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Abnormal hopping conduction in semiconducting polycrystalline graphene
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We report the observation of an abnormal carrier transport phenomenon in polycrystalline semiconducting
graphene grown by solid carbon source molecular beam epitaxy. At the lowest temperatures in samples with
small grain size, the conduction does not obey the two-dimensional Mott-type variable-range hopping (VRH)
conduction often reported in semiconducting graphene. The hopping exponent p is found to deviate from the
1/3 value expected for Mott VRH with several samples exhibiting a p = 2/5 dependence. We also show that
the maximum energy difference between hopping sites is larger than the activation energy for nearest-neighbor
hopping, violating the assumptions of the Mott model. The 2/5 dependence more closely agrees with the quasi-
one-dimensional VRH model proposed by Fogler, Teber, and Shklovskii (FTS). In the FTS model, conduction
occurs by tunneling between neighboring metallic wires. We suggest that metallic edge states and conductive
grain boundaries play the role of the metallic wires in the FTS model.
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The extraordinary properties of graphene have driven
research on novel electronic devices and large-area growth on a
variety of substrates. Among the challenges, the development
of a better understanding of the transport properties in both
semimetallic and semiconducting graphene is crucial to enable
practical application of this novel material. Since growth
techniques such as chemical vapor deposition on metal films
and foils result in polycrystalline material, an understanding
of the role of edge states and grain boundaries is critical. To
that end, significant experimental and theoretical effort has
been put into understanding the characteristics of edge states
and grain boundaries in graphene. The electronic properties
of edge states strongly depend on their atomic configuration.
Ritter and Lyding1 observed that a zigzag edge has a higher
conductance than an armchair one due to the localized states
associated with the zigzag edge. Grain boundaries are formed
by the coalescence of misoriented graphene grains with
edges consisting of various atomic configurations (zigzag,
armchair, and a combination of these). The coalescence of two
misoriented graphene grains forms a one-dimensional (1D)
topological defect at the grain boundary. Recently, Lahiri et al.2

suggested that a line of repeating pentagon-heptagon defects
generates electron states near the graphene Fermi energy
and that the defects showed characteristics of conducting
metallic wires. These unique electronic structure properties
might alter the charge distribution over the graphene layer and
affect the overall carrier transport in macroscopic graphene
films. In addition, another topic of current interest is hopping
conduction in semiconducting graphene that can dominate
the low-temperature conduction process. Three conduction
mechanisms have been used to explain the temperature depen-
dence of the resistivity of semiconducting graphene: thermal
activation, nearest-neighbor hopping (NNH) conduction, and
variable-range hopping (VRH) conduction, where the conduc-
tion follows the relation3–5 R(T ) ∝ exp(T0/T )p. The specifics
of VRH are described by the hopping exponent p and the
characteristic temperature T0. Mott VRH with p = 1/3 is often
used to explain low-temperature resistivity,4,6,7 but a p = 1/2,
suggestive of Efros-Shklovskii (ES) VRH,8 which includes

Coulomb interactions, has also been reported.5 ES VRH has
also been found in a two-dimensional (2D) array of quantum
dots formed from reduced graphene oxide.9 However, as we
show here, the low-temperature conduction in polycrystalline
semiconductor graphene is abnormal in that it does not always
follow either Mott or ES VRH. In the samples studied here, the
temperature dependence more closely follows that predicted
for the quasi-1D VRH model of Fogler, Teber, and Shklovskii
(FTS).10 We suggest that this quasi-1D hopping behavior
might originate from the hopping conduction between grain
boundaries/edge states that show metallic conduction.

The samples studied were all grown on chemical me-
chanically polished, on-axis semi-insulating Si-face 6H -SiC
substrates by carbon molecular beam epitaxy (CMBE) using
the graphite filament (GF) heater as the carbon source as well
as the heater,11 which produces polycrystalline graphene. For
comparison, crystalline graphene was grown by CMBE using
a C60 carbon source. Large-area van der Pauw samples for
temperature-dependent resistivity and Hall effect measure-
ments were made by depositing indium contacts directly on
the corners of 1-cm × 1-cm square samples without any other
processing. Electrical measurements, Raman spectroscopy,
scanning tunneling microscopy (STM), and conductive atomic
force microscopy (CAFM) were all made on the same samples.
Gating was not employed, so we were unable to vary the carrier
concentration with an external electric field.

Figure 1 shows the typical surface morphology of the
graphene grown by the GF source. The STM image clearly
shows that the graphene layer consists of small grains with
boundaries between the coalesced grains. Since there will be
no STM signal from the semi-insulating SiC, it is assumed that
the graphene film is continuous. The roughly straight steps
are due to the small off-cut angle of the SiC substrate. In
this image hexagonal grains that have yet to coalesce into a
second layer are visible. The height difference between the
first layer and the grains is 3.2 nm, as expected for a single
layer of graphene. The grain size ranges from several to tens
of nanometers. These typically have a hexagonal shape with
120◦ corners. Interestingly, individual grains in Fig. 1 are often
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FIG. 1. (Color online) STM image of polycrystalline graphene
grown by solid source CMBE. STM images were obtained at 30-mV
bias and 0.9 nA under an ultrahigh vacuum environment. The atomic
steps and the grains have 0.32-nm thickness, indicating monolayer
graphene.

misaligned with each other by approximately 20◦. When a
misaligned grain merges with another, a tilt grain boundary
forms at the edge between the grains. The orientations of the
coalesced grains (A and B in Fig. 1) typically differ by 20.8◦.
This mismatch might produce periodically distributed point
defects at the grain boundary.12 Lahiri et al.2 reported that this
type of extended defect acts as a quasi-1D metallic wire, which
might become a possible conduction path.

To understand the conduction properties in polycrystalline
graphene, the temperature-dependent resistivity R(T ) and Hall
effect were measured as shown in Fig. 2 for a typical polycrys-
talline sample. At high temperatures, both the resistivity and
carrier concentration n show activated behavior with similar
temperature dependences, which is typical of semiconducting
graphene.3–6 The rapid increase in carrier density and quick
drop in resistivity with increasing temperature for T > 140 K
[solid red color region in Figs. 2(a) and 2(b)] are due to
thermal activation of carriers. The origin of the band gap
in this material is discussed in a previous report.13 At lower
temperatures R and n deviate from activated behavior, and the
rate of increase in R with decreasing T is reduced. As seen
in Fig. 2(b), the distinguishing feature of concentration data
is the deviation from thermal activation and increase in the
scatter in the data for the low-temperature region even though
the resistivity data remain clean to the lowest temperatures.
The observation of the scatter in the carrier concentration
suggests that hopping is the dominant conduction mechanism
in this temperature region since hopping carriers are not
expected to show a Hall effect. Zou and Zhu4 explained a
similar T dependence of the resistivity of graphene at the
charge neutrality point (CNP) as the combination of three
different conduction mechanisms, such as thermal activation,
NNH, and 2D Mott’s VRH (p = 1/3). According to our
resistivity and carrier density measurements, we can also

FIG. 2. (Color online) Temperature-dependent transport mea-
surements. (a) Resistivity vs inverse temperature. The solid red color
line indicates the region of thermal activation. Insert: Normalized
temperature-dependent carrier conduction of five polycrystalline
samples. (b) The corresponding temperature-dependent carrier den-
sity. At low temperature, the scattered data indicates the presence of
hopping conduction.

attribute the low-temperature data to a combination of NNH
and VRH. The conduction in the intermediate-temperature
region is dominated by NNH, while that at low temperature
is dominated by VRH. The inset in Fig. 2(a) shows R vs
1000/T for the other polycrystalline samples in this study.
We attempted to fit the data with the model proposed by Zou
and Zhu.4 However, the use of p = 1/3 for VRH resulted
in an unphysical negative resistivity for the NNH component
(Appendix A, Table III). The model proposed by Zou and
Zhu4 describes the low-temperature conduction at the CNP as
a hopping process between the charge fluctuations associated
with electron and hole puddles,4 which resulted in the relation
RNP (T ) ∝ exp(T0/T )1/3. However, the samples studied here
are not at the CNP. To address the low-temperature hopping
conduction behavior, we adapted the dimensionless activation
method developed by Zabrodskii et al.14 in order to ensure a
relative high accuracy in the determination of the functional
form of the T -dependent resistivity as well as the related
parameters for VRH conduction, even though the variation in
the resistivity over the temperature range VRH that is dominant
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FIG. 3. (Color online) (a) Determination of hopping exponent
p for all five polycrystalline samples from the slope of logW vs
p logT plot using the relation ln W = −p ln T + constant . (b)
Fitting results for resistivity of a representative polycrystalline sample
using p value determined above (p = 2/5). Insert: Fitting results for
remaining samples showing good agreement with FTS models of
VRH.

is small. Zabrodiskii defined a reduced activation energy of
the conductivity (w ≡ ε

kT
= T −1∂ ln ρ

∂T −1 ). The general form of the
resistivity in the VRH region is

ρ(T ) = BT −m exp(T0/T )p, (1)

where B, m, T0, and p are constants. The reduced activation
energy w can thus be expressed by

w(T ) = m + x(T0/T )p. (2)

Since the second term is much larger than that of the first term
(m), we have

ln (w(T )) ≈ ln (x(T0)p) − pln(T ), (3)

where ln (x(T0)p) is constant. By plotting ln (w) vs ln (T ),
we could directly obtain the hopping exponent p in Eq. (1).
Figure 3(a) shows the linear region of ln(w) vs ln(T ) plots
for the samples in this study. Three different values of p

were obtained from the five samples, p = 0.33 (1/3), 0.41
(2/5), and 0.72 (3/4). The value p = 1/3 was obtained from
the crystalline graphene grown with the C60 source. The

FIG. 4. (Color online) (a) Surface morphology taken by CAFM,
1 mm × 1 mm. (b) Overlay of the current map on the surface
morphology image. Green-colored arrows point to the high-current
edges.

other two values (p = 2/4 and 3/4) were obtained from
the polycrystalline graphene samples grown by GF CMBE.
As seen in Fig. 3(b), fits of the resistivity to a sum of
thermal activation, NNH, and VRH with p fixed to the values
determined above are very good. Comparisons of the goodness
of fit for each data set with each of the three values of p are
provided in Appendix B. Interestingly, the values obtained for
the polycrystalline graphene, p = 0.41 (2/5) and 0.72 (3/4),
all deviated from the Mott VRH value of 1/3, which was only
observed in the crystalline C60-grown sample. This deviation
explains why the fitting results with Mott VRH (Zho and Zhu
model) did not explain our resistivity data. We will discuss the
possible origin later.

The polycrystalline graphene consists of many grains
and grain boundaries. Since there have been reports of
enhanced conduction at edges and grain boundaries1,2 the
current distribution over the polycrystalline surface might
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FIG. 5. (Color online) The current map of the polycrystalline
graphene was measured by conductive AFM. It shows relatively
uniform current flow over the surface, indicating that the graphene
continuously covers the surface.

be inhomogeneous if these edges or grain boundaries are
associated with high conductance. Figure 4(a) shows that
surface morphology taken by AFM is very similar to the
STM image (Fig. 1), which also shows tens of nanometer-size
isolated grains as well as merged grains. As will be shown
in Fig. 5, the current map from the CAFM measurement
showed continuous current over the surface, which suggests a
continuous graphene layer on the semi-insulating SiC surface.
We did observed an inhomogeneous current distribution in the
CAFM image with the higher values tending to follow a rough
network of lines. To show the relation between higher current
regions and the corresponding morphology, we overlaid the
current map on the morphology image in Fig. 4(b). Close
examination of Fig. 4(b) shows that the localized high current
(green arrows) is located at both the step edges and on the
steps themselves. Comparing with the STM results shown in
Fig. 1, these high-current regions on the steps may possibly
result from grain boundaries.2 In addition, the high-current
regions at the boundaries and edges could be associated
with the different atomic configuration of the edge state.1

These conductive edges/boundaries may possibly contribute
to the charge transport over the polycrystalline graphene, if
the carrier density inside the grains is smaller than that of
edges/boundaries, in which case they would act as a network
of conducting wires.

In Fig. 6(a) we show the results of Raman spectroscopy
measurements on the polycrystalline samples for which the
hopping exponent p deviated from the Mott VRH value of
1/3 and the crystalline graphene sample (p = 1/3). As can be
seen, the intensity of the D band is comparable to or bigger
than that of the G band in these samples. By using the relation15

between the D/G ratio and the grain size of graphitic materials,
the average grain size of our polycrystalline graphene can
be estimated at tens of nanometers, which agrees well with
the estimated grain size from the STM image in Fig. 1. The
small grain size in these samples will lead to a high density of
grain boundaries and edge states and also a reduced distance

FIG. 6. (Color online) (a) Raman spectra of polycrystalline
graphene samples grown from GF carbon source. (b) Raman spectra
of sample grown from C60 carbon source. This sample shows Mott
VRH.

between neighboring edges/boundaries, which might increase
the possibility of hopping through them. Figure 6(b) shows
the Raman spectrum for a sample grown using the C60 carbon
source,11 which had a VRH exponent of 1/3. Note that this
is not the polycrystalline sample with p = 1/3 in Fig. 2. The
D/G ratio of this sample is a least ten times smaller than
those of the polycrystalline samples, suggesting that grain size
is at least ten times bigger than that of the samples deviated
from Mott’s hopping conduction. The larger grain size should
reduce the density of boundaries.

Here, we discuss the possible origin for the deviation from
the Mott VRH in our polycrystalline graphene. The Mott model
for VRH was developed for doped crystalline semiconductors
and amorphous materials, so it is not immediately obvious
that it is appropriate for graphene. The appropriateness of this
model can be tested by exploring the assumptions inherent
in the model. In the Mott regime, the VRH activation energy
ε is a function of temperature and varies as T 2/3. In NNH
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TABLE I. Validity check of 2D Mott VRH conduction (p = 1/3) in polycrystalline graphene as discussed in the text. All samples show
that εmax is wider than EN , suggesting disagreement with Mott law at the low temperatures.

Samples Experimental p NNH 2D Mott’s VRH emax (meV) EN (meV)

No. 1 0.41 77 K–35 K <26 K 2.24 1.62
No. 2 0.33 77 K–30 K <23 K 1.6 1.1
No. 3 0.41 77 K–26 K <17 K 3.85 1.92
No. 4 0.72 77 K–26 K <23 K 16.3 5.1
No. 5 0.42 77 K–35 K <30 K 0.99 0.4

conduction, the activation does not vary with temperature, and
average hopping distance is the mean separation between im-
purities. In Mott VRH, the maximum energy (εmax) difference
between localized states should be less than impurity band
width (�ε) near Fermi energy. At the critical temperature (Tc)
at which the Mott hopping occurs, we can obtain the relation
below8

εmax = k
(
ToT

2
c

)1/3
, (4)

where T0 is the characteristic temperature of Mott VRH
conduction and k is Boltzmann constant. When density of
states (DOS) of localized states abruptly vanishes at a certain
distance from the Fermi energy, we obtain that activation
energy of NNH (EN ) equal to 5/6 �ε.

�ε ≈ 6
5EN. (5)

Therefore, the use of Mott VRH is valid if the relation below
satisfies8

εmax = k
(
ToT

2
c

)1/3 � 6
5EN = �ε. (6)

By fitting the data in the intermediate-temperature range with
NNH conduction ρ = ρNe(EN /kBT ), we obtained the value of
EN = 1.92 meV. The critical temperature of VRH conduction
was obtained from the highest temperature for which a linear
dependence in ln ρ vs T −1/3 was found. As will be shown in
Fig. 8 (Appendix C), the critical temperature was ∼17 K.
The characteristic temperature T0 was obtained by fitting
the resistivity data below 17 K with the Mott’s conduction

(ρ = ρNe( T0
T

)1/3
), yielding the value of T0 = ∼320 K. By

putting all these experimental values into Eqs. (4) and (5),
we find εmax ≈ 3.89 meV, which is two times wider than
EN ≈ 1.92 meV. This violates the important assumption of
Mott VRH [Eq. (6)] and suggests that that model might not be
appropriate for these samples. Table I summarizes the validity
check of 2D Mott VRH for the five polycrystalline samples and
experimental p values obtained from the reduced activation

TABLE II. Predicted hopping conduction exponent p vs possible
electron tunneling dimension, d, and energy exponent of the DOS
g(ε) ∝ εμ.

Hopping exponent A power law of DOS
(p) Tunneling dimension g(ε) ∝ εμ

2/5 3D μ = 1
1/3 2D 0
3/4 1D 2

method (RAM). The temperature range for NNH and 2D Mott
VRH was estimated by taking the linear regions of the ln ρ

vs T −1 and ln ρ vs T −1/3 plots, respectively. All samples
show that εmax is wider than EN , indicating that the Mott
VRH model is not valid in these polycrystalline samples. The
sample showing the lower D/G ratio [Fig. 6(b)] had εmax =
∼0.15 meV and �ε = ∼1.73 meV, which agrees with the Mott
assumption and supports the assignment of p = 1/3 for that
sample to Mott VRH.

The p values we obtained are consistent with the quasi-1D
VRH conduction model recently proposed by FTS.10 In the
FTS model, the electrons are tightly localized in a Wigner
crystal. The impurities pin this electron crystal and divide the
crystal into segments, which behave as individual metallic
rods. The conduction occurs due to electrons tunneling
between neighboring rods. According to the FTS model, the
hopping exponent p can be expressed10 by

p = μ + 1

μ + d + 1
, (7)

where d is the dimensionality of the array of the 1D rods
and μ is the exponent of a power-law-dependent DOS (g(ε) ∼
|ε|μ, μ = 0,1, or 2). Table II shows the summarized tunneling
dimension d and μ values corresponding to the observed
p values. In the case of p = 2/5, the DOS near the Fermi
energy, g(ε), is of the form |ε|, representing a linear Coulomb
gap due to metallic screening of the Coulomb potential.10 For
p = 3/4, the FTS model suggests a parabolic Coulomb gap
near the Fermi energy, whose DOS has the form |ε|2. With
the conventional percolation method, one can estimate16 the
size of the Coulomb gap, � ≈ k( 1

2 )(T 3
0 Tv)

1
4 , where k is the

Boltzmann constant, T0 is the VRH characteristic temperature,
and Tv is the VRH onset temperature. Tv is determined by the

TABLE III. (Color online) The comparison of the fitting results
between p = 1/3 and p = 2/5 in hopping exponent terms for the
sample in Fig. 2(a).

p = 1/3 (Mott hopping) p = 2/5 (RAM)

Value Standard error Value Standard error

1/ρac 2.576 97E-4 4.390 83E-6 2.732 05E-4 3.413 42E-6
εa 37.802 22 0.7062 36.593 71 0.516 11
1/ρNNH −2.690 49E-5 9.275 14E-7 3.595 29E-5 4.646 56E-6
En 5.571 93 0.3885 0.919 34 0.084 77
1/ρVRH 6.455 03E-4 2.096 11E-6 5.250 18E-4 7.486 16E-6
T0 1.890 74 0.031 65 1.024 74 0.080 18
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FIG. 7. (Color online) Plots of ln (R) vs (1/T )p of the data shown in Fig. 2 for three different values of p (p = 1/3,3/4, 2/5). The straight
lines are guides to the eye. The red color data and axis corresponds to the p value obtained from the RAM. Plots (a)–(e) correspond to samples
numbers 1–5 in Fig. 2(a), respectively.
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transition temperature between NNH and VRH. By fitting the
temperature-dependent resistivity data [Fig. 3(b)], we find that
T0, En, and Tv are ∼92 K, ∼5.1 meV, and ∼20 K respectively.
The estimated Coulomb gap � is ∼2.7 meV and is less
than the NNH activation energy En, which is a requirement
of the FTS model. Another requirement for this model is that
the dimensionless parameter rs ≡ a

2aB
, where a is the average

distance between electrons along the chain direction and aB

is the effective Bohr radius that exceeds unity. The VRH
characteristic temperature for p = 3/4 is expressed10 as

T0 = C2
e2

κl

[
a2

⊥
√

rs

ξ 2
⊥

ln

(
l

a⊥

)]1/3

, (8)

where κ is the dielectric constant, a2
⊥ is the area per chain, rs is

a dimensionless parameter, ξ⊥ is the transverse localization
length, and C2 is numerical factor of the order of unity.
By using the definition of ξ⊥ in the Ref. 10 we obtain the
relation kT0 ∼ ENr

1/6
s , yielding rs ∼ 14. Therefore, the two

conditions � < En and rs > 1 for the FTS model are met in
our polycrystalline graphene.

At high temperatures, the conduction is mainly due to
thermal activation to the bands, but as the temperature
decreases, the thermally activated carriers start to decrease,
and NNH takes over, the polycrystalline graphene becomes
insulating due to lack of thermally activated carriers and
carriers originating from the high-current regions [Fig. 4(b)]
might be dominant, and these would contribute to macroscopic
low-temperature conduction through hopping between wires.
Therefore, the quasi-1D VRH conduction model (FTS model)
well explains low-temperature conduction behavior and leads
to the assumption that the main conduction mechanism of
this polycrystalline graphene at low temperature is hopping
between a network of 1D conducting wires made up of grain
boundaries or edge states as observed in Fig. 4(b).

In conclusion, we have found deviations from Mott VRH in
the low-temperature conductivity of polycrystalline graphene
grown by solid source CMBE. The deviations correlate with
grain size as determined from the ratio of the intensities of the
Raman D and G bands with stronger deviations for the smaller
grain size. The data are explained in terms of the quasi-ID VRH
model of FTS.10 Conductive AFM measurements suggest that
the grain boundaries or edge states in isolated grains play the
part of the conducting wires in the FTS model.
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APPENDIX A: THE FITTING OF T -DEPENDENT
RESISTIVITY WITH MOTT VRH

Temperature-dependent conduction in semiconductor ma-
terials can be described by

ρ = ρace
− εa

kT + ρNNHe− En
kT + ρVRHe−( T0

T
)p , (A1)

where εa is the thermal activation energy for band-gap
transitions, εn is the NNH activation energy, T0 is the
characteristic temperature of VRH conduction, and p is the
hopping exponent that depends on the DOS near Fermi energy.
Tailored graphene such as gated samples (gapped) shows
2D Mott VRH for which the hopping exponent p = 1/3.
Temperature-dependent resistivity data from Fig. 2(a) were
fitted with the above three conduction mechanisms with
VRH exponents p = 2/5, which were obtained from the
RAM, and p = 1/3 for conventional Mott VRH, while the
other parameters were determined from the fit. The best fit
results are shown in Table III. The Mott hopping exponent
(p = 1/3) resulted in negative values for the NNH resistivity
terms. However, the exponent p = 2/5 resulted in good fits
with positive values for the resistivity and activation energy
terms for samples, where RAM indicated this exponent. This
suggests that conduction models, including Mott VRH, do not
explain the low T conduction in this sample.

APPENDIX B: THE VALIDITY CHECK OF THE HOPPING
EXPONENTS

In the VRH temperature region, the ln (R) vs (1/T )p

plots should have a linear relationship when the hopping

FIG. 8. (Color online) The plots of (a) ln ρ vs T −1 and (b) ln ρ

vs T −1/3.
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exponent p is correct. Therefore, this relation can be used
for a validity check of the obtained hopping exponents.
The temperature-dependent resistivity data for each sample
shown in Fig. 2 are plotted in Fig. 7 as ln (R) vs (1/T )p

with three different p values (p = 1/3, 3/4, 2/5). As seen,
each data set has a linear relation with only one hopping
exponent, and that is the value that resulted from the RAM.
The fitting results in the paper over the entire temperature
range and these validity checks, therefore, suggest that our
hopping exponents well explain the hopping conduction in GF
graphene.

APPENDIX C: NNH TEMPERATURE RANGE AND THE
CRITICAL TEMPERATURE TO CHECK VALIDITY OF 2D

MOTT VRH

To obtain the temperature range for NNH and the critical
temperature for 2D Mott VRH, the resistivity data are plotted
as ln ρ vs T −1 and ln ρ vs T −1/3 in Figs. 8(a) and 8(b),
respectively. The linear region in plot of ln ρ vs T −1 was used
to determine the NNH temperature range, while the critical
temperature (TC) of the 2D Mott VRH conduction was also
obtained from the linear region of ln ρ vs T −1/3 plot at the
lower-temperature region.
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