering-screening self-consistency
effect,33 which may also become important at very low carrier
density (again, for n < ni).

Fourth, we ignore any possible spatial correlation effects
among impurity locations, assuming the disorder to arise from
completely uncorrelated random impurity configurations. If
the impurities are spatially correlated, it is straightforward
to include the correlation effect in the Boltzmann transport
calculation by simply multiplying the disorder potential term
in Eq. (8) by the corresponding structure factor s(q) for the
impurity distribution, i.e., by writing |Vq |2 → |Vq |2s(q) in
Eq. (8), where

s(q) = 1

ni

∣∣∣∣∣
ni∑

i=1

e−iq·ri

∣∣∣∣∣
2

− niδq0, (62)

where ri denotes the position of each impurity and the
sum going over all the impurities. Thus, if experimental
information about impurity correlations exists, it is then
straightforward to include such spatial correlation effects in
the Boltzmann transport calculations, as has indeed been done
in both 2D GaAs34 and graphene.35 Since intrinsic impurity
correlation information is typically unavailable, our model of
uncorrelated random disorder seems to be the obvious choice
from a theoretical perspective since it involves only one (the
impurity density ni) or two (ni and the impurity location d)
unknown parameters (and most often d is known from the
modulation doping setback distance and is thus not a free
parameter), whereas including impurity spatial correlations
would invariably involve the introduction of more unknown
free parameters, making the theory of dubious theoretical
relevance. Since our interest in this paper is not in an absolute
calculation of the conductivity or mobility (and hence ni

typically drops out of our theory if only one dominant scatter-
ing mechanism is operational), but in obtaining the universal
density dependence of conductivity, it is important to mention
that the main effect of impurity correlation is to suppress the
effect of ni on the resistivity without much affecting the carrier
density dependence particularly for the n > ni regime of our
interest. We mention that any intrinsic impurity correlations
actually increase the value of mobility from our uncorrelated
random disorder theory and thus compensate to some extent
the suppression of mobility arising from some of the effects
discussed above.
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Fifth, for our T = 0 theory to be strictly applicable to the
experimental data, the experimental temperature T should
satisfy the condition T � TF , where TF ≡ EF /kB is the
corresponding Fermi temperature of the system. Using the
known dependence of EF on the 2D carrier density n we see
that this implies T (K) � 4.2ñ for 2D n-GaAs, T (K) � 1ñ

for 2D p-GaAs, and T (K) � 150
√

ñ for graphene where ñ =
n/1010 cm−2. Thus, low-temperature experiments carried out
at T = 100 mK satisfy our T = 0 theoretical constraint very
well down to 109 cm−2 carrier density (except for 2D p-GaAs
hole system where the density cutoff is perhaps 5 × 109 cm−2).
Our direct numerical calculations at finite temperatures (not
shown in this paper) show that our calculated exponents α(n)
and β(n) = α + 1 at T = 0 continue to be quantitatively
accurate up to T � TF as long as the experimental data for
density dependence are taken at a fixed temperature. Thus,
our theory and numerics for α(n) and β(n) are quite robust
against thermal effects as long as phonons are unimportant
(i.e., T < TBG is satisfied).

We conclude this section of “other effects” by noting that the
most important drawback of our RPA-Drude-Boltzmann the-
ory is that it may fail systematically at low carrier density (n �
ni), where important physical effects (which are difficult to
treat theoretically) such as strong localization, metal-insulator
transition, nonlinear screening, inhomogeneous puddle for-
mation, multiscattering corrections, screening-scattering self-
consistency, etc., may all come into play making our theory
inapplicable to the experimental situation. We do, however,
anticipate our theory to be applicable to very low carrier
densities (n � 109 cm−2) in ultrahigh mobility 2D GaAs
and graphene systems where ni � 108 cm−2 typically. A
convenient experimental measure of the applicability of our
theory is the dimensionless quantity “kF l,” where l is the
elastic mean free path defined by l ≡ vF τ , where τ and
vF are, respectively, the transport relaxation time and Fermi
velocity. We find that kF l = 4.14ñμ̃ for 2D GaAs systems,
where ñ = n/1010 cm−2 and μ̃ = μ/(106 cm2/Vs), whereas
kF l = 0.2ñμ̃ for graphene. As long as kF l > 1, our Drude-
Boltzmann theory should be valid qualitatively and we there-
fore conclude that the theory remains quantitatively accurate
for n � 1010 cm−2 (1011 cm−2) for 2D GaAs (graphene)
systems in high-quality/high-mobility samples. Thus, there is
a large range of carrier density (1010–1012 for 2D GaAs and
1011–1013 for graphene), where our predictions for universal
density dependence can be experimentally tested through
low-temperature transport measurements.

The fact that all the “other effects” left out of our theory
affect transport at low carrier densities indicates that our
predicted density scaling of conductivity will systematically
disagree with the experimental data at lower carrier densities.
Of course, “lower” density is a relative term, and the dimen-
sionless quantities such as n/ni and kF l are the appropriate
quantities to define the regime of validity of our theory. As
n/ni and/or kF l (or even TF /T or TBG/T ) become smaller, the
Drude-Boltzmann theoretic predictions become increasingly
unreliable. Nevertheless, the theory remains predictive down
to 1010 cm−2 carrier density (or lower) in high-quality
(i.e., low values of ni) GaAs samples at low temperatures
(T ≈ 100 mK).

VIII. DISCUSSION AND CONCLUSION

We have developed a detailed quantitative theory for the
density-dependence of the zero-temperature conductivity (or
equivalently mobility) of (mainly) 2D and 3D electron and
hole metallic systems assuming transport to be limited by
(mainly Coulomb) disorder scattering within the semiclassical
Drude-Boltzmann transport theory. We neglect all quantum
interference (hence localization) effects as well as interaction
effects (except for the carrier screening of the bare impurity
Coulomb disorder, which is an essential qualitative and
quantitative ingredient of our theory), assuming them to be
small since our interest is the density dependence (rather than
the temperature dependence) of transport properties at low
fixed temperatures in high-mobility (kF l � 1, where l is the
elastic mean free path) samples.

We have systematically considered 3D and 2D doped
(n- and p-) semiconductor systems as well as 2D graphene but
the primary focus has been on n-GaAs and p-GaAs quantum
well based 2D electron or hole systems, mainly because
these systems continue to be of great interest in physics
and because the carrier density can easily be tuned in such
high-mobility 2D semiconductor systems, and the mobility
is dominated by Coulomb disorder at low temperatures. We
have taken into account both long-range Coulomb disorder
from charged impurities and zero-range disorder arising
from possible non-Coulombic short-range scatterers. The
primary focus has been the Coulombic disorder since this
is the main low-temperature resistive scattering mechanism
in semiconductors. Instead of discussing the nonuniversal
values of μ (and σ ), which depend17 on the actual impurity
content, we focus on the universal power-law density scaling
of transport properties: σ (n) ∼ nβ(n) and μ(n) ∼ nα(n) with
β = α + 1. These exponents α and β are sample independent
and depend only on the nature of the dominant disorder. We
provide asymptotic theoretical analysis of α and β (for various
types of underlying disorder) in the high- and the low-density
regimes and for near and far impurities. We have then verified
our analytical results with direct numerical calculations based
on the full solution of the Boltzmann transport theory in the
presence of disorder scattering.

Although our work is primarily theoretical, we provide a
critical comparison with various experimental results in the
literature (in 2D n-GaAs electrons and p-GaAs holes), finding
generally good agreement between our theoretically predicted
exponents α and β and low-temperature experimental findings
in high-mobility 2D electron and hole systems. In particular, a
truly exciting prediction, that α(n) has a maximum universal
value αmax ∼ 1.7 for all 2D systems at an intermediate carrier
density value (approximately defined by kF d ∼ 1), seems to
be consistent with recent (and old) experimental results from
several different groups (and for both 2D electrons and holes),
as discussed in detail in Sec. VI.

Our theory predicts α(n) to vary from α = 0 in the low-
density strong-screening regime (qTF � 2kF , n → 0) to α =
3/2 in the high-density weak-screening regime (qTF � 2kF ,
n → ∞) with a shallow maximum of α ∼ 1.7 at intermediate
carrier density for kF d ∼ 1, where d is the impurity location.
Although our work presented in this article is purely theoretical
describing the density-dependent and disorder-limited T = 0
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conductivity of 2D/3D carriers using the semiclassical Boltz-
mann theory approach, it is worthwhile to speculate about
the prospects for the experimental observation of our asymp-
totic low- (α →; β → 1) and high- (α → 3/2; β → 5/2)
density behavior of Coulomb disorder-limited 2D semicon-
ductor transport. These limiting exponents are theoretically
universal.

We first summarize the current experimental status in the
context of our theory. For scattering by background Coulomb
disorder (i.e., near impurities with 2kF d < 1), α(n) ≈ 0.5–0.8
typically, and for scattering by remote impurities (2kF d > 1)
in the modulation doping layer, α(n) > 1–1.3 typically with a
few atypical cases showing α(n) ∼ 1.7 (> 3/2) around kF d ∼
1. All of these are intermediate density results in our theory
where qs (=qTF/2kF ) and 2kF d are neither extremely large
nor extremely small. Thus, the basic experimental situation is
in excellent agreement with our theory as it should be because
the 2D doped semiconductor transport (as well as graphene)
is known to be dominated by screened Coulomb disorder with
near or far charged impurities being the dominant scattering
mechanism depending on the sample and carrier density.

First, we discuss the high-density situation which is theoret-
ically more straightforward and where the Boltzmann theory
is almost exact. As carrier density increases, the semiclassi-
cal Boltzmann theory becomes increasingly more valid for
Coulomb disorder-limited transport properties since the con-
ductivity itself and consequently kF l increases, thus making
the system progressively more metallic. In addition, increasing
density decreases the metallic rs parameters, the dimensionless
Wigner-Seitz radius, given by rs = me2/(κh̄2√πn) for 2D
semiconductor systems. Since rs ∼ n−1/2, at high carrier
density (e.g., rs = 0.5 and 2.5 for 2D n-GaAs and p-GaAs,
respectively, at n = 1012 cm−2) rs is small, making our theory
using RPA screened effective Coulomb disorder systematically
more valid at higher carrier density as RPA becomes exact at
low rs . Thus, it appears that the ideal applicability of our theory
is in obtaining the high-density 2D system.

This is indeed true except that new physical (rather than
theoretical) complications arise, making it problematic for a
direct comparison between our theory and experiment on 2D
systems at high carrier density. Two new elements of physics
come into play at high carrier density, both contributing to
the suppression (enhancement) of mobility (scattering rate):
Intersubband scattering becomes important as the Fermi level
moves up and comes close to (or crosses over into) the
higher confined subbands of the quasi-2D quantum well,
thus opening up a new scattering channel, and short-range
scattering at the interface and by alloy disorder (in AlGaAs)
becomes important as the self-consistent electric field created
by the electrons themselves pushes the carriers close to the
interface at high carrier density. Both of these physical effects
eventually suppress the monotonic growth of μ(n) and σ (n)
with increasing density, and eventually μ(n) starts decreasing
with increasing carrier density at high-enough density (for
n > 3 × 1011 cm−2 in GaAs-AlGaAs systems) instead of
continuing as μ(n) ∼ n3/2 as it would in the high-density
regime if Coulomb disorder is the only dominant scattering
mechanism with no other complications. Since at high density
τ−1(n) ∼ nα with α > 1 for Coulomb disorder, eventually at
some (nonuniversal sample dependent) high density Coulomb

disorder becomes insignificant compared with the short-range
scattering effects. Obviously, the density at which this happens
is nonuniversal and depends on all the details of each sample.
However, in all 2D systems and samples, eventually, when
Coulomb disorder-induced scattering rate is sufficiently small,
a high-density regime is reached where the mobility stops
increasing (and even starts decreasing). In Si MOSFETs10 this
effect is very strong already around ∼1012 cm−2 because of
considerable surface roughness scattering at the Si-SiO2 inter-
face, and μ(n) decreases with increasing n at higher density.
Even in high-mobility GaAs systems, μ(n) saturates (i.e., α =
0) and eventually starts decreasing at a nonuniversal density
around n � 3 × 1011 cm−2. Boltzmann transport theory can be
easily generalized to incorporate intersubband scattering and
surface scattering, but the physics is nonuniversal and beyond
the scope of our current work.

The low-density (n → 0) situation is fundamentally inac-
cessible to our Boltzmann transport theory since all doped
semiconductor systems (3D or 2D) eventually undergo an
effective metal-insulator transition at (a nonuniversal) low
(critical) density with the semiclassical Boltzmann theory
eventually becoming invalid as a matter of principle at a
sufficient low sample-dependent carrier density. In 3D, this
transition may be a true Anderson localization transition
as kF l → 1 with decreasing density making the Boltzmann
theory inapplicable. In 2D semiconductors, which are the
systems of our main interest, the observed metal-insulator
transition at a nonuniversal sample-dependent critical den-
sity nc is likely to be a crossover phenomenon5,9 since
the scaling theory of Anderson localization predicts 2D to
be the critical dimension with no localization transition.
There is considerable experimental support for the observed
low-density 2D metal-insulator transition to be a density
inhomogeneity-driven percolation transition at a nonuniversal
critical density nc, where charged impurity-induced Coulomb
disorder drives the system into an inhomogeneous collection
of “puddles” with a mountain-and-lake potential landscape
where semiclassical metallic transport becomes impossible
for n < nc, with nc being the disorder-dependent percolation
transition density.20,21,36–38 The critical density nc depends
crucially on the sample quality and is typically below 109 cm−2

in high-mobility GaAs systems; in Si MOSFETs, where
disorder is very strong, nc ≈ 1011 cm−2, and this is why we
have left out 2D Si systems from our consideration in this work
although our basic theory applies well to 2D Si-based systems
for n > 1011 cm−2.

Our semiclassical Boltzmann theory works for n � nc,
but for n → nc, one must include the inhomogeneous puddle
formation and the associated percolation transition even in the
semiclassical theory.39 This is the reason our theory fails for
real 2D systems in the n → 0 limit unless the level of disorder
is extremely low (even then our Boltzmann theory is valid only
for n � nc and the n → 0 limit is fundamentally inaccessible).

In spite of this fundamental difficulty in accessing the
low-density (i.e., n → 0) limit using our theory directly, it
turns out that we can approximately include the effect of a
semiclassical percolation transition in our theory by an indirect
technique in the density regime n > nc above the effective
metal-insulator transition (but still in a reasonably low-density
regime for high-quality samples where nc can be very low).
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Since the percolation picture essentially eliminates a certain
fraction of the carriers from being metallic, we can assume
that the effective conductivity (mobility) for n � nc is given
by the same exponent β (α) calculated in our theory with the
only caveat that β (α) is now the exponent only for the actual
“metallic” free mobile carrier fraction of the whole system.
We can then write

μ = A(n − nc)α = Bnα′
, (63)

where α(n) is the real exponent we calculate theoretically from
the Boltzmann theory and α′(n) is the effective (apparent)
exponent obtained experimentally from

α′(n) = d ln μ(n)

d ln n
(64)

by using the actual data for μ(n) without taking into account
any complications arising from the existence of nc. Using
Eqs. (63) and (64), we immediately get the following rela-
tionship connecting the effective exponent α′ with the real
exponent α for n � nc:

α′ = α(1 − nc/n)−1. (65)

We note that α′ ≈ 2α for n = 2nc. Equation (65) is valid within
logarithmic accuracy and connects the measured low-density
(n small, but n � nc being still valid) exponent α′(n) with
the real Boltzmann theory exponent (as in Table I) α(n).
Since nc can be measured experimentally by checking where
σ (n) vanishes, and defining nc to be σ (nc) = 0 at T = 0,
we then immediately see that the measured low-density
effective exponent α′(n) > α(n) always, and in fact, α′(n) →
∞ as n → n+

c . Thus, we conclude that the experimentally
measured mobility exponent will eventually start increasing
as n decreases approaching nc. For n � nc, we get α′ ≈ α,
but the leading correction to α goes as α′ = α(1 + nc/n) for
n � nc. We note that the existence of nc enhances α over its
nominal value of Table I even for n � nc.

We have checked existing experimental results in the litera-
ture (to the extent that nc, α′, etc., are known experimentally),
finding that our prediction of Eq. (65) seems to apply quite
well. We note that since the pristine calculated α(n) decreases
with decreasing n (see Figs. 1–8) for all models of Coulomb
disorder at low carrier density, Eq. (65) predicts that the
apparent exponent α′ would be close to α for n � nc, but
would then manifest a minimum at a density n0 (>nc) defined
by the equation

dα

dn
= α(nc/n)

(n − nc)
(66)

at n = n0 > nc. For n < n0, α′ will increase as n decreases
(with α′ being a minimum at n = n0), eventually diverging
as (1 − nc/n)−1 as n → n+

c . We find this behavior to be
qualitatively consistent with all the existing data in the liter-
ature although a precise quantitative comparison necessitates
more low-temperature data showing μ(n) all the way down to
n = nc, where μ(n) = 0. Careful measurements of σ (n) close
to nc are lacking in the literature, so we cannot form a definitive
conclusion on this matter at this stage.

We conclude by pointing out that very close to the
percolation transition, where n − nc � nc, i.e., n � 2nc, we
expect the critical behavior of 2D percolation transition to

possibly come into play, where the conductivity may have
a completely different universal 2D percolation exponent δ

(totally distinct from α or α′), which has nothing to do with
our Boltzmann theory:

σ ∼ (n − nc)δ (67)

for (n − nc) � nc. This percolation critical exponent δ for
σ (n) can manifest itself only very close to nc (i.e., n � 2nc),
and for n � 2nc we believe that our effective theory predicts
an effective conductivity exponent β ′ = α′ + 1 given by

β ′ ≈ α

1 − nc/n
+ 1 = β − nc/n

1 − nc/n
, (68)

for n � 2nc. Again, as for α′, β ′ ≈ β = α + 1 for n � nc.
The conductivity exponents δ and β ′ arise from completely
different physics (from percolation critical theory near nc

and Boltzmann theory far above nc, respectively) and have
nothing to do with each other. How the transition or crossover
occurs even within the semiclassical theory from β ′ (for
n � 2nc) to δ for (n � 2nc) is a very interesting question,
which is beyond the scope of the current work. In our current
work, we have, however, solved [Eqs. (63)–(68) above] the
problem of the crossover from the effective exponent α′ (or
β ′) for n � 2nc to the true Boltzmann exponent α (or β)
for n � 2nc.

We give one possible experimental example for the ob-
served crossover from the Boltzmann exponent α (for n � nc)
to α′ (for n � nc) arising in Jiang et al.40 In this work,40 the
conductivity was measured in a high-mobility modulation-
doped 2D GaAs electron system, finding the effective mobility
exponent α ≈ 0.9–1.1 in the high-density range (n ∼ 5 ×
1010–3 × 1011 cm−2) for d = 350–750 Å. This range of n

and d converts to 2kF d = 1–5 and qs ≈ 1, which is the
intermediate density range for all our Coulomb disorder
mechanisms in Table I. Given that the measured mobility
in Ref. 40 was relatively modest, μ ∼ 105–106 cm2/Vs, it
is reasonable to expect, based on our numerical mobility
calculations, that both remote and background Coulomb
scattering are equivalently effective, leading to α ∼ 0.9–1.2
according to our numerical results of Sec. IV. Thus, the
“high-density” exponent (α ∼ 1) in the Jiang sample agrees
well with our theory. The interesting point to note in the
current context is that Jiang et al.40 found a large increase
of the measured exponent α as n decreases, which is in
apparent disagreement with our analytical theory, which
always gives α(n) decreasing with decreasing n. Although
other possibilities (e.g., multiscattering) cannot be ruled out,31

we believe that the Jiang et al. data indicate a crossover from
α to α′ as n decreases. In particular, the measured mobility
exponent increased from α ∼ 1 to α ∼ 4 as n decreased
from ∼1011 cm−2 to ∼2 × 1011 cm−2 (with also a factor of
50 decrease in mobility). Assuming nc ∼ 1.5 × 1011 cm−2

(which is consistent with the data), we get [from Eq. (65)]
α′ ≈ 4α ≈ 4 at n ≈ 2 × 1010 cm−2, which is in excellent
agreement with the data.40 We therefore believe that the Jiang
et al. experiment manifests our predicted crossover behavior
from α(n) to α′(n) as n approaches nc from above.

We note that kF l ≈ 1 in the Jiang et al. sample for
n ≈ 3 × 1010 cm−2 (where μ ≈ 105 cm2/Vs seems to
have been reached starting from μ ∼ 106 cm2/Vs for
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n ∼ 3 × 1011 cm−2), and thus the identification of
nc ≈ 1.5 × 1010 cm−2 is meaningful. Clearly, our simple
Drude-Boltzmann theory applies for n � 3 × 1010 cm−2, but
not for n < 3 × 1010 cm−2, where kF l ∼ 1. What is encour-
aging is that the simple modification of the theory introducing
the crossover exponent α′ = α(1 − n/nc)−1 seems to describe
the experimentally observed density scaling exponent of the
observed experimental mobility at low carrier densities.

We conclude by mentioning that direct numerical perco-
lation calculations indicate δ ≈ 1.32 in 2D systems, which is
unfortunately too close to our calculated value of β in the
low-density Coulomb disorder-dominated Boltzmann theory,
where (see Figs. 1–6 and 8) the low-density (n � 1010 cm−2)
α value is α ≈ 0.3–0.5, implying low-density β ≈ 1.3–1.5.
Since high-mobility 2D GaAs samples typically have nc ≈
109 cm−2, it is unclear whether the existing conductiv-
ity exponent measurements for the putative metal-insulator
transition20,21,36,37 for the 2D density-driven metal-insulator
transition really is obtaining δ or is just a measurement of
our calculated β = α + 1, which at low values of n would
be rather close to the experimentally measured percolation
exponent of 1.3–1.5. The current experiments do not really
quantitatively measure σ (n) in the n < 2nc regime necessary
for obtaining δ, and we feel that much more work will
be needed to establish the nature of the σ (n → nc) → 0
transition observed in the laboratory. It is possible, even
likely, that the existing measurements have only measured
the low-density (but still n � nc) value of our calculated
(noncritical) Boltzmann exponent β ≈ 1.3–1.5 in n- and p-
2D GaAs systems.

Before concluding, it is appropriate (and important) to
emphasize the approximations and the limitations of the
theory developed here so that its regime of applicability
and validity is manifestly clear. The theory is explicitly a
semiclassical Boltzmann transport theory, and as such all the
caveats and the constraints of a semiclassical transport theory
apply to our work. In addition, even within the Boltzmann
transport theory, we restrict ourselves to zero temperature and
consider resistive scattering only by random quenched charged
impurities, ignoring all other disorder and phonon effects.
By definition, our semiclassical transport theory neglects
quantum interference and localization effects as well as
all electron-electron interaction effects beyond screening of
the quenched Coulomb disorder by the carriers themselves,
which is, however, a key ingredient of the theory since it
provides the screened density-dependent effective disorder,
leading to the physical effects discussed and described in
our work. Our theory thus has two kinds of approximations
and simplifications, essential and nonessential, as discussed in
some detail below.

The nonessential approximations are our restriction to
T = 0 and our neglect of other scattering effects such as
phonons. These are easy to include in the Boltzmann transport
theory, and, in fact, there are many papers in the literature
dealing with the temperature dependence of 2D transport, in-
cluding several by us, where both finite-temperature screening
and phonon scattering have been considered in the context of
2D transport properties.5,8 It is also straightforward to include
resistive scattering in the theory, for example, by interface

roughness.10 We neglect all of these effects simply because
they are not germane at low temperatures and in high-mobility
2D heterostructures (or graphene), where these effects are neg-
ligibly small. Our focus in this work is the density dependence
of 2D transport at constant low temperature, and therefore it
is sufficient to consider only the dominant scattering effects
from the long-range charged impurity disorder. How low must
the temperature be for our theory to apply? Obviously, phonon
scattering has to be negligibly small, which implies that, for
our theory to be valid, the temperature regime must be below
the Bloch-Grüneisen temperature41 TBG, which is given by
TBG = 2h̄kF vph, where vph is the relevant acoustic phonon
velocity. Since kF is proportional to the square-root of density,
TBG also goes as the square root of the carrier density, but
typically satisfies TBG > 5 K in carrier densities of our interest.
Thus, phonon effects can be safely neglected for experiments
carried out below 1 K. The condition for the zero-temperature
Boltzmann transport theory to be valid also requires that the
experimental temperature scale should be lower than the Fermi
temperature TF = EF /kB , which depends on carrier density
n linearly. Again, at carrier densities of experimental interest,
TF > 10 K, and therefore our T = 0 transport theory is very
well valid as long as the experimental temperature scale is 1 K
or below.

Our essential approximations are the neglect of localization
and interaction effects in the theory. We first discuss the
localization aspect since it is certainly the more important
issue as all states are thought to be localized in two dimensions
(at least in the noninteracting theory) according to the scaling
theory of localization.42 It may at first appear that our zero-
temperature 2D semiclassical transport theory is doomed to
fail because of our neglect of localization, but this is not so
for a number of reasons. First, the localization length in the
scaling theory is exponentially long in the transport mean free
path, and as such the localization length will be larger than
the system size (all experimental systems are obviously of
finite size, typically 10–100 s of μm) for clean systems (with
low disorder and hence very long mean free path) of interest
to us in this work. In such a situation (i.e., localization length
> system size), the mean-field-type Boltzmann theory used
by us in the current work becomes an excellent approximation
since the system is effectively an extended “metallic” system.
Second, the qualitative effect of scaling localization manifests
itself in the temperature dependence of the conductivity and
not in the density dependence of interest to us. Thus, as long
as the experiments are carried out at a fixed low temperature
(∼0.1 K–1 K), varying just the carrier density in order to study
the density-dependent conductivity (and not the temperature-
dependence), localization would have no effect on our theoreti-
cal predictions. Indeed, very few 2D transport experiments ever
observe the predicted logarithmic temperature dependence of
the conductivity arising from the scaling theory of localization,
and the very few which do43 usually involve rather highly
disordered samples not of any interest to our work. The
basic assumption of our theory is that the logarithmic weak
localization contribution to the conductivity is very small
compared with the semiclassical conductivity calculated by
us, and it is easy to ensure this experimentally by varying the
temperature to confirm that there is no insulating logarithmic
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correction to the conductivity [which has never been observed
by anyone in any high-mobility (with a mobility exceeding
300 000 cm2/Vs, for example) 2D samples in any experiment].
Thus, as long as we restrict to low-disorder and high-mobility
2D systems, weak localization corrections should not be a
complication for the applicability of our theory. Our T = 0
theory will thus remain valid up to T = 0.05 K–5 K or above
(depending on the carrier density) as long as T < TBG and
T � TF conditions are satisfied as discussed in the preceding
paragraph.

The real constraint imposed by localization is that our
theory is valid only to carrier densities far above the critical
density (nc) for the putative 2D metal-insulator transition, as
we discussed earlier in this paper. As long as the n � nc

condition is satisfied by the experiments, our theory should be
applicable for T < TBG and T � TF without any problem.
Since nc depends strongly on the system (e.g., nc ∼ 1011

and 109 cm−2, respectively, for electrons in Si MOSFETs
and electrons or holes in GaAs 2D systems), the regime of
validity for our theory will depend strongly on the experimental
systems, varying from >1011–1012 cm−2 in density (and
0.1 K–5 K in temperature) for Si MOSFETs to 109–1011 cm−2

in density (0.025 K–2 K in temperature) in 2D GaAs systems.
In particular, our Boltzmann theory remains valid as long as
the carrier density is high enough to satisfy the condition
kF l > 1, where l is the transport mean free path. This condition
should be satisfied as long as the resistivity is less than roughly
13 k�, and this precisely defines the regime of applicability
of our theory. In the high-mobility 2D samples of interest,
the resistivity is typically less than 1 k�, and as such, our
zero-temperature Boltzmann theory can be used to interpret the
density-dependent transport at fixed low temperatures (∼1 K
or below).

Finally, interaction effects beyond screening are left out
of our theory completely. In a very clean system, electron-
electron interaction cannot affect the dc conductivity by virtue
of Kohn’s theorem (since electron-electron scattering con-
serves current), but in a disordered system with low disorder, it
gives rise to a linear temperature correction to the conductivity6

just as screening effects do.5 This temperature-dependent
correction is small at high density and low temperature since
it goes as T/TF . Thus, our neglect of interaction effects
(beyond screening) is extremely well justified in studying the

density dependence of conductivity at fixed low temperatures
(i.e., T � TF ) in low-disorder samples, which are precisely
the systems of interest in the current work. At very low
densities (typically well below 109 cm−2) the 2D system could
undergo a Wigner crystallization transition driven entirely by
electron-electron interaction effects,44 and our theory will fail
completely. However, the typical 2D Wigner crystallization
densities are extremely low (�109 cm−2), and the theory
remains valid as long as the experimental density is well above
the Wigner transition density, which is almost universally the
situation.

The above discussion shows that our theory for the density
dependence of 2D transport at fixed temperatures should be
of quantitative validity in high-quality 2D samples (mobilities
higher than 200 000 cm2/Vs for GaAs-based 2D systems) for
T = 25 mK–5 K and n > 109 cm−2 as long as the density is
above the apparent 2D metal-insulator transition density. At
higher temperatures, phonons and Fermi temperature effects
become relevant, and at lower densities localization and
interaction effects become important, and our theory is no
longer applicable.

We should mention in this context that the above discussion
of the limitations of our theory applies mostly to the 2D
semiconductor systems. By contrast, our theory is valid quite
generally in graphene (as long as disorder is low) because
localization and Wigner crystallization do not happen in
graphene, and phonon effects are generally very weak in
graphene.8,45 Thus, the Boltzmann transport theory works well
for graphene as long as the carrier density is higher than the
disorder-dependent puddle density (109–1012 cm−2 depending
on the disorder in the sample) in the system.

In conclusion, we have developed a comprehensive theory
for the universal density scaling of the low-temperature
transport properties of 2D and 3D doped semiconductors and
graphene, concentrating on the role of background Coulomb
disorder and obtaining, both theoretically and numerically, the
power law exponents for the density-dependent mobility and
conductivity within the Boltzmann transport theory.
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