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Selection rules and linear absorption spectra of carbon nanotubes in axial magnetic fields
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We derive a transparent and easy-to-use analytic expression for the selection rules and the optical dipole matrix
elements for carbon nanotubes of arbitrary chirality in the presence of axial magnetic fields using a single-orbital
π -electron tight-binding model. From this, we calculate the linear absorption spectrum for arbitrary polarization
directions of the incident light, providing insight into all optically allowed transition. We show that the transverse
absorption peaks can be selectively excited with circularly polarized light and spectrally resolved in an axial
magnetic field.
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I. INTRODUCTION

Since the discovery of carbon nanotubes (CNTs),1 the
optical properties of CNTs have extensively been analyzed,
both in experimental and theoretical studies. In particular,
due to the quasi-one-dimensional characteristic of CNTs,
the linear absorption2–6 and excitonic resonances7–12 have
been theoretically investigated for light polarized parallel to
the nanotube axis. Among the previous theoretical work on
dipole matrix elements, Ajiki and Ando5 derived the selection
rules and simple expressions for the dipole matrix elements
in effective-mass approximation. This approach, however,
neglected higher-order effects, which are important for the
so-called family effects in the optical absorption spectra.9,13–16

Malić et al. reported an analytic expression of the momentum
matrix elements using a tight-binding method but considered
only for incident light parallel polarized parallel to the tube
axis.2 Recently, the absorption coefficient of CNTs for light
with arbitrary polarization directions with respect to the
nanotube axis has been measured, and the optical cross section
varying with nanotube chirality was obtained.17–20 The optical
properties of CNTs for cross-polarized light were studied the-
oretically, and selection rules were obtained analytically.21–26

Zarifi et al.24 derived an analytic but complicated expres-
sion for the dipole matrix elements and obtained selection
rules for the polarization perpendicular to the nanotube
axis.

Thus, until now, a simple formula for the vectorial dipole
matrix elements has not been presented. Here, we derive
such a simple analytic expression for the dipole matrix
elements for arbitrary polarization directions of the incident
light field. We also generalize and apply the expression to
systems including an applied axial magnetic field. Based
on our results, detailed insight is obtained about every
peak in the linear absorption spectrum of various types
of CNTs in the presence and absence of axial magnetic
fields. Especially when an axial magnetic field is applied, a
splitting in the nanotube’s band structure occurs such that, with
circularly polarized light, certain band-to-band transitions can
be selectively excited. Since excitons are superpositions of
band-to-band transitions,27,28 the results presented here will
also appear in the excitonic absorption and thus should be
observable.

II. SELECTION RULES AND OPTICAL DIPOLE
MATRIX ELEMENTS

We start with the definition of the interband dipole matrix
elements29

Mcv(k) = −e
〈
ψc

k

∣∣ Ĥr − rĤ
∣∣ψv

k

〉

Ec
k − Ev

k

, (1)

where Ĥ is the Hamiltonian of the system, and ψc
k (ψv

k ) and Ec
k

(Ev
k ) are the wave functions and the energies of the conduction

band c (valence band v) at a given k-vector for the transition
v → c, respectively. Within a single-orbital π -electron tight-
binding model, the Hamiltonian is given by

Ĥ =
∑

〈i,j 〉,s
(tijC

+
isCjs + h.c.), (2)

where the summation 〈i,j 〉 runs over nearest-neighbor sites
only, C+

is (Cis) is the electron creation (annihilation) operator
at site i with spin s. According to the gauge invariance, the
hopping matrix element in the presence of magnetic field B
can be expressed as tij = t0 exp(i 2π

φ0

∫ rj

ri
A · d l) between two

sites i and j by using the vector potential A. Here, φ0 = hc/e

is the magnetic flux quantum. The unit vectors and the bond
vectors of the graphene lattice are shown in Fig. 1.

When applying a magnetic field B along the tube axis,
the discrete k-vectors along the circumference are shifted
and given by kc = 2π (l + kH )/(cha) with the ratio kH =
BπR2/φ0 between the magnetic flux through the cross-
sectional area πR2 of the CNT and the magnetic flux quantum
φ0. Here, ch = √

n2 + nm + m2, a = 0.2416 nm, and R is
the tube’s radius. The hopping parameters along the three

FIG. 1. (Color online) Lattice structure of graphene including the
unit vectors and three bond vectors.
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bond vectors are given by t1 = t0e
ikH ϕn , t2 = t0e

−ikH ϕn+m , and
t3 = t0e

ikH ϕm , where t0 = −3.00 eV , ϕl = lπ/c2
h , and αj =

j2π/Nh, where Nh is the total number of graphene cells in one
CNT unit cell. The electronic dispersions within each band
with index l is Elk = ±|t0||glk| and glk = ei

⇀
k ·⇀d 1 + ei

⇀
k ·⇀d 2 +

ei
⇀
k ·⇀d 3 , in which

⇀

d1,
⇀

d2, and
⇀

d3 are the three bond vectors
pointing from the site B atom to the three nearest-neighbor
sites (A atoms) shown in Fig. 1. For tubes with indices (n, m)
in an applied axial magnetic field, the energy dispersions can
be written as30

Elk = ±|t0|
√

3 + 2 cos(ϕ(2n+m)(l+kH ) + αmk) + 2 cos(ϕ(n+2m)(l+kH ) − αnk) + 2 cos(ϕ(n−m)(l+kH ) + α(m+n)k). (3)

Subsequently, in nearest-neighbor approximation, we can write the dipole matrix elements in Eq. (1) explicitly as6,24

Mcv
ll′ (k) = −e(

Ec
lk − Ev

l′k
)
Nh

Nh−1∑

n=0

3∑

m=1

[
cc∗
lk,Bcv

l′k,AtnA,meik·(rnA−rmB ) (rnA − rmB) + cc∗
lk,Acv

l′k,B tnB,meik·(rnB−rmA) (rnB − rmA)
]
. (4)

Here, rmB(rmA) denotes the coordinates of the three nearest-neighbor sites of site rnA(rnB). Also, cc
lk,i and cv

lk,i are the expansion
coefficients at site i of the eigenstates of conduction c and valence bands v at each k-vector with the band index l (l =
0,1,2 · · · ,Nh − 1), respectively.

For the coordinate component (ri)c along the circumference at site i of the CNT, we introduce r±
i = xi ± iyi , such that

(ri)c = 1
2 r+

i (ex − iey) + 1
2 r−

i (ex + iey). Substituting this expression into Eq. (4), we arrive at a fairly simple analytic form for
the dipole matrix elements

Mcv
ll′ (k) = −e t0

Ecv
lk,l′k

[
2Re

(
cc∗
lk,Bcv

lk,Azlk

)
ezδll′ + iRIm

[
cc∗
lk,Bcv

l′k,A (glk − gl′k)
]

(ex ± iey)δl±1,l′
]
, (5)

where Ecv
lk,l′k = (Ec

lk − Ev
l′k), cc

lk,A = −cv
lk,A = (cc(v)

lk,B)∗ = √
glk/(2|glk|), and the coefficient zlk = d1ze

i
⇀
k ·⇀d 1 + d2ze

i
⇀
k ·⇀d 2 +

d3ze
i
⇀
k ·⇀d 3 . Moreover, for a (n, m) tube in an applied axial magnetic field where the strength is expressed by the parameter

kH , the coefficients at k-vector (l, k) can be written as

glk = ei(nϕ(l+kH )+ n+2m
3 αk ) + ei(−(n+m)ϕ(l+kH )+ n−m

3 αk) + ei(mϕ(l+kH )− 2n+m
3 αk ),

zlk = a

2
√

3ch

[
(n + 2m)ei(nϕ(l+kH )+ n+2m

3 αk ) + (n − m)ei(−(n+m)ϕ(l+kH )+ n−m
3 αk) − (2n + m)ei(mϕ(l+kH )− 2n+m

3 αk )].

The integer k lies in the interval −Nk

2 � k < Nk

2 .

Compared with previous studies,2,5,6,24 the present ana-
lytical expression is significantly simpler, clearly shows the
selection rules, and allows one to easily obtain the value of the
dipole matrix elements for arbitrary polarization directions of
the incident light. Especially the x and y components are much
simpler than the expressions given in Ref. 24. As can be seen in
Eq. (5), the longitudinal z component is real-valued. The x and
y components can give rise to a complex-valued contribution
with a relative phase between them. The symmetry relation
M±

y = ±iM±
x and the angular momentum selection rule δl±1,l′

give rise to transitions that can be excited with circularly
polarized light propagating along the tube axis. The symmetry
M

l,l±1
x(y) = −M

l±1,l
x(y) holds for the two transverse dipole matrix

elements M
l,l±1
x(y) (l → l ± 1) and M

l±1,l
x(y) (l ± 1 → l).

In agreement with earlier studies,2–15,21–27 we recover
the essential selection rule: 	l = 0 for optically allowed
transitions for z-polarized light (polarized along the tube axis).
The selection rule 	l = ±1 is found for the optically allowed
transitions for light polarization directions perpendicular to the
tube axis. In the limiting case of a circularly polarized beam
propagating along the tube axis e± = ex ± iey , the selection
rule l → l ± 1 has to be obeyed for optical transitions such
that certain transitions can be selectively excited.

For parallel-polarized excitation, by using γlk =
arctan[Im(glk)/Re(glk)] the z component of dipole matrix
element can be simplified to

Mcv
z (l,k) = −e

2|glk|Re(eiγlk zlk)δll′ . (6)

This formula is in agreement with Ref. 2. In
particular, for an achiral zigzag tube (n,0), Elk =
±|t0|

√
1 + 4 cos θl(cos θl + cos 3βk) with θl = (l + kH ) π/n

and βk = kπ/3, the longitudinal z component of the dipole
matrix elements is found to be

Mcv
z (l,k)

= ea

2
√

3

cos 2βk cos 2θl − cos βk cos θl + 2 sin βk sin 3βk

4 cos θl (cos θl + cos 3βk) + 1
.

(7)

The z components of the dipole matrix elements for all zigzag
tubes has the following symmetry with respect to the  point,
i.e. Mz(−k) = Mz(k).

III. RESULTS AND DISCUSSION

The analytic results for the dipole matrix elements pre-
sented above are of a general nature. As an example, in
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FIG. 2. (Color online) The band structure and the longitudinal z components of all dipole matrix elements for tube (7,0) without and with
magnetic field, respectively. (a) Band structure without and with magnetic field. The origin on the vertical energy axis lies in the middle of the
electronic gap separating valence and conduction band states. (b)–(e) The dipole matrix elements. The black solid lines are for kH = 0. The
red lines are for kH = 0.14, where the red dotted lines correspond to the bands 8–13 and the red dashed lines correspond to the bands 0–7,
respectively. The numbers denote the band indices.

the following paragraphs, we specifically discuss results for
a typical semiconducting (7, 0) CNT. Results for the band
structure and the dipole matrix elements are shown in Figs. 2
and 3. Only the band structure for the conduction band is shown
in Fig. 2 because of the conduction-valence-band symmetry.
The dipole matrix elements vary with the parameter kH .
The splitting of the twofold degenerate bands caused by an
applied magnetic field also influences the corresponding dipole
matrix elements. No change occurs for dipole matrix elements

FIG. 3. (Color online) The transverse x components of the dipole
matrix elements corresponding to the lowest-frequency peak for the
(7, 0) zigzag tube with and without magnetic field. The numbers refer
to the indices of the involved bands.

between nondegenerate bands, such as the bands 7 and 0 for
tube (7, 0) in Fig. 2. For this semiconducting zigzag tube, the
splitting caused in the dipole matrix elements by the magnetic
field is similar to that found in the band structure. The two
dipole matrix elements, which are identical without a magnetic
field, separate around the original one. This is true both for the
longitudinal z as well as the transverse x and y components.

In Fig. 3, we show the dipole matrix elements for the
lowest-frequency transverse transitions: 4 → 5 and 10 → 9.
The related elements 5 → 4 and 9 → 10 can be obtained using
the symmetry relation Ml,l′

x = −Ml′,l
x . Visible is the inversion

symmetry at the  point, i.e. Ml,l′
x (−k) = −Ml,l′

x (k), which is
not present for the z components of the dipole matrix elements.
The maximum value of the x components of the dipole matrix
elements is about one fourth of the maximum value of the z

components. The applied magnetic field only leads to a small
splitting in these transverse components.

IV. LINEAR ABSORPTION SPECTRA

Most of the previous theoretical studies concentrated on the
linear absorption for perpendicular or parallel-polarized light
fields.2–6,20–26 We note the experimental work on the optical
spectra31 and polarization-dependent magneto-absorption for
CNTs with magnetic fields,32 but as far as we know, the
circular-polarized absorption experiment in the absence or
presence of magnetic field has not been reported.

In the linear optical regime, the optical absorption spectrum
can directly be obtained as a sum over all resonant contribu-
tions from optically induced interband transitions separately
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FIG. 4. (Color online) The sketch of the right circularly polarized
laser in tube (7, 0).

for each frequency and k-vector. The analytic expression of the
optical absorption spectrum then takes the general form3,4,24,28

α (ω) ≈ ω
∑

lk,l′k

∣∣eE · (
Mcv

lk,l′k
)∗∣∣2 γ

(
h̄ω − Ecv

lk,l′k
)2 + γ 2

, (8)

with the transition energy Ecv
lk,l′k = Ec

lk − Ev
l′k of each band-

to-band contribution. Here, eE is the polarization direction
of the incident laser. Lorentzian homogeneous broadening is
included with γ = 0.01 eV. Using our analytic expression, the
parallel-polarized linear absorption spectra for zigzag tubes
are identical to the theoretical results obtained previously.2

For a perpendicularly polarized incident laser, the dominant
absorption peaks stem from four transitions: l ↔ l ± 1 and
l′ ↔ l′ ± 1, in which l and l′ are the band indices of the twofold
degenerate band, cf. Refs. 19–24. When applying an axial
magnetic field, the absorption peak splits into two peaks: one
for the two transitions l ↔ l ± 1 and another one for l′ ↔
l′ ± 1. Next, we study the circularly polarized linear absorption
spectrum according to the selection rules l → l ± 1 in Eq. (5).
For the right circularly polarized laser e+ = ex + iey in the
circumference plane shown in Fig. 4, every absorption peak is
attributed mainly to two optically allowed transitions: l → l +
1 and l′ → l′ + 1. If further applying a magnetic field along
the tube’s axis, the peak splits into two peaks corresponding
to only a single transition each: l → l + 1 and l′ → l′ + 1,
respectively. Therefore, the transverse absorption peaks can be
selectively excited with circularly polarized light and appear
as spectrally separate resonances in an axial magnetic field.

We take the zigzag tube (7, 0) as an example to show the
right circularly polarized linear absorption spectrum in Fig. 5.
In the absence of a magnetic field, the first (lowest frequency)
peak originates from only two transitions: 4 → 5 and 9 → 10.
The other two transitions 5 → 4 and 10 → 9 are optically
forbidden for the right circularly polarized laser. Obviously, in
the presence of a magnetic field, this peak splits into two peaks:
one at the lower frequency for 4 → 5 transition and another
one at the upper frequency for 9 → 10 transition, respectively.
The oscillator strength of the lowest-frequency peak is about
one fourth of the lowest-frequency peak for excitation with
parallel polarized light.

FIG. 5. (Color online) The linear absorption spectrum for right
circularly polarized light for the (7, 0) tube. The black solid/blue
dotted line is the result without and with magnetic field (kH = 0.14),
respectively. The red dashed line is one half of the parallel polarized
linear absorption spectrum without magnetic field for comparison.

V. CONCLUSION

In summary, for light with an arbitrary polarization direc-
tion with respect to the nanotube axis, we calculate the linear
absorption of CNTs in the absence and presence of an axial
magnetic field. On the basis of an analytic expression for the
dipole matrix elements, we can analyze the contribution of
every transition to the peaks in the linear absorption spectrum
in a transparent way. In particular, we study the absorption
spectrum for right circularly polarized laser fields. When an
axial magnetic field is applied, a splitting in the nanotube’s
band structure occurs such that, with circularly polarized light,
certain band-to-band transitions can be selectively excited.

Here, we analyze band-to-band transitions in CNTs in
the absence and presence of an axial magnetic field which
results in transparent easy-to-use analytical expressions. Since
excitons are superpositions of band-to-band transitions, the
results presented on the band structure and the optical matrix
element are expected to lead to corresponding signatures in the
excitonic absorption and thus should be observable. Analyzing
excitonic effects requires numerical evaluations which we plan
to present in a future publication.
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