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Strongly anisotropic spin response as a signature of the helical regime in Rashba nanowires
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Rashba nanowires in a magnetic field exhibit a helical regime when the spin-orbit momentum is close to the
Fermi momentum, kF ≈ kSO . We show that this regime is characterized by a strongly anisotropic electron-spin
susceptibility, with an exponentially suppressed signal along one direction in spin space, and that there are no
low-frequency spin fluctuations along this direction. Since the spin response in the gapless regime kF �≈ kSO has
a power-law behavior in all three directions, spin measurements provide a signature of the helical regime that
complements spin-insensitive conductance measurements.
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I. INTRODUCTION

Helical Luttinger liquids, in which the spin of the electrons
is locked to their direction of motion, are a central ingredient
for a number of recent theoretical proposals and experiments
aiming at the detection of zero energy Majorana bound states.1

Besides their emergence as topological edge states2–5 and their
formation in topological insulator nanowires,6–8 (quasi)helical
Luttinger liquids can for instance be engineered by placing
carbon nanotubes in an electric field,9 by subjecting a Rashba
spin-orbit coupled quantum wire (“Rashba nanowire”) to a
magnetic field,10 or by appropriately coupling the electrons
in a quantum wire to a Kondo lattice in the Ruderman-Kittel-
Kasuya-Yosida (RKKY) liquid regime, such as the the nuclear
spins in the wire.11–14

One convenient experimental signature of the helical state
is provided by the electric conductance through the wire,
which drops from 2e2/h to 1e2/h when the wire becomes
helical.15 In a Rashba nanowire, this interesting regime can
be reached by tuning the chemical potential into the partial
gap around zero momentum, see Fig. 1. Even in the absence
of spin-orbit interactions, however, lowering the temperature
sufficiently can lead to the formation of a helical electronic
state due to a spontaneous ordering of the nuclear spins.12–14,16

In the remainder, we argue that the spin physics of the wire
provides an additional and in fact complementary signature
of this state, which can be probed by spin fluctuation or
spin susceptibility measurements. Thanks to considerable
experimental advances, these measurements are now believed
to be within reach.17 Different from the conductance, the spin
physics depends not only on the presence of a gap, but also
on the spin state of the residual gapless modes. We find that
the spin susceptibility and spin fluctuations become strongly
anisotropic. The susceptibility is exponentially suppressed
along the direction set by the spin-orbit coupling in the wire,
and there are no low-frequency spin fluctuation along this
direction. Related physics has been discussed in the context of
the RKKY interaction mediated by the edge states of quantum
spin Hall samples.18 While the spin SU(2) symmetry is broken
from the outset by the spin-orbit interaction and the magnetic
field, the exponential suppression of the susceptibility along
one direction, present only in the helical regime, is markedly
different from the anisotropic power-law decay of the spin
susceptibility in nonhelical Rashba nanowires19 or carbon
nanotubes.20 Our analysis illustrates that interaction effects are

important for the experimental detectability of the anisotropic
spin physics, and furthermore quantifies the effect of the modes
gapped by the combination of spin-orbit coupling and applied
magnetic field, which are absent in ideal helical systems.

The paper is organized as follows. After defining the model
in Sec. II, we first discuss the static electron spin susceptibility
in Sec. III, and contrast the usual response outside the
quasihelical regime to the strongly anisotropic behavior within
this regime. In Sec. IV, we turn to the dynamic spin response
of the system, and specifically address the spin-fluctuation
spectrum, which is also strongly anisotropic. Our results are
finally summarized in Sec. V.

II. MODEL

To analyze the spin response in the helical regime, we
study an interacting single subband quantum wire with sizable
Rashba spin-orbit coupling, such as an InAs or InSb wire,21

which is subject to a magnetic field parallel to the wire axis and
perpendicular to the direction set by the spin-orbit coupling.
This setup is depicted in Fig. 1(a). Choosing the spin-orbit
direction as the spin quantization axis, the system can be
modeled by the Hamiltonian

H =
∫

dx
∑

ν=↑,↓
c†ν(x)

(−∂2
x

2m
− μ

)
cν(x)

−
∫

dx
∑
ν,ν ′

kSO

m
c†ν(x) σ z

νν ′ (−i∂x)cν ′(x)

+
∫

dx
∑
ν,ν ′

c†ν(x)
σ νν ′

2
cν ′ (x) · B

+
∫

dx

∫
dy U (x − y) ρ(x) ρ(y), (1)

where cν(x) annihilates an electron of spin ν = ↑,↓ at position
x, the band mass of the electrons is m, the chemical potential
is μ, the spin-orbit momentum reads kSO , the vector of Pauli
matrices is given by σ , and ρ(x) = ∑

ν c†ν(x)cν(x) is the total
density at position x. The Coulomb interaction, screened on
some length scale larger than the width of the wire, is denoted
by U (x − y), while B = (B,0,0)T is the applied static and
homogeneous magnetic field. In this setup, the latter field
is well known to induce a gap in the electronic spectrum
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FIG. 1. (Color online) Panel (a) depicts the analyzed setup. A
quantum wire with Rashba spin-orbit interaction ∼ηSO · S is subject
to a magnetic field parallel to the wire axis and perpendicular to
the direction set by the spin-orbit coupling (S denotes the electron
spin). Panel (b) shows the spectrum E(k) of the Rashba nanowire as
a function of the momentum k. The magnetic field B mixes the spin
species around k = 0 and thus opens up a gap. For large chemical
potentials μ, the particles close to the Fermi points at ±k+ and
±k− with k± = kF ± kSO have spins approximately aligned along
the direction set by the spin-orbit interaction. The colors in panel
(b) indicate this spin polarization (red corresponds to spin up and
blue to spin down). The dotted lines show the spin-polarized bands
in the absence of a magnetic field.

around zero momentum; see Fig. 1(b).15 If the chemical
potential is tuned outside the gap, the quantum wire is in
a regular spinful Luttinger liquid regime with four gapless
modes. If the chemical potential is placed inside the gap, the
remaining gapless modes can for our purpose be viewed as
a helical Luttinger liquid (note that for the correct treatment
of disorder22 or the calculation of observables such as the
electronic spectral density or the optical conductivity,23,24 this
approximation is insufficient).

III. STATIC SPIN SUSCEPTIBILITY

We calculate the spin response of the wire by first
performing a gauge transformation on the electron operators
that trades the spin-orbit interaction for an oscillation in the
magnetic field,11

c↑(x) = eixkSO c′
↑(x), c↓(x) = e−ixkSO c′

↓(x). (2)

This brings the Hamiltonian to the form

H =
∫

dx
∑

ν=↑,↓
c′
ν
†(x)

(−∂2
x

2m
− μ − k2

SO

2m

)
c′
ν(x)

+
∫

dx

(
c′
↑
†(x)c′

↓(x) e−2ixkSO
B

2
+ H.c.

)

+
∫

dx

∫
dy U (x − y) ρ(x) ρ(y). (3)

After linearizing the spectrum around the Fermi points at
momentum ±kF = ±

√
2mμ + k2

SO , we can treat the wire
by standard bosonization techniques.25 When the chemical
potential is tuned far from the gap, such that the system
can be viewed as a regular spinful Luttinger liquid, the
magnetic field yields only terms that oscillate rapidly at
momentum ±2kSO and ±2(kSO ± kF ). For our analysis, these
terms can be neglected. The effect of Coulomb interaction,
on the other hand, is captured by renormalized Luttinger
liquid parameters. The electron-spin susceptibility of the
wire is now obtained from the imaginary time expression
χij

′(x − x ′,τ − τ ′) = 〈TτS
′
i(x,τ ) S ′

j (x ′,τ ′)〉, where S′(x,τ ) =∑
ν,ν ′ c′

ν
†(x,τ ) (σ νν ′/2) c′

ν ′ (x,τ ) is the electron spin at position
x and imaginary time τ . The spin susceptibility in the gapless
Luttinger liquid regime has essentially already been derived
in Refs. 12 and 13. The experimentally most important static
part of the retarded spin susceptibility, which follows from
the analytic continuation of the imaginary time expression,
diverges at momentum ±2kF due backscattering processes,

χR
xx,yy

′(q,ω → 0) ∼
∑
κ=±

|q + κ 2kF |2gxy−2, (4a)

χR
zz

′(q,ω → 0) ∼
∑
κ=±

|q + κ 2kF |2gz−2, (4b)

where q denotes the momentum and ω the frequency, and
where 2gxy = Kc + 1/Ks and 2gz = Kc + Ks are determined
by the Luttinger liquid parameters in the charge sector Kc and
in the spin sector Ks . At finite temperatures, the divergences
turn into sharp dips.12,13 Most importantly, the electron spins
thus have a singular response in all three directions. The experi-
mentally measurable spin susceptibilities can be obtained from
Eq. (4) by undoing the gauge transformation given in Eq. (2).
As a result, the susceptibility in the initial laboratory gauge has
components χxx = χyy with momentum shifted divergences
at q = ±2(kF + kSO) and q = ±2(kF − kSO) as compared
to gauge-transformed expressions χxx

′ = χyy
′, while the off-

diagonal spin susceptibility χxy becomes nonzero in the
laboratory gauge, and also diverges at q = ±2(kF + kSO) and
q = ±2(kF − kSO). The form of χzz = χzz

′, on the other hand,
is unchanged, and χxz,yz remain zero. The momenta of the
divergences of the spin susceptibility correspond to the various
possible backscattering processes in the laboratory gauge, as
can be inferred from the spectrum shown in Fig. 1(b).

When the chemical potential is tuned inside the gap,
the spin susceptibility should be qualitatively different from
Eq. (4). Figure 1 indicates that in the helical regime, low-
energy backscattering is only possible between the two outer
Fermi points, and therefore must involve a spin flip. As
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a consequence, we expect that χxx,yy,xy are still singular,
but only at momentum q = ±2(kF + kSO), while χzz should
be strongly suppressed because it relies on backscattering
processes without spin flip. The electron-spin response of the
quantum wire should thus be strongly anisotropic (effectively
two-dimensional in spin space) when the chemical potential is
tuned inside the gap.

To quantify this qualitative argument, we repeat the
above analysis for kF = kSO . Starting from Eq. (3), we
decompose the electronic operators into right and left movers
according to c′

ν(x) = eixkF Rν(x) + e−ixkF Lν(x). The latter can
be bosonized as rν(z) = (Urν/

√
2πα) e−i[rφν (z)−θν (z)], where

r = R,L ≡ +,−, while the corresponding Klein factors are
denoted as Urν , and α is a short distance cutoff.25 Importantly
for our discussion, the bosonic fields φν and θν are canonically
conjugate to each other. As a main difference from the
gapless Luttinger liquid regime analyzed above, the magnetic
field now yields nonoscillatory cosine potentials for terms
connecting left-moving spin-up particles and right-moving
spin-down particles. Introducing the usual spin and charge
degrees of freedom via the canonical transformation φc

s (z) =
(φ↑ ± φ↓)/

√
2 and θc

s (z) = (θ↑ ± θ↓)/
√

2, and dropping the
Klein factors which are not important for our discussion,
the nonoscillatory part of the Hamiltonian can be recast
into the form

H =
∫

dx

2π

∑
i=c,s

(
ui

Ki

(∂xφi)
2 + uiKi(∂xθi)

2

)

+
∫

dx
B

2πα
cos(

√
2(φc + θs)). (5)

As before, Kc and Ks denote the Luttinger liquid parameters
in the charge and spin sector, while uc and us are the
corresponding effective velocities. Following Refs. 12 and 13,
we find that the magnetic field is a relevant perturbation
in the renormalization-group (RG) sense and gaps out the
field φ+ ∼ φc + θs that corresponds to left-moving spin-up
particles and right-moving spin-down particles. This gap is
precisely the gap around zero momentum in the laboratory
gauge shown in Fig. 1.11 In order to calculate the electron-spin
susceptibility in this partially gapped regime, we perform
a canonical transformation that switches from the spin and
charge degrees of freedom to the field φ+ ∼ φc + θs and an
appropriate linearly independent combination of φc and θs ,13

φc = Kc√
K

φ+ +
√

Kc

Ks K
φ−, (6a)

θc = 1√
K

θ+ + 1√
Kc Ks K

θ−, (6b)

φs = 1√
K

θ+ −
√

Ks Kc

K
θ−, (6c)

θs = 1

Ks

√
K

φ+ −
√

Kc

Ks K
φ−, (6d)

with K = Kc + 1/Ks . The RG equation for the magnetic
field may now be derived in a real-space RG analysis that
parametrizes the running short-distance cutoff as α(b) = α b.

It reads 13

∂B

∂ln(b)
= (1 − K/2) B. (7)

The magnetic field is thus RG relevant for K < 2, which is
fulfilled in interacting quantum wires.26–28 The RG flow is
integrated until the length scale u+(b)/�(b) associated with
the running gap �(b) of φ+ equals the running short-distance
cutoff (at a given RG step, this gap can be defined by the
expansion of the sine-Gordon potential to second order, which
is strictly speaking only justified at the end of the flow25). We
obtain the low-energy Hamiltonian at the end of the flow as

H =
∫

dx

2π

(
u∗

+
K∗+

(∂xφ+)2 + �2

K∗+u∗+
φ2

+ + u∗
+K∗

+(∂xθ+)2

)

+
∫

dx

2π

(
u∗

−
K∗−

(∂xφ−)2 + u∗
−K∗

−(∂xθ−)2

)

+
∫

dx

2π
[U ∗

φ (∂xφ+)(∂xφ−) + U ∗
θ (∂xθ+)(∂xθ−)], (8)

where u∗
± and K∗

± are the strong-coupling values of the
velocities and Luttinger liquid parameters in the ± channel,
while the gap is � = u∗

+/α∗ with α∗ being the renormalized
short-distance cutoff. The interactions U ∗

φ and U ∗
θ are the

strong-coupling values of the interactions introduced by the
canonical transformation given in Eq. (6). These interactions
constitute further subleading corrections,13 which essentially
renormalize the Luttinger liquid parameters and velocities. In
a mean-field picture, the interaction U ∗

φ is subleading because
the field φ+ is pinned to one of the minima of the sine-Gordon
potential in Eq. (5). Fluctuations around the mean field are
suppressed by the gap � that is of the order of the bandwidth
of the renormalized theory. The interaction U ∗

θ is most
conveniently analyzed by switching from the Hamiltonian
to the associated (imaginary time τ ) action and integrating
out θ±. This yields an additional small renormalization of the
velocities and Luttinger liquid parameters u∗

± and K∗
±, plus an

interaction of the form (∂τφ+)(∂τφ−), which is subleading for
the same reason as U ∗

φ . We will therefore from now on consider
u∗

± and K∗
± to be renormalized values that also account for the

effect of the off-diagonal terms on velocities and Luttinger
liquid parameters and drop U ∗

φ and U ∗
θ in the remainder. We

furthermore disregard solitons connecting the different minima
of the sine-Gordon potential, which alter the properties of the
wire at temperatures lower than the typical experimental ones,
as well as its finite frequency response.23,24,29

These considerations finally allow the calculation of the
spin susceptibilities in the helical regime. As before, we only
keep the backscattering contributions, since forward scattering
is nonsingular. In the initial laboratory gauge, the x and y

components of the imaginary time spin susceptibility read

χxx(x,τ )

= χyy(x,τ )

= 1
4e−i2x(kF +kSO )〈TτR

†
↑(x,τ )L↓(x,τ )L†

↓(0,0)R↑(0,0)〉
+ 1

4e−i2x(kF −kSO )〈TτR
†
↓(x,τ )L↑(x,τ )L†

↑(0,0)R↓(0,0)〉
+ H.c. (9)
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Bosonizing these expressions and performing the canonical
transformation given in Eq. (6), we obtain

χxx(x,τ ) = χyy(x,τ )

= 1

4(2πα)2
e−i2x(kF +kSO )

×〈ei
√

2(Kc−1/Ks )/
√

K[φ+(x,τ )−φ+(0,0)]〉
× 〈ei

√
2
√

4Kc/(KsK)[φ−(x,τ )−φ−(0,0)]〉

+ 1

4(2πα)2
e−i2x(kF −kSO ) 〈ei

√
2
√

K[φ+(x,τ )−φ+(0,0)]〉

+ H.c. (10)

In the gapped regime, the field φ+ is pinned, and the
expectation values involving this field can be approximated
by 1. One may also go beyond this mean-field argument by
noting that 〈ei

√
2A[φ+(x,τ )−φ+(0,0)]〉 = e−A2〈[φ+(x,τ )−φ+(0,0)]2〉, and

that the correlation function of φ+ decays exponentially due
to the gap. Therefore, the expectation values involving φ+
are exponentials of an exponential and indeed go to unity very
quickly. The remaining average over the gapless field φ− yields
the usual Luttinger liquid power-law decay. The components
of the spin susceptibility perpendicular to the spin-orbit axis

are thus given by

χxx(x,τ ) = χyy(x,τ )

≈ 1

4(2πα)2
e−i2x(kF +kSO )

×
(

α√
x2 + (u∗−|τ | + α)2

)4KcK
∗
−/KsK

+ 1

4(2πα)2
e−i2x(kF −kSO ) + H.c. (11)

When performing the analytical continuation in order to
derive the physically relevant retarded spin susceptibility, the
oscillating factor in the last line of Eq. (11), stemming from the
gapped mode φ+, drops out, and only a Luttinger liquid power
law deriving from the gapless mode remains.13,25 A similar
power law is found for χxy(x,τ ),

χxy(x,τ ) ≈ i

4(2πα)2
e−i2x(kF +kSO )

×
(

α√
x2 + (u∗−|τ | + α)2

)4KcK
∗
−/KsK

− i

4(2πα)2
e−i2x(kF −kSO ) + H.c. (12)

The mixed susceptibilities χxz and χyz vanish. The suscepti-
bility along z, on the other hand, reads

χzz(x,τ ) = 1

4(2πα)2
e−i2xkF 〈ei

√
2/K[Kcφ+(x,τ )+θ+(x,τ )−Kcφ+(0,0)−θ+(0,0)]〉〈ei

√
2Kc/(KsK)[φ−(x,τ )−Ksθ−(x,τ )−φ−(0,0)+Ksθ−(0,0)]〉

+ 1

4(2πα)2
e−i2xkF 〈ei

√
2/K[Kcφ+(x,τ )−θ+(x,τ )−Kcφ+(0,0)+θ+(0,0)]〉〈ei

√
2Kc/(KsK)[φ−(x,τ )+Ksθ−(x,τ )−φ−(0,0)−Ksθ−(0,0)]〉

+ H.c. (13)

Again, the field φ+ can be replaced by its average value and drops out. The field θ+, being canonically conjugate to the ordered
field φ+, has large fluctuations that suppress χzz. As has been established in Refs. 23,30 and 31, and neglecting the additional
phase factor due to the simultaneous presence of θ and φ fields, Eq. (13) can be evaluated as

χzz(x,τ ) ≈ 1

2(2πα)2
e−i2xkF

(
α√

x2 + (u∗−|τ | + α)2

)Kc(K∗
−+K2

s /K∗
−)/(KsK)(

α√
x2 + (u∗+|τ | + α)2

)1/(K∗
+K)

e−(C �∗/K∗
+Ku∗

+)
√

x2+(u∗+τ )2

+ H.c., (14)

where C is a constant of order 1. The spin susceptibility in
the z direction is thus indeed exponentially suppressed by
the gap. The associated typical length scale is given by the
renormalized short distance cutoff of the theory, u∗

+/� =
α∗. The suppression of the signal along z is increased by
electron-electron interactions, which strongly enhance the gap
according to Eq. (7).

The static parts of the retarded spin susceptibility in the
momentum/frequency domain can now be obtained by Fourier
transformation and analytic continuation. In x and y direction,
this yields the expression

χR
xx,yy,xy(q,ω → 0)

∼
∑
κ=±

|q + κ2(kF + kSO)|4KcK
∗
−/KsK−2. (15)

With the experimental values Kc ≈ 0.5 and Ks ≈ 1,27,28 we
find that χxx = χyy and χxy diverge at zero temperature.
Similar to the renormalization of the gap, electron-electron
interactions in the wire also strengthen the divergence in
Eq. (15) through a decrease of the value of Kc. In real space,
on the other hand, stronger interactions correspond to a weaker
power-law decay of the signal along x and y at large distances.

Along z, we use the fact that a Yukawa potential-like

function f (x,y) = (1/
√

x2 + y2)n e−�
√

x2+y2
has the Fourier

transform

f (qx,qy) =
∫ ∞

0
dr

∫ π

0
dϕ eiqr cos(ϕ)

∫ ∞

−∞

dk

π
e−ikrf�(k)

=
∫ π

0

dϕ

2
f�[q cos(ϕ)] (16)
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with f�(k) ∼ (1/
√

k2 + �2)2−n (here, we use y ∼ u∗
±τ ∈

[0,∞] at zero temperature and neglect the difference in the
effective velocities). The backscattering contribution to the
susceptibility in the z direction is thus given by a small,
nonsingular expression proportional to an inverse power of
the gap, such that stronger interactions result in a further
suppression of the signal. Because also the forward scattering
is nonsingular,13 the spin susceptibility of a Rashba spin-
orbit coupled quantum wire in the helical regime is strongly
suppressed along the direction of the spin-orbit coupling. This
renders the spin response effectively two dimensional in spin
space.

IV. DYNAMIC SUSCEPTIBILITIES
AND SPIN FLUCTUATIONS

The strongly anisotropic character of the susceptibil-
ity implies, by virtue of the fluctuation-dissipation theo-
rem, that also the spin fluctuations along the direction set
by the spin-orbit coupling are suppressed for frequencies
below the gap. To show this, we calculate the spectral function
of the spin fluctuations,

Sσσ ′(x,ω) =
∫ ∞

−∞
dt eiωt Sσσ ′(x,t),

(17)

Sσσ ′(x,t) = 1

2
〈Sσ (x,t)Sσ ′(0,0) + Sσ (0,0)Sσ ′ (x,t)〉.

The latter is related to the imaginary part of the corresponding
susceptibility

χR
σσ ′(x,ω) =

∫ ∞

−∞
dt eiωt iθ (t) 〈[Sσ (x,t),Sσ ′(0,0)]〉 (18)

by the the fluctuation-dissipation theorem,

Sσσ ′(x,ω) = coth

(
βω

2

)
Im

{
χR

σσ ′(x,ω)
}
, (19)

where β = T −1 is the inverse temperature in units of
kB = 1. For the x and y directions, the retarded real-time spin
susceptibilities can be obtained from Eq. (11). They are given
by25

χR
xx(x,t) = χR

yy(x,t)

≈ θ (u∗
−t − |x|) sin(πK̃) cos[2(kF + kSO)x]

(2πα)2

×
(

α2

(u∗−t)2 − x2

)K̃

, (20)

at zero temperature, where K̃ = 2KcK
∗
−/(KsK). From

Eq. (15), we find an analogous expression for χR
xy(x,t)

with cos[2(kF + kSO)x] → sin[2(kF + kSO)x]. The imag-
inary part of the Fourier transform of this expres-
sion yields the zero-temperature spectrum of the spin

fluctuations as
Sxx(x,ω) = Syy(x,ω)

≈ sin(πK̃) cos[2(kF + kSO)x]
√

π2−K̃−1/2�(1 − K̃)

(2πα)2

× α

u∗−

∣∣∣∣ω α2

u∗− x

∣∣∣∣
K̃−1/2

JK̃−1/2

(∣∣∣∣ω x

u∗−

∣∣∣∣
)

sgn(ω), (21)

where Jα is a Bessel function of the first kind and � is the stan-
dard � function. For small frequencies ω � u∗

−/x, the spin-
fluctuation spectrum is thus proportional to |ω|2K̃−1 sgn(ω),
as could have been expected from a dimensional analysis of
Eq. (20). In the z direction, on the other hand, the fluctuations
are gapped. This implies a vanishing Szz(x,ω) for frequencies
|ω| < �, as can be shown by Fourier transformation of
χzz(q,ωn) and subsequent analytic continuation. Like the spin
susceptibility, spin fluctuations are thus strongly anisotropic
for frequencies smaller than the gap, and again, this anisotropy
is strengthened by electron-electron interactions, which in-
crease the gap � and weaken the power-law suppression of
Sxx , Syy , and Sxy and at low frequencies.

V. CONCLUSIONS

In this work, we showed that a Rashba nanowire in the
helical regime (and more generally any helical or quasihelical
Luttinger liquid) exhibits strongly anisotropic spin physics,
and analyzed the latter in terms of the static spin susceptibility
and the dynamic spin response. Given that Rashba nanowires
can be mapped onto quantum wires with helical nuclear spin
order,11 the same anisotropic spin physics also provides a
specific signature of helical nuclear order in quantum wires.
As discussed in Sec. III, the helical regime is characterized by
an exponentially suppressed static spin susceptibility along the
direction set by the spin-orbit coupling, while it shows a power-
law decay in the perpendicular directions. Outside the helical
regime, on the other hand, the susceptibility exhibits a power-
law decay along all three directions. A strongly anisotropic
behavior was also obtained for the dynamic properties of the
spins, as has been discussed in Sec. IV. In particular, we found
that the spin-fluctuation spectrum along the direction set by the
spin-orbit interaction vanishes for frequencies below the gap,
while it behaves as an interaction-dependent frequency power
law in the perpendicular directions. We furthermore discussed
that the strongly anisotropic character of the spin physics as
well as the detectability of the susceptibility and the fluctuation
spectrum in the perpendicular directions are importantly
increased by electron-electron interactions. In conclusion, spin
physics provides an additional experimental signature of the
helical regime, and complements transport measurement15,16

and possible tunneling spectroscopy experiments.32 Different
from conductance measurements, which give only access to
the number of gapless modes, the spin physics depends on the
spin state of these modes. A gap for one of the two spin species
would for instance result in a similar reduction of the conduc-
tance, but would yield a spin response along a single direction.
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L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766
(2007).

5M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
6R. Egger, A. Zazunov, and A. L. Yeyati, Phys. Rev. Lett. 105,
136403 (2010).

7D. Kong, J. C. Randel, H. Peng, J. J. Cha, S. Meister, K. Lai,
Y. Chen, Z.-X. Shen, H. C. Manoharan, and Y. Cui, Nano Lett. 10,
329 (2010).

8H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C.
Zhang, Z.-X. Shen, and Y. Cui, Nat. Mater. 9, 225 (2010).

9J. Klinovaja, M. J. Schmidt, B. Braunecker, and D. Loss, Phys. Rev.
B 84, 085452 (2011).
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