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Anomalous behavior in the phonon dispersion of the (001) surface of Bi2Te3 determined
from helium atom-surface scattering measurements
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We employ inelastic helium atom-surface scattering to measure the low-energy phonon dispersion along
high-symmetry directions on the surface of the topological insulator Bi2Te3. Results indicate that one particular
low-frequency branch experiences noticeable mode softening attributable to the interaction between Dirac fermion
quasiparticles and phonons on the surface. This mode softening constitutes a renormalization of the real part of
the phonon self-energy. We obtain the imaginary part, and hence lifetime information, via a Hilbert transform.
In doing so, we are able to calculate an average branch-specific electron-phonon coupling constant 〈λν〉 = 1.44.
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I. INTRODUCTION

The compound Bi2Te3 is a strong three-dimensional
topological insulator (TI), a recently discovered class of
materials with an insulating bulk electronic structure and
protected metallic quasiparticle surface states.1–5 The surface
quasiparticles are found to be Dirac fermions with a single
Dirac cone located in the bulk band gap and centered at the �̄

point.6 Strong spin-orbit interactions lock the Dirac fermion
quasiparticles’ (DFQs) spin and wave vector in a mutually
perpendicular configuration, giving the Dirac cone a definite
chirality. As a result, the surface states are robust against time-
reversal invariant perturbations. Consequently, DFQs on the
surface cannot backscatter from lattice vacancies, grain bound-
aries, phonons, etc. into their time-reversed counterparts.
Despite these constraints, it was recently found that the DFQs
strongly interact with surface boson excitations, especially
phonon7 and coupled plasmon-spin8,9 excitations. Technical
improvements may minimize defects, but phonons are always
present. Consequently, DFQ-phonon interaction should be a
dominant scattering mechanism for Dirac fermions on these
surfaces at finite temperatures. Hence, the electron-phonon
(e-p) interaction is of exceptional importance when assessing
the feasibility of promising applications in technologies such
as spintronics and quantum computing.

In this paper, we present experimental and theoretical
studies of the surface phonon dispersions of Bi2Te3 along the
high-symmetry directions �̄M̄ and �̄K̄M̄ . The experimental
measurements were carried out with the aid of elastic and
inelastic helium atom-surface scattering (HASS). Phonon
mode identification was obtained by fitting the results of
lattice dynamics slab calculations, based on the pseudocharge
model, to experimental data. To extract information about the
e-p interactions, an expression for the phonon self-energy
was derived from a phenomenological model employing the
random phase approximation (RPA). The real part of the self-
energy was fitted to the experimental results, and subsequently
the imaginary part was obtained with the aid of the Kramers-
Kronig transformation. This allowed the determination of
mode-dependent e-p coupling, i.e., phonon-branch-specific

λν(q), where the subscript ν indicates the particular branch
involved.

The highlights of the study include a strong Kohn anomaly
and the absence of long wavelength Rayleigh modes. More-
over, one particular optical surface phonon branch originating
at the �̄ point with ω ≈ 1.4 THz experiences significant
renormalization due to interactions with the DFQs. We fitted
our experimental results to lattice dynamical calculations
based on the pseudocharge model and found it necessary to
introduce a coupling between surface pseudocharge to account
for the unique shape of the dispersion. The extracted average
value of the branch-specific dimensionless e-p coupling
constant is 〈λν〉 = 1.44.

In Sec. II we discuss the experimental setup and procedures.
The formulation of the pseudocharge-based lattice dynamical
calculations is presented in Sec. III, while a brief discussion of
the RPA machinery is outlined in Sec. IV. Finally, we present
the results and discussion in Sec. V.

II. EXPERIMENTAL SETUP AND PROCEDURES

A. Crystal preparation

Polycrystalline Bi2Te3 compounds were prepared by solid-
state reaction. High-purity starting elements of Bi (99.999%,
chunks) and Te (99.999%, shot) were melted in evacuated
carbon coated quartz tubes at 550 ◦C for 10 h, slowly cooled to
150 ◦C, followed by a rapid quenching in water. The obtained
ingots were pulverized into powder, sealed in evacuated quartz
tubes (10 cm length and 1.6 cm inner diameter at ∼ 10−3 Torr)
after multiple argon gas purging cycles, pretreated at 550 ◦C
for 48 h in a box furnace and furnace-cooled. Single crystals
were grown with a vertical Bridgman furnace starting from
the pretreated sealed tubes. The temperature profile of the
Bridgman furnace used for the whole series was maintained at
350–700 ◦C within a 25 cm region. Initial complete melting
was achieved at 700 ◦C for 24 h to ensure complete reaction and
mixing. A temperature gradient of 0.5 ◦C/cm was programed
around the solidification point near 585 ◦C, and the quartz
tube was then slowly lowered into the cooling zone at a rate of
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0.5 mm/h. The grown single crystals were 3 cm long and about
1.6 cm in diameter with good optical quality. They are easy
to cleave with crystal planes perpendicular to the hexagonal c

axis.
Grown crystals of Bi2Te3 were cut into wafers approxi-

mately 3 mm × 3 mm × 1 mm. The wafer was subsequently
attached to the oxygen-free high conductivity (OFHC) copper
sample holder using ultrahigh vacuum (UHV) compatible
conducting epoxy. The sample holder and wafer were baked
at 180 ◦C for approximately 1 h to allow the epoxy to cure.
Upon removal, an additional layer of epoxy was added to
the top of the wafer onto which a cleaving pin was pressed.
The entire assembly consisting of sample holder, wafer, and
cleaving pin was again baked for roughly 1 h. After cooling
to room temperature, the sample assembly was transferred
into the UHV chamber and mounted on a sample manipulator
equipped with XYZ motions as well as polar and azimuthal
rotations. A base pressure of ∼ 10−10 Torr was maintained in
the chamber with the aid of a liquid nitrogen baffle, a titanium
pump, and a turbo molecular pump. The partial pressures of
the main contaminants in the chamber (CO, CO2, and H2O)
were consistently below 5.0 × 10−11 Torr. The sample was
then cleaved in situ by knocking the cleaving pin off the wafer.
All measurements were performed with the sample surface at
room temperature.

B. Experimental measurements

Experimental measurements of the surface phonon disper-
sion were carried out at the helium atom-surface scattering
facility at Boston University. Elastic diffraction was used to
determine the surface structure and its quality, and to orient
the sample surface along desired high-symmetry directions.
Inelastic surface scattering methods, based on time-of-flight
(TOF) techniques, were employed to perform measurements
of the phonon dispersion.

The incident helium beam has a velocity resolution of
≈ 1.6% with an angular spread of 0.06◦. Detection of the
scattered helium and its energy distribution is effected by a
metastable atom velocity analyzer. As shown in Fig. 1, the
detector10 is comprised of an electron gun and a multichannel
plate (MCP) electron multiplier. The electron gun generates
a well-collimated, monoenergetic electron beam crossing the
angle-resolved scattered He beam at right angles. The energy
of the electron beam is tuned to excite the He atoms to
their first excited metastable state (He*, 2 3S, 104 s lifetime)
upon impact. Deexcitation of a He* atom at the surface of
the MCP leads to the ejection of an electron in a manner
similar to Auger emission, which generates an electron cascade
that is then collected by the anode of the multiplier. By
electronically pulsing the electron gun, a gate function is
created for TOF measurements in the inelastic HASS mode.
The overall energy resolution of the TOF measurements is
about 1 meV. The details of the detection scheme are given in
Ref. 10.

By writing the He-atom wave vector as k = (K,kz), where
K is the component parallel to the surface, conservation of
momentum and energy for the “in-scattering-plane” geometry
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FIG. 1. (Color online) Schematic diagram of the helium beam
detection mechanism. The incident beam energy is controlled by
the nozzle temperature and the incident and final angles may be
adjusted via the polar controls of the sample manipulator and detector,
respectively.

can be expressed as

�K = |G + Q| = kf sin θf − ki sin θi, (1)

�E = h̄ω(Q) = h̄2k2
f

2M
− h̄2k2

i

2M
, (2)

where subscripts i and f denote incident and scattered beams,
respectively, and �K is the momentum transfer parallel to
the surface. G is a surface reciprocal-lattice vector, Q is
the surface phonon wave vector, h̄ω(Q) is the corresponding
surface phonon energy, and M is the mass of a He atom.
By eliminating kf from the above equations, one obtains
the so-called scan curve relations which are the locus of all
the allowed �K and �E as dictated by the geometry and the
conservation relations,

�E = Ei

[(
sin θi + �K/ki

sin θf

)2

− 1

]
, (3)

where Ei = h̄2k2
i /2M . Note that the energy exchange �E

can be both positive and negative, corresponding to phonon
annihilation and creation, respectively. A sample set of scan
curves for fixed Ei and θi but variable θf may be seen
in Fig. 2. The intersections of these scan curves with the
phonon dispersion curves define the kinematically allowed
inelastic events for a fixed geometric arrangement. Thus, the
geometric scattering configurations for scanning a particular
region of �E versus �K can be preselected. By systematically
changing Ei, θi , and θf , the entire set of dispersion curves
along a particular direction in the Brillouin zone can be
accessed.
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FIG. 2. (Color online) Scan curves showing the kinematically
allowed scattering events for Ei = 43.09 meV and θi = 45.62◦. Each
blue parabola corresponds to a unique θf , which are plotted here
in 1◦ increments from 35◦ to 50◦. The red parabola and data points
correspond to the phonon events shown in the third panel of Fig. 8.

III. PSEUDOCHARGE PHONON MODEL

A. Crystal structure

The Bi2Te3 primitive cell is shown in Fig. 3. Alternating
hexagonal monatomic crystal planes stack in ABC order.
Units of Te-Bi-Te-Bi-Te form quintuple layers (QLs): bonding
between atomic planes within a QL is covalent, whereas
bonding between adjacent QLs is predominantly of the Van der
Waals type. The primitive cell contains three QLs. The crystal
structure belongs to the space group R3̄m. The point group
contains a binary axis (with twofold rotation symmetry), a
bisectrix axis (appearing in the reflection plane), and a trigonal
axis (with threefold rotation symmetry).

The primitive translation vectors in the hexagonal basis are

t1 = a

(√
3

2
, − 1

2
,0

)
, t2 = a(0,1,0), t3 = c(0,0,1), (4)

FIG. 3. (Color online) Hexagonal unit cell of the Bi2Te3 crystal
comprised of three QLs and belonging to the space group R3̄m. Note
that the Te2 layer within each QL is a center of inversion symmetry.
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FIG. 4. (Color online) Bulk and surface reciprocal space structure
of Bi2Te3. Panel (a) shows the bulk Brillouin zone and high-symmetry
points. The surface Brillouin zone is represented as a projection along
qz. The extended surface reciprocal lattice is shown in (b) depicting
high-symmetry points �̄,M̄ , and K̄ as well as reciprocal-lattice
vectors G1 and G2.

where a and c are lattice constants of the hexagonal cell.
The corresponding reciprocal-lattice vectors are

G1 = 2π

a

(
2√
3
,0,0

)
, G2 = 2π

a

(
1√
3
,1,0

)
,

(5)

G3 = 2π

c
(0,0,1).

The reciprocal space structure of Bi2Te3 is shown in Fig. 4.

B. Equations of motion

To identify the character and symmetry of the measured
inelastic events, we employ empirical lattice dynamics slab
calculations, based on the pseudocharge model (PCM).11–13

With this procedure, we characterize and further substantiate
our measurements of the phonon dispersion of Bi2Te3. Here
we review some of its basic characteristics and tabulate the
parameters used in our realization of the model.

To begin, we expand the electron density nl within each
primitive cell l in terms of symmetry-adapted multipole
components around selected Wyckoff symmetry points Rlj ,

nl(r) =
∑
j�k

c�k(lj )Y�k(r − Rlj ), (6)

where � denotes an irreducible representation (irrep) of the
Wyckoff symmetry point group and k indexes its rows; Y�k is
a symmetry-adapted harmonic function. The expansion coef-
ficients c�k are separated into static and dynamic components,
the latter being treated as bona fide time-dependent dynamical
variables,

c�k(lj ; t) = c
(0)
�k(lj ) + �c�k(lj ; t). (7)

We note that the static components c
(0)
�k(lj ) at equivalent posi-

tions j will be identical, however their dynamical counterparts
�c�k(lj ; t) will vary with both l and j .
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We may write the Lagrangian of the combined
pseudocharge-ion system as

L = 1

2

⎛
⎜⎜⎜⎝

∑
lκα

Mκu̇
2
α(lκ) +

∑
�k

lj

m��ċ2
�k(lj )

⎞
⎟⎟⎟⎠

−
(

1

2
[u · � · u + (u · T · �c + h.c.) + �c · H · �c]

)
.

(8)

The kinetic term contains contributions from both the ions
and pseudocharge (PC) where uα(lκ) is the displacement in
the α direction of the ion at site κ in unit cell l; M is the
ionic mass and m� is an effective PC mass that will be set to
zero upon invoking the adiabatic approximation. The potential
energy is expanded in a Taylor series to second order in the ion
(PC) displacements (deformations). �, T, and H are empirical
force-constant matrices representing ion-ion, ion-PC, and PC-
PC interactions, respectively.

We obtain the Euler-Lagrange equations of motion for the
ions and PCs in the standard way,

Mκüα(lκ) = −
∑
l′κ ′β

�αβ

(
l l′
κ κ ′

)
uβ(l′κ ′)

−
∑
l′j
�k

T α

�k

(
l l′
κ j

)
�c�k(l′j ), (9)

m��c̈�k(lj ) = −
∑
l′κ ′α

T �k
α

(
l l′
j κ ′

)
uα(l′κ ′)

−
∑
l′j ′

H�k

(
l l′
j j ′

)
�c�k(l′j ′), (10)

noting that only PCs belonging to the same irrep and the same
row can couple.

C. Adiabatic approximation, ionic self-terms, and PC self-terms

The entries of the matrix � are expressed in terms of em-
pirical parameters. However, the diagonal, self-term, elements
that determine how the displacement of a particular ion affects
its own motion must be treated carefully. We approach this
case by first invoking the adiabatic approximation in which
we set m� = 0. This is equivalent to saying that the electronic
response to lattice deformations is instantaneous. We then have

�c = −H−1TT u. (11)

We now note that the crystal is invariant under an arbitrary
rigid displacement u0. In this scenario, we have

�c = −H−1TT u0. (12)

Substituting for �c in (9), we obtain

0 = −�u0 + TH−1TT u0, (13)

where 0 is a null column matrix of length 3N , where N is
the number of ions. Equation (13) is actually satisfied for each
3 × 3 ionic matrix and any arbitrary displacement, provided it

is uniform. Thus, we rearrange and separate the self-term from
the rest of the sum to obtain

�

(
l l

κκ

)
= −

′∑
l′κ ′

�

(
l l′
κκ ′

)

+
∑
l′jj ′
�k

T�k

(
l l′
κj

)
H−1

�k

(
l l′
jj ′

)
TT

�k

(
l l′
κj

)
, (14)

where the prime on the first sum indicates that the self-term is
excluded.

We proceed in a similar manner to calculate the diagonal
elements of the matrix H. We again employ translational
invariance, but this time we explicitly choose our rigid
displacement to be in the z direction for clarity. We can rewrite
Eq. (10) as

0 = −
∑
l′κ ′

T �k
z

(
l l′
j κ ′

)
uz(l

′κ ′)

−
∑
l′j ′

H�k

(
l l′
j j ′

)
�c�k(l′j ′). (15)

We separate the PC self-term from the rest of the sum and
rearrange to obtain

H�k

(
l l

j j

)
= −1

�c�k(l,j )

[∑
l′κ ′

Tz

(
l l′
j κ ′

)
uz(l

′,κ ′)

+
′∑

l′j ′
H

(
l l′
j j ′

)
�c�k(l′,j ′)

]
. (16)

For a rigid displacement of the entire crystal (including the
PC) in the z direction, we have �c�k = uz = u0 for all l,κ,j .
The PC self-term then takes the form

H�k

(
l l

j j

)
= −

∑
l′κ ′

Tz

(
l l′
j κ ′

)
−

′∑
l′j ′

H�k

(
l l′
j j ′

)
. (17)

With the ionic and PC self-terms fixed, we are now
in a position to calculate the phonon frequencies. Fourier
transforming Eq. (9), scaling the force-constant matrices by
the ionic masses, and employing Eq. (11) yields

ω2(q)u(q) = D(q)u(q),
(18)

D(q) = �(q) − T(q)H−1(q)T†(q).

Thus, to determine the phonon frequencies at a particular wave
vector, one needs only to construct the dynamical matrix D(q)
and find its eigenvalues.

D. Bulk and surface parameters

In our computational model, first the ionic positions are
populated. As for the PCs, the “c” Wyckoff positions of
the R3̄m space group, with C3v point-group symmetry, were
the most appropriate to use as centers of PC symmetry-
adapted multipole expansion. They are identified as having
coordinates (0,0, ± z) that define the vertical axes of the
tetrahedral pyramids shown in Fig. 5. The pyramid centers
were chosen as PC expansion points. C3v has irreps A1 (with
dipolar symmetry-adapted harmonic z) and E (with dipolar
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FIG. 5. (Color online) Schematic diagram of ion and PC locations
in the PCM. The figure indicates that the surface PC are more spread
and easier to deform than their bulk counterparts. The figures to
the right show the dipolar PC deformation associated with lattice
distortions along the z direction.

symmetry-adapted harmonics x, y). To minimize the number
of empirical constants employed in the bulk calculations, we
opted to include only the A1 symmetry-adapted fluctuations as
depicted in Fig. 5, which also shows the ion and PC locations
in the PCM.

In the insulating bulk, we do not include interactions
between PCs, rendering H diagonal and constrained by
Eq. (17). However, we introduce two force-constant parame-
ters T 1

z and T 2
z to account for the ion-PC coupling in pyramids

involving Te1-Bi and Te2-Bi, respectively. We use central
ion-ion interaction potentials v(r) with force-constant matrix
elements of the form

�αβ = A
xαxβ

r2
0

− B

(
xαxβ

r3
0

− 1

r0
δαβ

)
. (19)

The parameters A and B are related to the ion potential via

A = ∂2v

∂r2

∣∣∣∣
r=r0

, B = ∂v

∂r

∣∣∣∣
r=r0

, (20)

where r0 is the equilibrium bond length. We consider only
nearest-neighbor interactions for Bi-Te couplings. However,
because of the large size of Bi atoms, we admit coupling to their
nearest in-plane (intralayer) Bi neighbors, which are actually
second neighbors, as well as to the nearest Bi atom in the other

TABLE I. Bulk parameters for the lattice dynamical calculations
based on the PCM.

Ion-ion interaction Ion-PC interaction

Bond A (N/m) B (N) Position Value (N/m)

Te1-Te1 0.187 0.0187 T 1
z (Te1-Bi) 0.35

Te1-Bi 0.99 0.099 T 2
z (Te2-Bi) 0.4

Te2-Bi 0.2 0.02
Bi-Bi (intra) 0.2 0.02
Bi-Bi (inter) 0.2 0.02

Bi layer within a single QL (interlayer). To determine the force-
constant and PC parameters, we fit our bulk phonon calculation
to available Raman, IR, and inelastic neutron spectroscopy
data.14–17 A summary of the parameters used and their values
are given in Table I.

The best fit to the available bulk data is shown in Figs. 6(a)–
6(d). Dispersions are presented along three high-symmetry
directions � (�-Z), � (�-X), and � (�-Y ). Raman, IR, and
neutron data are depicted as red triangles, green squares,
and blue circles, respectively. The calculations agree well
with all data types at the � point. However, we note some
discrepancies between our calculations and the neutron data
for some optical branches. First, there is disagreement in the
dispersion of the low-energy Eu and Eg optical modes along
the � direction. Introduction of E PC deformations would
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FIG. 6. (Color online) Calculated bulk dispersion curves along
the high-symmetry directions � [(a) and (b)], � (c), and � (d). The
C3v symmetry of the � direction allows one to project out purely
longitudinal A modes and doubly degenerate, transverse E modes.
Modes along the � and � directions have mixed polarization. The
calculated dispersions were fit to available Raman (red triangles), IR
(green squares), and inelastic neutron scattering (blue circles) data.
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TABLE II. Modified surface parameters for the lattice dynamical
calculations.

Surface ion-ion interaction Surface ion-PC interaction

Bond A (N/m) B (N) Position Value (N//m)

Te1-Bi 0.42 0.042 T S
z (Te1-Bi) 0.24

Te1-Te1 (intra) 0.25 0.025 T S
xy (Te1-Bi) 0.15

T̃ S
xy (Te2-Bi) 0.4

Surface PC-PC interaction

Hq = H0(1 + q2

a
e−q2/b), H0 = −0.0782, a = 0.0034, b = 0.0075

not remedy this, since they involve interactions in the x/y

plane and will not introduce the necessary phases along the �

(z) direction. We believe that the remedy for this discrepancy
would be the introduction of long-range Coulomb interactions,
as suggested by a previous study15 of bulk Bi2Te3. However,
since we are primarily concerned with the surface, where
Coulomb interactions are effectively screened by DFQs, we
opted not to include such interactions. Second, we note some
disagreements and ambiguities between the calculations and
neutron data for the dispersions of high-energy optical modes
along the � direction. In this case, the inclusion of E PC
deformations might improve the fitting. Yet we opted to omit
these deformations since we are primarily interested in the
low-energy sector where the Kohn anomaly appears and there
is reasonable agreement.

In calculating the surface phonon dispersions, we employed
a slab geometry containing 30 QLs. To obtain the best fit to
the experimental data, the following changes and additions to
the bulk parameter values were made:

(i) The surface Te1-Bi force-constant parameter was re-
duced to roughly 42% of its bulk value to account for the
reduced bonding and the emergence of metallic electrons.

(ii) A new planar force-constant parameter involving
intralayer surface Te1-Te1 bonds was introduced.

(iii) Symmetry-adapted x/y deformations of the PC in the
surface and subsurface pyramids, which form a basis of the
doubly degenerate irrep E, were introduced to account for
the delocalized nature of the DFQs. These are effected via
new parameters T S

xy and T̃ S
xy , respectively. In addition, T S

z was
reduced from its bulk value to account for the extra screening
provided by the DFQ surface states.

(iv) A momentum-dependent coupling Hq between dipolar
z deformations of neighboring surface PC was introduced to
account for interactions among the DFQs.

The surface parameters are summarized in Table II. Calcu-
lated dispersions for the slab geometry are presented in Sec. V.

IV. CALCULATION OF e- p COUPLING CONSTANT IN
THE RANDOM PHASE APPROXIMATION

In this section, we describe the phenomenological model-
fitting approach to the experimentally measured dispersion of
the optical phonon branch that exhibits strong e-p renormaliza-
tion, and the procedure followed to extract the corresponding
e-p coupling function λν(q). The construction of the model is
carried out with the aid of the RPA.

We start by defining the noninteracting, or free, surface
phonons Hamiltonian in second-quantized form,

Hph =
∑
q,ν

h̄ω(0)
q,ν

(
b†q,ν bq,ν + 1

2

)
, (21)

where b
†
q,ν is the creation operator of a phonon of bare

frequency ω
(0)
q,ν and branch index ν. The free phonon Matsubara

Green’s function of the (q,ν) mode is defined as

D(0)
ν (q,iωn) = 2

(
h̄ω

(0)
q,ν

)
(iωn)2 − (

h̄ω
(0)
q,ν

)2 , (22)

where iωn is the Matsubara frequency.
The electronic surface states of Bi2Te3 form a two-

dimensional Dirac metal, whose low-energy physics is well
described by the Hamiltonian

Hel =
∑

k

ψ
†
k [h̄vF ẑ · (k×σ ) − μ] ψk, (23)

where ψk ≡ ( ck ↑
ck ↓ ) is the two-component electron spinor oper-

ator at wave vector k, vF is the Fermi velocity, μ is the Fermi
energy (which lies above the Dirac point), and σ = (σ1,σ2) is
the vector containing the first two Pauli matrices. The Dirac

Hamiltonian (23) is diagonal in the helicity basis �k = ( γ +
k

γ −
k

):

�k = Uk ψk,

Uk = 1√
2

(
ieiϕk 1

−ieiϕk 1

)
, ϕk ≡ arctan

(
ky

kx

)
(24)

yielding

Hel =
∑

k

∑
α=±

ξα
k

(
γ α

k

)†
γ α

k , ξα
k = αh̄vF |k| − μ. (25)

We consider an interaction between the electron density
and the displacement uj of the j th ion about its in-plane
equilibrium position R(0)

j . The displacement uj has both
in-plane and out-of-plane components. The e-p interaction
can be generically written as

He-p =
∫

d2r ρe(r)
∑

j

η
(

r − R(0)
j

) ·uj , (26)

where ρe(r) = ∑
σ=↑,↓c†σ (r)cσ (r) is the electron surface den-

sity operator and η( r − R(0)
j ) is a position-dependent vector

function (with units of energy per length) characterizing the
e-p coupling. The quantities ρel, η, and uj are then expanded
in reciprocal space as

η
(

r − R(0)
j

) = 1

A
∑

q

ηq e iq·(r−R(0)
j ),

ρe(r) =
∑

σ=↑,↓
c†σ (r) cσ (r)

= 1

A
∑

σ=↑,↓

∑
q

e −iq·r ∑
k

c
†
k+q,σ ck, σ ,

uj = 1√
N

∑
q,ν

√
h̄

2Mω
(0)
q,ν

eiq·R(0)
j (bq,ν + b

†
−q,ν)êν(q),
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where N is the number of surface primitive cells and êν(q) is
the polarization vector. Substitution in (26) leads to the e-p
interaction Hamiltonian

He-p = 1√
A

∑
σ=↑,↓

∑
k

∑
q,ν

gq,ν c
†
k+q,σ ck,σ (bq,ν + b

†
−q,ν)

(27)

with the e-p coupling

gq,ν =
√

Nh̄

2MAω
(0)
q,ν

ηq·êν(q) ≡
√

Nh̄

2MAω
(0)
q,ν

ηq,ν .

The dressed phonon Green function Dν is obtained from
the following diagrammatic equation:

 =  + RPA

Dν = D(0)
ν + D(0)

ν

|gν |2
ε

Π Dν

where |gν |2/ε represents the vertex interactions and the RPA
bubble is the electron polarization function defined as

�(q,iωn) = 1

A
1

β

∑
i�m

∑
p

Tr
[
G

(0)
σ,σ ′ (p + q,i�m + iωn)

×G
(0)
σ,σ ′ (p,i�m)

]
, (28)

where A is the surface area and Tr acts on the spin degrees
of freedom σ,σ ′ = ↑,↓. G(0) is the noninteracting electronic
Matsubara Green’s function with fermionic Matsubara fre-
quencies �m,

G
(0)
σ,σ ′(p,i�m) = −

∫ β

0
dτ e i�mτ 〈 Tτ cp, σ (τ ) c

†
p, σ ′(0) 〉0,

(29)

where β ≡ 1/kB T and Tτ is the imaginary time-ordering
operator. Upon performing the Matsubara sums in Eq. (28),
we arrive at

�(q,iωn) =
∫

d2k
(2π )2

1 + cos θ

2

×
[
nF (ξ+

k+q) − nF (ξ+
k )

ξ+
k+q − ξ+

k − iωn

+ nF (ξ−
k+q) − nF (ξ−

k )

ξ−
k+q − ξ−

k − iωn

]
,

(30)

where ξ+ and ξ− were defined in Eq. (25), nF is the Fermi
function, and θ is the angle between wave vectors k and k + q.
The factor (1 + cos θ ) accounts for the effect of DFQ chirality
introduced by strong spin-orbit coupling. As such, we note
here that the contribution of the spin-orbit interaction to the e-p
coupling is manifest explicitly in the polarization, or response,
function as well as implicitly in the strong vertex interactions.
In contrast, a recent study18 of the e-p coupling in ultrathin
Bi films, using density functional perturbation theory, reports
that the spin-orbit coupling mainly operates through the vertex
terms rather than through the response function. We believe
that the difference arises from the fact that, in topological
insulators like Bi2Te3, the very existence of DFQs and their
chirality is a direct manifestation of spin-orbit coupling, which
is clearly reflected in the response function.

The RPA dielectric function is given by

ε(q,iωn) = 1 − vc(q ) �(q,iωn), (31)

where vc(q ) = e2

2ε0|q| is the two-dimensional Fourier transform
of the electron-electron Coulomb interaction potential. Solving
the diagrammatic equation above yields

Dν(q,iωn) = D(0)
ν (q,iωn)

1 − D(0)
ν (q,iωn) |gq,ν |2 �(q,iωn)

ε(q,iωn)

= 2
(
h̄ω

(0)
q,ν

)
(iωn)2 − (

h̄ω
(0)
q,ν

)2 − 2
(
h̄ω

(0)
q,ν

)
�̃

(32)

with

�̃ = |gq,ν |2 �(q,iωn)

ε(q,iωn)

being the phonon self-energy.
After performing the analytic continuation iωn → ω +

i0+, we obtain the renormalized frequencies as the real part of

FIG. 7. (Color online) Diffraction patterns indicating the two
high-symmetry directions �̄M̄ and �̄K̄M̄ on the surface of Bi2Te3.
The horizontal axis depicts momentum transfer as a fraction of the
pertinent lattice vector.
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FIG. 8. (Color online) Time-of-flight scans for the inelastic HASS measurements. The abscissa has been converted to energy difference for
clarity. Phonon creation and annihilation events are manifest as blue inelastic peaks.

the poles of Dν(q,ω),

(h̄ωq,ν)2 = (
h̄ω(0)

q,ν

)2 + 2
(
h̄ω(0)

q,ν

)
Re[�̃(q,ωq,ν)]. (33)

Re [�̃(q,ωq,ν)] is then adjusted to reproduce the measured
phonon dispersion. It depends on two parameters, namely the
two components of the coupling function η = (η⊥ and η‖)
which lie in the sagittal plane with directions normal and

parallel to the wave vector q. A detailed definition of these
couplings is given in Ref. 7. The values of the bare phonon
frequency ω(0) and kF are extracted from experimental results.
The former is identified as the experimental value of ω(q =
0) = 1.4 THz, where the DFQ response vanishes, while 2kF

was set as the wave vector where the V-shaped Kohn anomaly
occurs.19
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FIG. 9. (Color online) Phonon dispersion along high-symmetry directions �̄K̄M̄ and �̄M̄ for Bi2Te3. Gray areas represent the projection of
bulk phonon bands onto the surface Brillouin zone, whereas the dotted lines indicate surface phonon modes with at least 30% of the oscillator
strength concentrated within the first three layers of the 30 QL slab surface regions. Green and blue dots indicate modes polarized perpendicular
and parallel to the surface plane, respectively. The TOF measurements are depicted as orange dots with error bars.

After fitting Re[�̃(q,ωq,ν)] to the experimental dispersion
curve, the corresponding Im[�̃(q,ωq,ν)] is obtained by a
Kramers-Kronig transformation

Im[�̃(q,ωq)] = 2

π

∫ ∞

0

ωq

ω2
q − ω′2

q
Re[�̃(q,ω′

q)] dω′
q. (34)

Finally, the e-p coupling function is obtained from the
relation20–22

λν(q) = − Im[�̃(q,ωq,ν)]

πN (EF )(h̄ωq,ν)2
, (35)

where N (EF ) is the density of electronic states at the Fermi
surface.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We begin by presenting in Fig. 7 typical diffraction patterns
for both the �̄M̄ and �̄K̄M̄ directions. The data show good
agreement with the values of the nominal lattice vectors. As
was stated earlier, measurements of the phonon dispersion
are obtained using inelastic HASS measurements and TOF
techniques. Typical TOF scans collected along different high-
symmetry directions are shown in Fig. 8.

The measured and computed dispersion curves for Bi2Te3

are presented along the two high-symmetry directions in Fig. 9.
Gray areas represent the projection of bulk phonon bands
onto the surface Brillouin zone, whereas dotted lines indicate
surface phonon modes with at least 30% of the oscillator
strength (determined by the square of the mode eigenvector)
concentrated within the first three atomic layers of the slab

surface regions. Green and blue dots signify z-polarized and
x/y-polarized modes, respectively. There are two key features
worth noting from the onset. First, we notice an optical
surface phonon branch (hereon denoted ν) originating at
approximately 1.4 THz at the �̄ point that disperses to lower
energy with increasing wave vector in both the �̄M̄ and �̄K̄

directions. This trend terminates in a V-shaped minimum at
q ≈ 0.08 Å−1 and ω ≈ 1 THz, signifying a Kohn anomaly.
This is consistent with our previous work7 on Bi2Se3, which
exhibited a similar Kohn anomaly terminating at q ≈ 0.2 Å−1.
As before, we attribute this phonon mode softening to an
effective screening provided by scattering of the DFQs at the
Fermi surface, which are schematically depicted in Fig. 10.
Scattering events with a momentum transfer greater than the
diameter of the Fermi surface require energy, and are therefore
suppressed. This is manifest as the recovery of the ν-branch
dispersion after q = 2kF ≈ 0.08 Å−1. Hence we have an
operative DFQ screening for q < 2kF which is attenuated for
wave vectors above this value.19

We also note the absence of surface acoustic phonon modes
in both the measured and computed dispersion, which is also
consistent with our results in Bi2Se3. It appears that acoustic
phonon modes with q < 2kF are confined to the insulating
bulk, unable to penetrate into the metallic surface layers due to
mismatch in force constants at the interface. However, for q >

2kF , these acoustic modes may resonate in the metallic film
with their bulk counterparts as evidenced by the emergence
of the z-polarized Rayleigh mode at ω ≈ 0.8 THz. We would
like to point out that a recent study using density functional
theory23 has also demonstrated the absence of long-wavelength
Rayleigh modes in the phonon dispersion. However, we should
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Inter-band 
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Intra-band 
Transition
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kx
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E

Fermi 
Surface

FIG. 10. (Color online) Diagram showing the dispersion of the
surface DFQ excitations. The spin chirality of the Fermi surface is
depicted by the red arrows. The screening effects of the DFQs can
be understood in terms of the scattering of electrons in the Dirac
cone with the momentum transfer supplied by a phonon. We identify
two distinct types of transitions: intraband and interband, although
the latter are suppressed by energetic considerations. Note that low-
energy intraband transitions are confined to a circle of diameter 2kF .

note that the authors’ results are for Bi2Te3 thin films (two to
three QLs), so the connection to the current work may be
tenuous. Indeed, the study also yields a value for the average
e-p coupling constant that is significantly smaller than the
result presented here.

One may question why there are several low-energy
measured events that do not overlap with any computed surface
phonon modes. This may be attributable to the large phonon
density of states associated with a high concentration of flat,
narrow projected bulk bands. It may be possible that we are
sampling these bulk modes via surface resonances.
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FIG. 11. (Color online) (a) Plot depicting the renormalization of
the ν-branch energy in the range 0 < q < 2kF . The dotted black
lines indicate the renormalized phonon frequencies in the RPA
calculation given by Eq. (33), which are fit to experimental data
(orange points). (b) Plot of the ν-branch-specific coupling function.
The steady increase of λν(q) with q is consistent with the softening of
the ν-branch phonon frequencies. The attenuation just before q ≈ 2kF

is due to the fact that scattering of DFQs across the Fermi surface by
phonons is not possible due to time-reversal invariance.

To make quantitative statements about the magnitude of
the e-p coupling on the surface of Bi2Te3, we fit the real
part of the phonon self-energy to our experimental data as
described in Sec. IV. Figure 11(a) depicts the results where
we overlapped the experimental data for the ν branch along
both the �̄M̄ and �̄K̄ directions. Next the imaginary part is
obtained from the Kramers-Kronig transformation of the real
part via Eq. (34). Finally, we use Eq. (35) to calculate the
ν-branch-specific e-p coupling function, which is plotted in
Fig. 11(b). One will notice that λν(q) assumes quite large
values with a maximum of ≈ 3. Averaging over the points in
Fig. 11(b) yields 〈λν〉 = 1.44.

We note that, although large, this value for the coupling
constant is compatible with recent results of high-resolution
angle-resolved photoemission spectroscopy measurements of
both Bi2Se3 and Bi2Te3 which give a value λ ≈ 38. However,
the authors attribute this large value to contributions from
e-p as well as plasmon-spin interactions. It is possible that
the latter could account for the residual contribution to the
coupling constant. Moreover, recent inelastic HASS surface
phonon measurements on Bi (111) (Ref. 24) report λ ≈ 1.3,
which is much stronger than the bulk value. We also note that
our calculated value of 〈λν〉 is significantly larger than a recent
theoretical calculation25 and an experimental study26 using
angle-resolved photoemission spectroscopy.

VI. CONCLUSION

We have measured the low-energy surface phonon dis-
persion of the strong TI Bi2Te3 using HASS techniques. A
low-energy z-polarized optical surface phonon mode expe-
riences strong downward renormalization in both the �̄M̄

and �̄K̄ directions, signifying a Kohn anomaly terminating
at approximately 2kF . Moreover, we find no trace of the
ubiquitous Rayleigh surface mode for phonon wave vectors
below this value. Our measurements are substantiated by
lattice dynamical calculations based upon the PCM, which
capture both of these phenomena when interactions between
surface PC are taken into account.

In addition, we have performed a calculation of the
e-p coupling constant for the uniquely dispersive surface
optical phonon branch. By fitting our experimental data
to a phenomenological model based on the RPA, we find
〈λν〉 = 1.44. This exceptionally large value is consistent with a
recent experimental study using angle-resolved photoemission
spectroscopy, but disagrees with some other theoretical and
experimental claims. Thus a consensus about the strength of
the e-p interaction in Bi2Te3 has yet to be reached.
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