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Spin-orbit (SO) interactions give a spin-dependent correction r̂so to the position operator, referred to as the
anomalous position operator. We study the contributions of r̂ so to the spin Hall effect (SHE) in quasi-two-
dimensional (2D) semiconductor quantum wells with strong band-structure SO interactions that cause spin
precession. The skew scattering and side-jump scattering terms in the SHE vanish, but we identify two additional
terms in the SHE, due to r̂ so, which have not been considered in the literature so far. One term reflects the
modification of spin precession due to the action of the external electric field (the field drives the current in the
quantum well), which produces, via r̂ so, an effective magnetic field perpendicular to the plane of the quantum
well. The other term reflects a similar modification of spin precession due to the action of the electric field created
by random impurities, and appears in a careful formulation of the Born approximation. We refer to these two
effects collectively as anomalous spin precession and we note that they contribute to the SHE to the first order
in the SO coupling constant even though they formally appear to be of second order. In electron systems with
weak momentum scattering, the contribution of the anomalous spin precession due to the external electric field
equals 1/2 the usual side-jump SHE, while the additional impurity-dependent contribution depends on the form
of the band-structure SO coupling. For band-structure SO coupling linear in wave vector, the two anomalous
spin precession contributions cancel. For band-structure SO coupling cubic in wave vector, however, they do
not cancel, and the anomalous spin precession contribution to the SHE can be detected in a high-mobility 2D
electron gas with strong SO coupling. In 2D hole systems, both anomalous spin precession contributions vanish
identically.
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I. INTRODUCTION

In systems with strong spin-orbit (SO) interactions, an
electric field generates a transverse spin current:1–12 this
phenomenon is referred to as the spin Hall effect (SHE). For the
past ten years, the SHE has been a source of new ideas for mag-
netoelectronic devices13 aimed at integrating semiconductor
and magnetic technologies, facilitating efficient information
processing and quantum computing architectures.14–17 These
visions have stimulated a large volume of experimental and
theoretical work.18–33 Experimentally, the SHE was initially
studied in semiconductors,34–38 but has since expanded to
novel materials such as HgTe-based quantum wells,39 topo-
logical insulators, graphene, and d-band metals.40–42 It is often
simpler to measure the inverse spin Hall effect,43 where a spin
current generates a transverse charge current, which is detected
by conventional means. The inverse SHE has been observed
in Al,44 Pt wires at room temperature,45 hybrid FePt/Au
devices,46 Au films with Pt impurities,47 permalloy/normal
metal bilayers,48 GaAs multiple quantum wells,49 and Cu with
Ir impurities.50 For a review of recent experimental work on
the SHE in Pt see Ref. 51. Observation of the inverse SHE has
recently been reported even in a weakly SO coupled material
such as Si.52

SO coupling may be present in the band-structure and in the
impurity potentials. Band-structure SO interactions become
important in structures lacking a center of inversion when SO

interactions lift spin degeneracy.53 If the underlying crystal
lattice lacks a center of inversion, the material is said to
possess bulk inversion asymmetry (BIA). In low-dimensional
systems, the confinement potential can be made asymmetric in
which case one speaks of structure inversion asymmetry (SIA).
In this paper, we consider exclusively quasi-two-dimensional
semiconductor systems that lack a center of inversion due to
BIA54 and/or SIA giving rise to Rashba SO coupling. In these
systems, the band-structure SO interaction is represented by
a Hamiltonian H = (h̄/2) σ · �k describing the interaction of
the spin with an effective wave-vector-dependent magnetic
field �k. This can be �BIA

k or �SIA
k . The spin precesses

about this field with frequency �k ≡ |�k|. Different physical
regimes are distinguished by the value of the product of �k

with the momentum relaxation time τp. In the ballistic regime
(clean limit), �kτp → ∞. The weak momentum scattering
regime is characterized by �kτp � 1, while in the strong
momentum scattering regime, �kτp � 1.

SO interactions arise, quite generally, from a spin-
dependent correction r̂so to the position operator,55,56 whose
general form is

r̂so = λ σ × ωk, (1)

where λ is a material-specific parameter, σ is the vector of
Pauli spin matrices, and ωk takes different forms for different
systems, as well as for electrons and holes in the same
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system.57 We note that �k and ωk are not independent of
each other. The ωk entering the corrected position operator
is inherently related to �SIA

k characterizing the Rashba SO
coupling through a term of the form �SIA

k = λωk × ∇V .
The presence of r̂so results in corrections to the interaction
between charge carriers and electric fields, which include
impurities and external electric fields. Thus, in addition to the
band-structure SO interaction, one must take into account SO
interactions arising from the external electric field and from
the electron-impurity potential. The interplay between these
interactions in the SHE is quite a complicated subject. It has
received a lot of attention in recent years, yet, as we will see,
it is not yet completely understood.

Perhaps the most intuitive mechanism of SHE is the one
known as skew scattering, i.e., the asymmetric scattering of up
and down spins by impurities.58–60 Next, we have the so-called
side-jump scattering term,55,61–63 which consists of two equal
terms, one reflecting the correction to the band energy due to
the spin-dependent interaction with the electric field, the other
reflecting the renormalization of the carrier trajectory during
collisions. Diagrammatic formulations naturally recover the
two side-jump scattering terms through the vertex renormaliza-
tion of spin and charge currents, as Ref. 59 demonstrated. An
analytical derivation of the side jump from the Kubo formula
was presented in Ref. 64. Furthermore, Ref. 10 identified skew
and side-jump scatterings within a drift-diffusion approach.
More recently, side jump scattering was derived starting from
the quantum Liouville equation for the single-particle spin
density matrix.65

The analysis of the SHE becomes considerably more
complicated when both band structure and impurity-potential
induced SO interactions are present. This problem was first
addressed by Tse and Das Sarma,66 who employed the
diagrammatic Kubo formula and considered band-structure
SO coupling of the linear Rashba form. They found that the
skew scattering contribution to the SHE vanished for arbitrarily
small value of the band-structure SO coupling, while a term
equal to half the usual side-jump scattering SHE survived.67

This is in contrast to the result obtained in Ref. 68 that both
the side-jump and the skew scattering contributions vanish for
arbitrarily small values of the band-structure SO coupling,
as long as impurity-induced (Elliot-Yafet) spin relaxation
is neglected. These two results are reconciled by taking
into account the SO contribution to the electron-impurity
self-energy diagram,69 which recovers the vanishing of the
side-jump and skew scattering contributions found in Ref. 68.

The principal question identified in Ref. 66 was the paradox
of the nonanalyticity of the spin Hall conductivity, which
appears to change discontinuously as soon as the band structure
SO coupling is turned on. This paradox was finally solved in
Ref. 70 by the introduction of an impurity-induced (Elliott-
Yafet) spin relaxation rate 1/τEY, which led to a spin Hall
conductivity of the form

σ z
yx =

[
σ z

yx

]
ss

+ [
σ z

yx

]
sj

1 + τEY/τDP
, (2)

where τDP is the Dyakonov-Perel relaxation time associated
with the band-structure SO coupling and given by τ−1

DP =
〈�2

k〉τp, where τp is the momentum relaxation time and

the angular bracket denotes an average over the momentum
distribution. The above formula exhibits a smooth crossover
between the sum of skew-scattering (ss) and side-jump
scattering (sj) contributions, when the band-structure spin
precession �k is neglected, and zero when �kτp � 1, i.e.,
when the band-structure SO interaction is much stronger than
the electron-impurity interaction (see also Ref. 69).

However, this is not the end of the story. The work
described above was limited to band-structure SO couplings
that are linear in wave vector k. The aim of this work is to
provide a consistent framework for treating band-structure
and impurity SO effects in quasi-two-dimensional quantum
wells for any form of the band structure SO interaction in the
weak momentum scattering regime �kτp � 1. To this end, we
construct a rigorous theory of the interplay of spin precession
due to band-structure SO coupling and SO coupling due to
impurities. We start from the quantum Liouville equation and
derive a kinetic equation for the spin density matrix, which
captures the effects of band-structure spin precession and
r̂so on an equal footing. We focus from the very beginning
on the weak momentum scattering regime �kτp � 1. Under
this assumption, we do not have to worry about the finite
Elliot-Yafet scattering rate that appears in Eq. (2): we are in the
regime τEY � τDP. But, while Eq. (2) predicts, in this limit, a
vanishing spin Hall conductivity for linear-in-k band-structure
SO interaction, we will show that a finite spin Hall conductivity
can survive for different forms of that SO interaction.

More precisely, we find that, in the weak momentum
scattering regime, skew scattering and side jump scattering
still give zero SHE. At the same time, we identify two
additional contributions to the SHE stemming from r̂so.
These contributions have been overlooked in the literature
thus far. One contribution arises from the impurity potential,
and is found in the Born approximation when scattering
terms of second order in SO are taken into account. This
contribution can be viewed as a modification of the band
structure precession frequency due to the electron-impurity
interaction. The second contribution is scattering-independent.
Its origin lies in the spin-dependent interaction with the
external electric field brought about by r̂ so. This has the form of
an interaction between each carrier and an effective magnetic
field. The carrier spin precesses in this effective magnetic
field in such a way that an out-of-plane spin component is
generated, which contributes to the SHE. We refer to these
two effects collectively as anomalous spin precession. The
impurity-induced anomalous spin precession term gives an
out-of plane component of the effective magnetic field. This
is precisely what distinguishes anomalous spin precession
from the usual side-jump scattering term, which vanishes in
the presence of spin precession. Remarkably, these effects
contribute to the SHE in the first order in the SO coupling
constant even though they formally appear to be of second
order. The external electric field contribution to anomalous
spin precession appears to be universal in electronic systems
in the clean limit.

In electron systems with band-structure SO linear in k the
sum of the two anomalous spin precession terms vanishes. In
hole systems, both additional terms are zero independently.
Nevertheless, the anomalous spin precession term in the SHE
in general survives, and we demonstrate its existence explicitly
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in 2D electron systems with band-structure SO described by
the cubic Dresselhaus model. In this model, we find the total
SHE conductivity in the clean limit to be [see Eq. (55) below]

σ z
yx ≈ − e

16π
+ neeλ

4
. (3)

The term ∝λ is linear in the electron number density, while the
band-structure SO contribution in the weak momentum scat-
tering regime is density-independent. The cubic Dresselhaus
SO interaction term is strong in a wide electron quantum well
at high density ne. Although the experimental situation is more
complicated than the above formula suggests (see Sec. VIII),
and involves the nontrivial interplay of linear and cubic SO
terms, we find that in a high-mobility 2D electron gas (2DEG)
based on InSb, anomalous spin precession accounts for most
of the spin-Hall conductivity. Our results are therefore relevant
to experiments and help to distinguish different contributions
to the SHE.

Contributions to the SHE purely from band-structure SO
are well known.6 We do not discuss them explicitly here,
except in the practical case of experimental observation
(see Sec. VIII). The focus of this work is on the contributions to
the SHE due to r̂so, and the central result is that, aside from the
well-known skew scattering and side-jump scattering terms,
two additional contributions—the anomalous spin precession
terms—are present when band-structure SO is nonzero. This
work proves that r̂so can give rise to a spin-Hall current
through a mechanism unrelated to scattering. We work up
to third order in the impurity potential, and, in order to recover
all contributions, we consider terms of second order in the
SO coupling. Our results are valid in the weak momentum
scattering limit, yet in Appendices B and C, we prove
rigorously that a nonanalyticity in the strong momentum
scattering limit is cured by introducing the Elliott-Yafet spin
relaxation time τEY, as was done in Ref. 69.

The outline of this paper is as follows. In Sec. II, we present
the band Hamiltonian and in Sec. III, we discuss the effective
position operator. In Sec. IV, we derive the general form
of the kinetic equation starting with the quantum Liouville
equation, and discuss the various scattering terms. In Sec. V,
we discuss the nonequilibrium correction to the density matrix,
demonstrating that a new, scattering-independent driving term
due to r̂so is present. The general solution to the kinetic
equation is presented in Sec. VI, demonstrating that the
skew scattering and side-jump scattering terms give zero
contributions to the SHE. All SHE contributions due to r̂so

are listed for commonly employed models of SO coupling. An
explanation of anomalous spin precession is given in Sec. VII,
which is followed by a detailed discussion of the experimental
situation in Sec. VIII, and the summary and conclusions.

II. BAND HAMILTONIAN

In the crystal-momentum representation, the band Hamil-
tonian Ĥ0 in the effective mass approximation has the general
form

H0k = Hkin + Hso ≡ Hkin + h̄

2
σ · �k, (4)

for an arbitrary SO interaction. The kinetic energy term Hkin =
ε0k1 ≡ h̄2k2

2m∗ 1, where 1 is the identity matrix in spin space
and m∗ the carrier effective mass. The spin-dependent term in
the Hamiltonian Hso is treated as a perturbation with respect
to the kinetic energy term. The eigenenergies are written as
εk± = ε0k ± (h̄�k/2).

For quasi-2D systems, we may have different contributions
to SO coupling that are relevant in different regimes.71 For
2D spin-1/2 electron systems with SIA, the band-structure
contains the linear Rashba Hamiltonian

HR1 = α1 (σxky − σykx) = α1i(k−σ+ − k+σ−), (5)

where k± ≡ kx ± iky and σ± ≡ (σx ± iσy)/2. For the most
common case of a (001) surface BIA has two contributions,
the linear Dresselhaus term

HD1 = β1(σyky − σxkx) = −β1(k+σ+ + k−σ−), (6)

and the cubic Dresselhaus term

HD3 = β3
(
σxkxk

2
y − σykyk

2
x

)
= β3[k−(k2

+ − k2
−)σ+ + k+(k2

− − k2
+)σ−]. (7)

In a quantum well with well width w, we have approximately
β1 = β3(π/w)2 (see Ref. 71). This implies that the linear
Dresselhaus term often dominates in more narrow electron
systems with smaller density (i.e., small Fermi wave vector),
whereas the cubic Dresselhaus term may dominate in wider
quantum wells with a larger density. Experiments can be
designed to focus on these different regimes. Even in the latter
case, we typically remain in the electric quantum limit, where
only the lowest subband of the quantized motion in z direction
is occupied.36 In the following, we will focus on this regime.

For 2D heavy-hole systems, SO coupling due to SIA is
dominated by the cubic Rashba Hamiltonian,

HR3 = α3
[
ky

(
k2
y − 3k2

x

)
σx + kx

(
k2
x − k2

y

)
σy

]
= α1i(k

3
+σ− − k3

−σ+). (8)

BIA in 2D heavy-hole systems on a (001) surface contains the
k-linear term

HD1′ = γ1(σxkx + σyky) = γ1(k+σ− + k−σ+), (9)

and the cubic Dresselhaus term

HD3′ = γ3
(
k2
x + k2

y

)
(σxkx + σyky) = γ3(k2

+k−σ− + k2
−k+σ+).

(10)

For the terms cubic in k, we restricted ourselves to the dominant
contributions due to SIA and BIA. HD1′ and HD3′ are often
comparable in magnitude.

III. EFFECTIVE POSITION OPERATOR

The SO interaction appears when transforming from the
Dirac to the Pauli equation by means of the Foldy-Wouthuysen
transformation.56 Under this transformation, the position
operator in spin-1/2 systems becomes

r̂phys = r̂ + r̂so, (11)

where the SO part r̂so is expressed in terms of the vector σ of
Pauli spin matrices. We refer to r̂so as the anomalous position
operator.
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The general form for the anomalous position operator, valid
for both 2D electron and 2D hole systems, is

r̂so = λ σ × ωk, (12)

where λ and ωk are different for electrons and holes. For 2D
electrons ωk = k, and

r̂so = λ1 σ × k, (13)

assuming λ1k
2
F � 1. For 2D hole systems, the correction to

the position operator has the form

r̂so = λ3 σ × ωk3, (14)

where ωk3 = k3 (cos 3θ, sin 3θ,0), assuming λ3k
6
F � 1.

Consider a general scalar potential V (r̂). Under the Foldy-
Wouthuysen transformation it transforms to V (r̂phys), which,
to first order in r̂so, takes the form

V (r̂phys) = V (r̂) + 1
2 [∇V (r̂) · r̂so + r̂so · ∇V (r̂)]. (15)

Therefore, as a result of this transformation, both the potential
due to an applied electric field and the impurity scattering
potential acquire spin-dependent terms.

Let U (r) denote the scattering potential, which represents
elastic scattering off charged impurities and static defects (but
not phonons or electrons)

U (r) =
∑

I

Ū (r − RI ), (16)

where RI indexes the random locations of the impurities and
the scattering potential due to a single impurity is denoted by
Ū (r). In Fourier space, the matrix elements of U (r) are

Ukk′ = Ūkk′
∑

I

ei(k−k′)·RI (17)

and the potential due to a single impurity is written as

Ūkk′ = Ukk′1 + Vkk′ , (18)

whereUkk′ represents the matrix element of the potential due to
a single impurity between plane waves, while Vkk′ is the spin-
dependent part arising from r̂so. Both have units of energy ×
volume. The strength of the disorder potential is characterized
by the impurity density ni . The matrix elements of the
spin-dependent part of the impurity potential in reciprocal
space are

Vkk′ = − iλ

2
σ · (ωk × k′ − ωk′ × k)Ukk′ . (19)

In 2D, the spin-dependent term in Vkk′ points out of the plane
for both electron and hole systems.

Interaction with a static, uniform external electric field E
is contained in

HEkk′ = (eE · r̂)kk′1 + e (E · r̂so)kkδkk′

= ieE · ∂

∂k
δ(k − k′) 1 + 1

2
σ · �kδkk′ (20)

with 1 the identity matrix in spin space, and �k arises from
the anomalous position operator.72 From Eq. (12),

�k = 2eλ ωk × E. (21)

It follows from the preceding discussion that �k has different
forms in electron and hole systems.

The anomalous position operator accounts for impurity SO
coupling and for band-structure SO coupling due to SIA. To
see the latter, consider the SO coupling due to the full potential
Vtot acting on the system. In a 2D system we can divide Vtot =
Vext + VQW + U , where Vext is the applied electric field, VQW

is the z-direction confinement, and U is the impurity potential
introduced above. The total potential Vtot gives rise to SO
coupling, which in reciprocal space is contained in

Hso,k = λnσ · k × ∇(Vext + U ) + λnσ · k × ẑ
(

∂VQW

∂z

)
.

(22)

In the second term we can incorporate the average 〈∂VQW/∂z〉
over the quantum well into an effective SO constant α, giving
the Rashba SO coupling.73 This clarifies the relationship
between α and λ and shows that, knowing the form of the
Rashba Hamiltonian in a certain system, one can deduce the
form of r̂so in that system.

The full Hamiltonian is H tot
k = H0k + HEkk′ + Ukk′ . The

spin current operator ĵ i
j corresponding to spin component i

flowing in the direction j is

ĵ i
j = h̄2kj

2m
σi. (23)

In addition to the contribution from the band Hamiltonian, the
velocity operator has two additional terms, discussed in detail
in Ref. 65. The first stems from the spin-dependent interaction
with the external electric field HEkλ, while the second arises
from the spin-dependent term Vkk′ in the impurity potential.
These two cancel, as they represent the net force acting on
the system.65 They will not be explicitly considered in what
follows.

IV. KINETIC EQUATION

The formalism presented here parallels that originally
formulated in Refs. 8 and 9. The Liouville equation for the
density operator ρ̂ is projected onto the basis {|k〉}, with
ρkk′ = fk δkk′ + gkk′ , where gkk′ is off-diagonal in k, and all
quantities are matrices in spin space. These satisfy

dfk

dt
+ i

h̄
[Ĥ0,f̂ ]kk = − i

h̄
[Û ,ĝ]kk, (24a)

dgkk′

dt
+ i

h̄
[Ĥ0,ĝ]kk′ = − i

h̄
[Û ,f̂ ]kk′ − i

h̄
[Û ,ĝ]kk′ . (24b)

We focus on variations that are slow on the scale of the
momentum relaxation time, and solve for gkk′ as an expansion
in the impurity potential, which can be performed to any
desired order. Very generally, fk satisfies

dfk

dt
+ i

h̄
[Ĥ0,f̂ ]kk + Ĵ (fk) = 0. (25)

The total scattering term Ĵ (fk) = ĴBorn(fk) + Ĵss(fk), where
in the first Born approximation,

ĴBorn(fk) = 1

h̄2

〈 ∫ ∞

0
dt ′ [Û ,e−iĤ0t

′/h̄[Û ,f̂ ] eiĤ0t
′/h̄]

〉
kk

, (26)

and 〈· · · 〉 represents averaging over impurity configurations.
In the second Born approximation, we obtain the additional
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skew scattering term

Ĵss(fk) = − i

h̄3

〈 ∫ ∞

0
dt ′

∫ ∞

0
dt ′′[Û ,e−iĤ0t

′/h̄

× [Û ,e−iĤ0t
′′/h̄[Û ,f̂ ] eiĤ0t

′′/h̄] eiĤ0t
′/h̄]

〉
kk

. (27)

We expand ĴBorn(fk) in �k and λ. We retain the leading
term plus terms to first order in �k, first order in λ, and the
second-order term in �kλ. Thus ĴBorn(fk) can be written as a
perturbation expansion in �k and λ in the form

ĴBorn(fk) = Ĵ0(fk) + Ĵ�(fk) + Ĵsj(fk) + Ĵ�λ(fk). (28)

The leading term in ĴBorn(fk) is the scalar Ĵ0(fk), which is
the customary Born-approximation scattering term appearing
in the Boltzmann equation. It is found by taking Eq. (26) and
considering only the scalar parts of Ĥ0 (i.e., Hkin) and Û (i.e.,
Ukk′), and in 2D takes the form

Ĵ0(fk) = nim
∗

h̄3

∫
dθ ′

2π
|Ukk′ |2(fk − fk′). (29)

Next, we have the term in ĴBorn(fk) to first order in �k (i.e., due
to band-structure SO coupling), which is found by considering
the spin-dependent part of Ĥ0 and the scalar part of Û . It
gives rise to a well-known scattering term, referred to here as
Ĵ�(fk).8,9 We only require its action on the scalar part of the
density matrix, nk, given by

Ĵ� (nk) = π

h̄

∫
d2k′

(2π )2
|Ukk′ |2 (nk − nk′) σ · (�k − �k′)

× ∂

∂ε0
δ(ε0k − ε0k′). (30)

This term is relevant only in determining the band-structure
SO contribution to the spin current, which has been studied
previously, and is not pertinent to the discussion presented in
this work thus it will not be presented explicitly. Following
on, in the side-jump scattering term Ĵsj (fk) we take the scalar
part of Ĥ0 and the spin-dependent part of Û . The electric field
E is also finite in this term: without it Ĵsj (fk) would vanish.74

Because E is nonzero, Ĵsj (fk) acts on the equilibrium density
matrix f0k. It has two parts, which have been determined in
Ref. 65. We use the notation of Ref. 65. We write Ĵsj (nk) =
Ĵ a

sj (nk) + Ĵ b
sj (nk). The first part of the side-jump scattering

term, referred to as Ĵ a
sj (nk), arises from the change in the band

energy due to the spin-dependent energy of interaction with E:

Ĵ a
sj (nk) = 2πni

h̄

∫
d2k′

(2π )2
|Ukk′ |2(nk − nk′)

1

2
σ · (�k − �k′ )

× ∂

∂ε0k
δ(ε0k − ε0k′). (31)

The second part, Ĵ b
sj (nk), reflects the spin-dependent change

in the carrier position during collisions:

Ĵ b
sj (nk) = iniπeE

h̄
·
∫

d2k′

(2π )2
Ukk′

(
∂Vk′k

∂k′ + ∂Vk′k

∂k

)

× (nk − nk′)
∂

∂ε0k′
δ(ε0k − ε0k′) + H.c. (32)

Both parts of the side jump scattering term are ∝σz.

The scattering term Ĵ�λ(nk) reads

Ĵ�λ(nk) = πni

h̄

∫
ddk′

(2π )d
[ σ · �k′ ,Vkk′]Ukk′ (nk − nk′)

× ∂

∂ε0k
δ(ε0k − ε0k′). (33)

The physical meaning of this term is as follows. During
a scattering process, an incoming spin has a well-defined
spin direction, given by �k, which represents the band-
structure SO coupling at wave vector k. Because the scattering
potential is also spin dependent, the incoming spin is rotated
during scattering by an amount that is proportional to Vkk′ ,
the impurity SO coupling. This scattering term therefore
represents spin rotations during collisions induced by the
impurity SO coupling, the rotation being evident from its
commutator structure.

Even though we are doing perturbation theory to first order
in the SO interaction terms λ and �k, spin precession makes
it necessary to include driving terms to order λ�k, since these
terms also yield contributions to the spin current ∝λ only, i.e.,
to first order in the impurity SO coupling. The necessity of
including terms ∝λ�k will become apparent when we discuss
explicitly the solution for SEk introduced below, during which
it will emerge that spin precession introduces a factor of 1/�k.

Beyond the first Born approximation we retain the leading
term Ĵss(fk), in which λ is finite but the electric field E = 0,
which is customarily responsible for skew scattering.72 To first
order in λ, the real part of this term reduces to

Ĵss(nk) = −3π2niλ

h̄

∫
d2k′

(2π )2

∫
d2k′′

(2π )2
Ukk′Uk′k′′Uk′′k σ · (ωk

× k′ − ωk′ × k) (nk′ − nk′′)

× δ(ε0k − ε0k′′ )δ(ε0k − ε0k′). (34)

In 2D systems, in which both k and ωk are in the xy plane, the
skew scattering term is ∝σz.

V. NONEQUILIBRIUM DENSITY MATRIX

In a constant uniform electric field E, the density matrix is
fk = f0k + fEk. The equilibrium density matrix is given by

f0k = 1
2 [fFD(εk+) + fFD(εk−)]

+ 1
2 [fFD(εk+) − fFD(εk−)] σ · �̂k, (35)

with fFD the Fermi-Dirac distribution function, while fEk is
due to E. To first order in E, the correction fEk satisfies

∂fEk

∂t
+ i

h̄
[Hk,fEk] + Ĵ (fEk)

= eE
h̄

· ∂f0k

∂k
− i

2h̄
[σ · �k,f0k]. (36)

The term (eE/h̄) · (∂f0k/∂k) corresponds to the usual stream-
ing term in the Boltzmann equation. The second term on the
right-hand side (RHS) of Eq. (36) appears due to the anomalous
position operator and is ∝λ.

We write fk = nk1 + Sk, where Sk is a 2 × 2 Hermitian
matrix, and correspondingly fEk = nEk1 + SEk and f0k =
n0k1 + S0k. The expectation values of the spin current operator
are found from SEk. The term (eE/h̄) · (∂f0k/∂k) may be
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decomposed into a scalar part (eE/h̄) · (∂n0k/∂k) and a
spin-dependent part (eE/h̄) · (∂S0k/∂k). The spin-dependent
part has been studied previously8,9 and is responsible for
current-induced spin polarizations and spin currents arising
from the band-structure SO coupling. It will not be discussed
in this work.

The nonequilibrium correction to the scalar part of the
density matrix, nEk, is determined from

∂nEk

∂t
+ Ĵ0 (nEk) = eE

h̄
· ∂n0k

∂k
. (37)

The solution to this equation is well known, and reads nEk =
(eEτp/h̄) · (∂n0k/∂k), with τp the momentum relaxation time.
Once this solution is found, the spin-dependent scattering
terms Ĵss , Ĵsj , and Ĵ�λ act on nEk and produce additional
effective driving terms for SEk. (The method used is the same
as in Ref. 76.)

We seek the solution for SEk to first order in λ, which we
denote by SEkλ. Specifically, including the contribution due to
�k from Eq. (36), it is found from

∂SEkλ

∂t
+ i

h̄
[Hk,SEkλ] + Ĵ0 (SEkλ)

= −Ĵss(nEk) − Ĵsj (nEk) − Ĵ�λ(nEk) − i

h̄
[HEkλ,S0k].

(38)

We specialize to short-range impurities henceforth, without
loss of generality. The potential of a single impurity in Fourier
space is written as

Ūkk′ = U1 + Vkk′ , (39a)

Vkk′ = − iλU
2

σ · (ωk × k′ − ωk′ × k), (39b)

where the Fourier transform Ukk′ has become the constant U .
We write Ĵ0(fk) = (fk − fk)/τ , with the overline denoting an
angular average over the directions of k̂, which in 2D indicates
an average over the polar angle θ ,

X ≡
∫

dθ

2π
X, (40)

and the momentum relaxation time τp ≡ τ , given by

1

τ
= nim

∗U2

h̄3 . (41)

We discuss the driving terms in more detail. Firstly,

−Ĵss(nEk) = 3niλm∗2|U |3
4h̄5

σ · (ωk × k′ − ωk′ × k) nEk′ ,

(42)

where the overline denotes averaging over θ ′ and the integra-
tion over k′ forces k′ = k. We have established that this term
is ∝σz, and inspection of Eq. (42) reveals that this term is an
odd function of k.

The anomalous interaction with E gives rise to two driving
terms. The first arises from the side-jump scattering term,
which was determined in Ref. 65. For both electrons and holes
this takes the form

−Ĵsj (nEk) = − 1

τ
σ · �k δ(ε0k − εF ). (43)

This term is also odd in k.75 An additional driving term
comes from the commutator of 1

2 σ · �k with the density
matrix. Given that �k is already first order in E we require
only the equilibrium density matrix f0k. We expand f0k =
fFD(εk)1 + (h̄/2) σ · �k

∂fFD(εk)
∂εk

, where the first term is a scalar,
and at temperature T = 0, we can write

− i

h̄

[
H

sj

Ek,f0k
] = 1

2
δ(ε0k − εF ) σ · �k × �k. (44)

Notice that this term is zero in the absence of spin precession,
when f0k is a scalar and the commutator vanishes.

The remaining driving term is −Ĵ�λ(nEk). For 2D electron
systems,

−Ĵ�λ(nEk) = iπλni |U |2
h̄

∫
d2k′

(2π )2
[σ · �k′ ,σ · k × k′]

× (nEk − nEk′)
∂

∂ε0k
δ(ε0k − ε0k′). (45)

For 2D hole systems,

−Ĵ�λ(nEk) = iλπni |U |2
2h̄

∫
d2k′

(2π )2

× [σ · �k′ ,σ · (ωk3 × k′ − ωk′3 × k)]

× (nEk − nEk′)
∂

∂ε0k
δ(ε0k − ε0k′). (46)

VI. SOLUTION OF THE KINETIC EQUATION

We summarize first the general solution to the kinetic
equation for short range impurities and weak momentum
scattering. We denote the driving terms generically by DEkλ

in this section. Let the component i of the spin operator be
denoted by ŝi = (h̄/2) σi . The spin density is Tr ρŝi = Tr ρ̄ŝi ,
where the overbar denotes an angular average as above, thus
ρ̄ is the isotropic part of the density matrix. Similarly, the spin
current operator ĵ i

j has been defined in Eq. (23). Because it

is odd in k its expectation value yields Tr ρĵ i
j = Tr (ρ − ρ̄)ĵ i

j .
Consequently, the isotropic part of the spin density matrix
determines the spin density, while the anisotropic part of the
density matrix determines the spin current. It is therefore
convenient to divide the spin density matrix into SEkλ =
SEkλ + TEkλ, the isotropic part being SEkλ (which gives the
spin density) and the anisotropic part TEkλ (which gives the
spin current). From the quantum Liouville equation, we obtain
a set of coupled equations for SEkλ and TEkλ for short-range
impurities, which are solved rigorously in Appendix A. Here
we just quote the solution. Letting DEkλ = 1

2 σ · dEkλ, we find
for �kτ � 1,

TEkλ = 1

2
σ ·

(
�̂k

�k

)
× [dEkλ + A−1

(dEkλ − AdEkλ)], (47)

where the (dimensionless) matrix A is given by Aij = (δij −
�̂i�̂j ), and TEkλ as found in Eq. (47) gives the spin current
in the weak momentum scattering limit. Finally, we take the
electric field E ‖ x̂, the spin-Hall conductivity is defined by
jz
y = σ z

yxEx , and we abbreviate the spin-Hall conductivity due
to TEkλ simply by σλ.

035316-6



ANOMALOUS SPIN PRECESSION AND SPIN HALL . . . PHYSICAL REVIEW B 88, 035316 (2013)

The appearance of �k in the denominator of Eq. (47) is
a crucial feature of this solution. It demonstrates the need to
retain scattering terms ∝λ�k that are formally of second order
in the SO coupling.

A. Skew scattering and side-jump scattering

We recall that, as shown in Eqs. (42) and (43), both Ĵss (nEk)
and Ĵsj (nEk) are odd in k. Therefore the driving terms due
to Ĵss (nEk) and Ĵsj (nEk) yield corrections to SEkλ that are
even in k. Since the spin current operator ĵ i

j is odd in k,

simple power counting in Eq. (47) reveals that Ĵss (nEk) and
Ĵsj (nEk) do not give a spin current in the weak momentum
scattering regime. We can develop a physical understanding
of this fact. In the absence of spin precession, skew scattering
and side-jump scattering separate up-spins from down-spins.
When band-structure SO interactions are present, each spin
precesses about an effective magnetic field which depends on
k, thus it is not conserved. Electrons are driven by the external
field and collide with impurities, with up-spins scattering
predominantly in one direction and down-spins predominantly
in the other direction. The spins then travel towards the
edges of the sample, yet they are subjected to the action of
the band-structure SO effective field, which causes them to
precess. Upon arriving at the edge the spins are completely
randomized. Therefore, very generally, side-jump scattering
and skew scattering do not give rise to a spin current in 2D
systems.

B. Anomalous spin precession from electric field

Using Eq. (47), we have a term in the density matrix

S
prec
Ekλ = −1

2
σ · �k

�2
k τ 2

1 + �2
kτ

2
δ(ε0k − εF ). (48)

In the weak momentum scattering limit �kτ � 1, this result is
independent of the form of the band-structure SO interaction,
and can be easily obtained from the driving term in Eq. (44).
We have given (in this section alone) a result valid beyond
the weak momentum scattering limit so as to emphasize this
apparent independence is only an artifact of this limit. For
electron systems in this limit, the spin-Hall conductivity due
to this term is

σ
prec
λ = neeλ

2
, (49)

where ne is the electron density. In the weak momentum
scattering limit, this term is also independent of τ . In 2D
electron systems it recovers the nonzero contribution to
the SHE originally found by Tse and Das Sarma66 and,
subsequently, by Raimondi and Schwab.70 In 2D hole systems
it is easy to check that σ

prec
λ = 0.

The origin of this contribution to the SHE will be elucidated
in Sec. VII, but one remark is in order here. The spin-Hall
conductivity σ

prec
λ found in Eq. (49) has the opposite sign to

that found in Refs. 65,66, and 70 for the same orientation of
the electric field. One should therefore not think of σ

prec
λ as

a surviving side-jump term, but a qualitatively new term due
to r̂so altogether, which we identify with a spin precession

mechanism with no counterpart in systems without band-
structure SO coupling.

C. Anomalous spin precession from impurities

The last piece in the puzzle is the driving term Ĵ�λ(nEk),
which needs to be studied independently for each model. We
denote the contribution of this term to σλ by σ sct

λ . Once found,
this term is added to σ

prec
λ to give σλ, which yields the total

SHE due to r̂so.

1. Linear Rashba and Dresselhaus SO

For linear Rashba band-structure SO coupling HR1,

Ĵ�λ(nEk) = 2eαλmk

h̄3 E · k̂ σ · θ̂ δ(k − kF ). (50)

The spin-Hall conductivity due to this driving term is

σ sct
λ = −neeλ

2
. (51)

This term exactly cancels σ
prec
λ . The same holds for the linear

Dresselhaus SO interaction HD1.

2. Cubic Dresselhaus SO

In general, σ
prec
λ and σ sct

λ do not cancel. We consider next
a 2DEG in which the band-structure SO coupling is described
by the cubic Dresselhaus Hamiltonian HD3. In this case, the
scattering term Ĵ D3

�λ (nEk) is given by

Ĵ�λ(nEk) = −meβλk3

h̄3 E · k̂ (σ · θ̂ sin 2θ − σ · k̂ cos 2θ )

× δ(k − kF ). (52)

This gives a significant contribution to the spin-Hall current,

σ sct
λ = −neeλ

4
. (53)

The remaining term due to r̂so is σ
prec
λ , and thus in the weak

momentum scattering limit,

σλ = neeλ

4
. (54)

The magnitude of the SHE conductivity due to the band-
structure SO coupling (the band-structure SHE) in the 2D cubic
Dresselhaus model has been calculated to be −e/16π in the
clean limit.77 Therefore the total SHE conductivity, including
that due to band-structure SO, is

σ z
yx ≈ − e

16π
+ neeλ

4
. (55)

The term due to band-structure SO is density-independent,
whereas the anomalous spin precession term in the SHE is
linear in ne. These are the only two terms in the clean limit
when the band-structure SO coupling is described by the cubic
Dresselhaus model.

The cubic Dresselhaus term HD3 is strong in a wide
quantum well at high electron density ne. However, the
full Hamiltonian for such a system in general involves both
linear and cubic Dresselhaus SO terms, HD1 and HD3, whose
interplay is nontrivial. We discuss the full conditions required
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for experimental observation of anomalous spin precession in
this complex case in Sec. VIII.

3. Hole systems

It is easily seen that in 2D hole systems both σ
prec
λ and

σ sct
λ are zero. For holes, �k can be found from Eqs. (14) and

(20). Substituting this into Eq. (48), we find that the spin-Hall
current averages to zero over directions in momentum space. In
Ĵ�λ(nEk), in all cases studied, terms ∝e±3iθ cause the angular
integral to vanish. Therefore, in 2D hole systems,

σ sct
λ = 0. (56)

There is thus no contribution to the SHE due to anomalous
spin precession in 2D hole systems.

VII. DISCUSSION

To summarize, σλ = 0 in 2D hole systems, while in 2D
electron systems in the weak momentum scattering regime, it
can be written as

σλ = neeλ

2
+ σ sct

λ . (57)

The results for the total SHE due to r̂so are summarized in
Table I. Interestingly, σλ can be nonzero, even though that is
only true in one out of the several situations studied explicitly
in this work.

We have argued previously that σ
prec
λ should be thought

of not as a surviving side-jump term, but a qualitatively new
term, which is not present in systems without band-structure
SO. We demonstrate that this term is related to spin precession
induced by both band-structure SO and r̂ so. The electric field E
gives rise to an additional SO effective field �k ‖ ẑ direction.
The band-structure SO effective field �k is in the plane. We
examine spin precession in the total effective magnetic field
�k and �k, redefining �k → �̃k, with

�̃k = �k + �k. (58)

Let �̃k = (�̃x,0,0) and turn on E adiabatically, generating a
small �̃z � �̃x . We study the Heisenberg equation of motion
for the spin (Bloch) vector s, which reads ds/dt = �̃ × s, in
a clean system. The spin is taken initially to be parallel to �̃x .

TABLE I. r̂so contributions to the SHE in units of neeλ for
�τ � 1. Here, e− (h+) stands for electrons (holes), while “band
SO” abbreviates “band-structure SO.”

system band SO �k σ
prec
λ σ sct

λ

e− R1 k 1/2 −1/2
e− D1 k 1/2 −1/2
e− D3 k 1/2 −1/4
h+ R3 k3 0 0
h+ D1’ k3 0 0
h+ D3’ k3 0 0

In component form,

dsx

dt
= −�̃zsy, (59a)

dsy

dt
= �̃zsx − �̃xsz, (59b)

dsz

dt
= �̃xsy. (59c)

One can take the time derivative one more time and solve the
equations exactly, yet the physics is evident from Eq. (59b).
Since s(t = 0) = (sx,0,0) and sy is initially zero, sy should
remain zero at all times. Setting dsy/dt in the steady state, we
obtain

sz = sx

(
�̃z

�̃x

)
. (60)

The explanation is as follows: sy is initially 0 and must
remain 0. When E is turned on an additional component
�̃z is generated, which makes sx precess and gives a small
contribution to sy . To cancel this, sz must develop a small
out-of-plane component, which precesses around �̃x , and
gives the exact opposite contribution to sy . The extra sz density
has opposite signs for the two halves of the Fermi surface,
giving rise to a net spin-Hall current. The argument presented
here shows that r̂so gives rise to a spin-Hall current even in
a clean system. We refer to this process as anomalous spin
precession.

This argument can be generalized to explain anomalous
spin precession in a disordered system as well. This can be
done by replacing E → E + ∇U (r) and understanding this to
represent the total local electric field. We thus reproduce both
anomalous spin precession terms—the one due to the external
electric field and the one due to the impurity potential. Both
terms give an effective magnetic field out of the plane of the
quantum well, modifying the intrinsic SO spin precession.

Equation (47) is valid for weak momentum scattering.
Appendix A shows that in the strong momentum scattering
regime SEkλ diverges. Physically, this is because we are using
�k as our reference, and projections parallel and perpendicular
to it become ill-defined as �k → 0. In this limit, Dyakonov-
Perel spin relaxation is no longer active, and there is no
spin relaxation at all. We demonstrate in Appendix A that
the divergence in the strong momentum scattering regime is
cured by the introduction of the Elliott-Yafet spin relaxation
time τEY, which is also related to Vkk′ . Nevertheless, in order
to be consistent, one would have to formulate the entire
theory up to order λ2, which is beyond the scope of this
paper.

In deriving σλ, we have assumed for simplicity that the
scattering potential is short ranged. We do not expect the results
to change qualitatively for long-range impurities. Firstly, we
have shown that σ

prec
λ is independent of scattering in weak

momentum scattering limit and is traced to a mechanism un-
related to disorder. Secondly, although for a general potential
the anisotropic terms in Ukk′ will depend on the form of the
potential, as will σ sct

λ , we do not expect cancellation between
σ sct

λ and σ
prec
λ , even though σ sct

λ may have a different numerical
value from that determined. Finally, past experience with the
SHE shows that important cancellations, such as that of the
SHE due to Rashba band-structure SO coupling, tend to have
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a fundamental origin78 and are independent of whether the
scattering potential is short-range or long-range.8,9

VIII. EXPERIMENTAL OBSERVATION

We have argued that the anomalous spin precession contri-
bution to the SHE, in general, is finite. For example, it survives
in 2D electron gases in which the SO interaction is described
by the cubic Dresselhaus term (HD3). In Sec. VI C2, we
calculated the anomalous spin precession contribution to the
SHE conductivity using purely the cubic Dresselhaus model.
We now discuss the experimental conditions required for the
observation of anomalous spin precession in a realistic sample.

For the anomalous spin precession contribution to the SHE
to be observable it must ideally overwhelm the band-structure
contribution. Here we focus on two common semiconductor
materials with strong SO coupling in the conduction band,
InAs and InSb, and estimate the magnitude of the anomalous
spin precession as well as the band-structure contributions to
the SHE in these materials. The constant λ for InAs and InSb
can be found in Table 6.6 in Ref. 71 (in the notation used in
this paper, λ = r6c6c

41 /e).
The situation is complicated by the fact that in realistic

2D samples both the linear and the cubic Dresselhaus terms,
HD1 and HD3, are present. Having noted in Sec. II that β1 �
β3(π/w)2, the total SO Hamiltonian is

H = β3π
2

w2
(σyky − σxkx) + β3

(
σxkxk

2
y − σykyk

2
x

)
. (61)

The ratio π/(kF w) determines the relative magnitudes of
HD1 and HD3. However, in order to have only one subband
occupied, it is necessary that π/(kF w) � 1.

We showed in Sec. VI B that σ
prec
λ is the same in the clean

limit independently of the form of the band-structure spin-orbit
coupling. On the other hand, the contributions of the linear
and cubic Dresselhaus terms, HD1 and HD3, to σ sct

λ are not
simply additive, and their interplay is nontrivial. Therefore the
calculation of σ sct

λ presented in Sec. VI C2 needs to be repeated
for the complicated case of H = HD1 + HD3. This is done here
analytically, except that the final results require a series of
lengthy numerical integrations which can be performed using

TABLE II. Anomalous spin precession contributions to the spin
Hall conductivity in a 2D electron gas in a cubic crystal, with band-
structure spin orbit described by H = HD1 + HD3, all in units of
neeλ. In the last column, σλ = σ

prec
λ + σ sct

λ .

π/(kF w) σ
prec
λ σ sct

λ σλ

1.00 0.5 − 0.315 0.185
1.05 0.5 − 0.338 0.162
1.10 0.5 − 0.357 0.143
1.15 0.5 − 0.374 0.126
1.20 0.5 − 0.386 0.114
1.25 0.5 − 0.398 0.102
1.30 0.5 − 0.407 0.093
1.35 0.5 − 0.416 0.084
1.40 0.5 − 0.423 0.077

FIG. 1. Anomalous spin precession contributions in a 2D electron
gas with band-structure spin-orbit coupling described by H = HD1 +
HD3 as a function of the parameter π/(kF w). On the vertical axis σλ

is measured in units of neeλ.

a symbolic algebra package. The results for σ
prec
λ and σ sct

λ are
summarized in Table II, as well as Fig. 1.

The band-structure contribution to the SHE for the case
H = HD1 + HD3 has been evaluated in Ref. 77. In Fig. 1 of
that reference it was shown that the band-structure SHE is
a nonmonotonic function of the parameter π/(kF w), where
π/w in our paper corresponds to the parameter a in Ref. 77.
In fact, the band-structure SHE conductivity varies strongly as
a function of this parameter and it changes sign at a critical
value. It is, however, independent of β3 in the clean limit, as is
customary in 2D electron gases.

We consider a high-mobility quantum well with a num-
ber density ne = 5 × 1012 cm−2 for concreteness, a density
commonly encountered in transport experiments. We focus on
values of w for which π/(kF w) is comprised between 1.0 (the
widest well) and 1.4.

The band-structure contribution including both linear and
cubic terms is read off from Fig. 1 of Ref. 77 and is the
same for InAs and InSb. Our Eq. (55) (the pure cubic case)
corresponds to a = 0 in Eq. (16) of Ref. 77. Note also that, in
the notation of Ref. 77, e denotes the electron charge, whereas
in our notation the electron charge is −e: hence the seemingly
opposite sign of the first term of our Eq. (55) compared to the
corresponding formula of Ref. 77. When π/(kF w) = 1.0, the
band-structure contribution is ≈0.8 × e/(16π ) ≈ 0.016e and,
referring to Table II, we find the anomalous spin precession
contribution to be ≈0.185neeλ. When π/(kF w) = 1.4, the
band-structure contribution decreases to ≈0.2 × e/(16π ) ≈
0.004e, and the anomalous spin precession contribution to
≈0.077neeλ.

We consider first InAs, for which λ = 117 Å2. At
π/(kF w) = 1.0, with the value of ne specified above, we find
the anomalous spin precession term to be ≈0.01e, which is just
over half the size of the band-structure term. At π/(kF w) =
1.4, the anomalous spin precession term is 0.0045e, marginally
larger than the band-structure term. In InAs, therefore,
the band-structure term is dominant in this parameter
range.

In InSb, on the other hand, λ = 523 Å2. At π/(kF w) = 1.0,
with the value of ne given above, we find the anomalous
spin precession term to be ≈0.05e, three times larger than
the band-structure term. At π/(kF w) = 1.4, the anomalous
spin precession term is 0.02e, five times larger than the
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band-structure term. Thus, in InSb, the anomalous spin
precession is dominant in this parameter range.

We conclude that the most promising system for the
observation of anomalous spin precession is the 2D electron
gas in InSb. In the range 1.0 � π/(kF w) � 1.4, the anomalous
spin precession provides the dominant contribution to the
spin-Hall effect. At the lower end of this range, the overall SHE
signal is stronger, and anomalous spin precession accounts for
approximately three quarters of the SHE conductivity. At the
upper end, although the overall signal is weaker, anomalous
spin precession accounts for approximately 5/6 of the SHE
conductivity.

We recall that our findings apply to the weak momentum
scattering regime �kτp � 1. In the opposite limit, �kτp � 1,
not considered explicitly in this work, an additional mechanism
must be taken into account. Reference 23 has shown that
impurities give rise to a spatially random spin-orbit interaction
of the Rashba type, which leads to a finite yet non-universal
spin-Hall current. We expect this contribution to become
important in the strong momentum scattering regime.

IX. SUMMARY AND CONCLUSIONS

We have determined all the contributions to the SHE due
to the anomalous position operator r̂so in 2D electron and
hole systems. The SHE due to skew scattering and side-
jump scattering vanishes in the presence of spin precession
caused by the band-structure SO coupling. Two additional
contributions to the SHE exist due to r̂so, one of which is
scattering-dependent and one of which is due to anomalous
spin precession under the action of r̂so and the electric
field. These two contributions cancel out in systems with
band-structure SO linear in k, and are independently zero in 2D
hole systems. However, the contribution due to anomalous spin
precession survives in 2D electron systems with a significant
cubic Dresselhaus term, i.e., for wide quantum wells with high
electron densities, and is dominant under certain circumstances
in InSb. Anomalous spin precession can therefore be detected
in such a system.

A full account of the SHE in 2D systems must include
the lengthy calculation of the electric field contribution to the
skew scattering term, plus the band-structure SO correction
to that term. Moreover, in this work, we have only considered
heterostructures grown along the main crystal axes. Finally,
the full answer will be known when the definition of the
conserved spin current is taken into account, as has been done
for the band-structure SHE.79 We reserve these studies for a
future publication.
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APPENDIX A: DECOMPOSITION OF THE SPIN DENSITY
MATRIX INTO SEkλ AND TEkλ

From the quantum Liouville equation, we obtain for SEkλ

and TEkλ, for short-range impurities,

∂SEkλ

∂t
+ i

h̄
[H,TEkλ] = DEkλ, (A1a)

∂TEkλ

∂t
+ i

h̄
[H,TEkλ] + TEkλ

τ
= (DEkλ −DEkλ) − i

h̄
[H,SEkλ]

+ i

h̄
[H,TEkλ]. (A1b)

On the right-hand side of Eq. (A1b), we substitute for
i
h̄

[H,TEkλ] from Eq. (A1a). We rewrite Eqs. (A1) as

∂SEkλ

∂t
+ i

h̄
[Hk,TEkλ] = DEkλ, (A2a)

∂TEkλ

∂t
+ i

h̄
[Hk,TEkλ] + TEkλ

τ
= DEkλ −

(
∂SEkλ

∂t

+ i

h̄
[Hk,SEkλ]

)
. (A2b)

Defining TEkλ = e−iHk t/h̄T̃Ekλ eiHk t/h̄ and SEkλ =
e−iHk t/h̄ ˜

SEkλ eiHk t/h̄, we can easily solve Eq. (A2b):

∂T̃Ekλ

∂t
+ T̃Ekλ

τ
= eiHk t/h̄DEkλe

−iHk t/h̄ − ∂
˜

SEkλ

∂t
, (A3a)

T̃Ekλ = − ˜
SEkλ +

∫ t

−∞
dt ′ e− (t−t ′ )

τ

×
[
eiHt ′/h̄DEkλe

−iH t ′/h̄ +
˜

SEkλ

τ

]
, (A3b)

where the last line was obtained by integration by parts. We
can write TEkλ (without the tilde) as

TEkλ = −SEkλ +
∫ ∞

0
dt ′e− t ′

τ e−iH t ′/h̄
(
DEkλ + SEkλ

τ

)
eiHt ′/h̄.

(A4)

Using SEkλ = 1
2 σ · sEkλ, DEkλ = 1

2 σ · dEkλ, and TEkλ =
1
2 σ · tEkλ and carrying out the time integral,

tEkλ = �̂k ×
(

dEkλ + sEkλ

τ

)
�kτ

2

1 + �2
kτ

2

+ (dEkλτ )

1 + �2
kτ

2
+ additional terms. (A5)

The physical interpretation of the terms appearing in Eq. (A5)
is as follows. The first term [containing �̂k × (. . .)] gives the
full spin current when there is spin precession (�k �= 0). The
second term (containing dEkλτ ) recovers the spin current due
to impurity SO coupling when there is no spin precession
(�k = 0). It vanishes in the weak momentum scattering
limit �kτ � 1. Finally, the additional terms ensure that tEkλ

averages to zero over directions in momentum space, but these
terms give no spin current.
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Let Aij = (δij − �̂ki �̂kj ), abbreviate AsEkλ ≡ Aij sEkλ,j ,
and substitue Eq. (A5) into Eq. (A2a). In the steady state,

1

τ

[(
�2

kτ
2

1 + �2
kτ

2

)
A

]
sEkλ

= dEkλ −
(

�2
kτ

2

1 + �2
kτ

2

)
AdEkλ + (�k × dEkλ) τ

1 + �2
kτ

2
, (A6)

using i
h̄

[Hk,SEkλ] = − 1
2 σ · �k × sEkλ. For �kτ � 1, we

obtain simply(A
τ

)
sEkλ = dEkλ − AdEkλ, (A7a)

tEkλ =
(

�̂k

�k

)
×

(
dEkλ + sEkλ

τ

)
+ additional terms.

(A7b)

APPENDIX B: ELLIOTT-YAFET SPIN RELAXATION TIME

This derivation is for a general Sk. Consider the scattering
term in the Born approximation (26) up to second order in λ,
and focus on its action on Sk. In this term, we may ignore the
part of the time evolution operator ∝�k. This scattering term
is referred to as ĴEY(Sk), and takes the form

ĴEY(Sk) = πni

h̄

∫
d2k′

(2π )2
Vkk′ (Vk′kSk − Sk′Vk′k) δ(εk − εk′)

+ H.c. (B1a)

= nim

2h̄3

∫ 2π

0

dθ ′

2π
(|Vkk′ |2Sk − Vkk′ Sk′Vk′k) + H.c.

(B1b)

Bearing in mind that |Vkk′ |2 is a scalar, and in 2D systems
Vkk′ ∝ σz, the term Vkk′ Sk′Vk′k has two possible forms:

Vkk′ Sk′Vk′k =
{|Vkk′ |2 Sk′ , for Sk′ ∝ σz,

−|Vkk′ |2 Sk′ , for Sk′ ∝ σx,σy,
(B2)

so that

ĴEY(Sk) = nim

h̄3

∫ 2π

0

dθ ′

2π
|Vkk′ |2(Sk − mzSk′), (B3)

where mz = −1 before σx,σy and mz = 1 before σz. If Sk ∝
σz, the spin is out of the plane and is conserved during scat-
tering, thus ĴEY(Sk) gives just a correction to the momentum
relaxation time. The change of sign for Sk ∝ σx,σy is crucial.

For short-range impurities, with |Vkk′ |2 = λ2k4|U |2 sin2 γ ,

ĴEY(Sk) = λ2k4

2τ

∫ 2π

0

dθ ′

2π
(Sk − mzSk′) (1 − cos 2γ ). (B4)

If we now write Sk = Sk + Tk and define (1/τEY) = λ2k4/τ ,
then ĴEY(Sk) simplifies to

ĴEY(Sk) = Sk − mzSk

2τEY
+ mz

2τEY

∫ 2π

0

dθ ′

2π
Tk′ cos 2γ. (B5)

APPENDIX C: τEY CURES DIVERGENCE IN SEkλ

Equations (A7a) are correct as long as �τ � 1, otherwise
sEkλ found from Eq. (A6) diverges at small �τ . The way out
of this dilemma is provided by the Elliott-Yafet spin relaxation
time. Consider adding ĴEY(Sk) to Eq. (A1):

∂SEkλ

∂t
+ i

h̄
[H,TEkλ] + SEkλ − mzSEkλ

2τEY
= Dk, (C1a)

∂TEkλ

∂t
+ i

h̄
[H,TEkλ] + TEkλ

τtot
+ ĴEY(TEkλ)

= (Dk − Dk) − i

h̄
[H,SEkλ] + i

h̄
[H,TEkλ], (C1b)

where 1/τtot = 1/τ + 1/τEY. Since λk2
F � 1, the Elliott-Yafet

spin relaxation time τEY � τ , and the term containing the
angular integral over θ ′ is a very small correction to Eq. (C1b),
which may be neglected. The only change to the above
formalism is an extra term in the equation for SEkλ, which
is nonzero for SEkλ in plane. The spin generated by an electric
field is in-plane, so we can focus on this component, for which
mz = −1, and Eq. (A6) becomes

(
�2

kτ
2
tot

1 + �2
kτ

2
tot

)
A sEkλ

τtot
+ sEkλ

τEY

= dEkλ − A dEkλ

(
�2

kτ
2
tot

1 + �2
kτ

2
tot

)
. (C2)

This cures the unphysical divergence at small �kτ . To see this,
consider the simplest case, that of isotropic �k,

sEkλ = 2dEkλτtot
(
1 + �2

kτ
2
tot

) − 2A dEkλ �2
kτ

3
tot[

�2
kτ

2
tot + (2τtot/τEY)

(
1 + �2

kτ
2
tot

)] . (C3)

Clearly sEkλ → 0 as �k → 0. Physically, the Elliott-Yafet
spin relaxation time is needed to cure this divergence because
projections parallel and perpendicular to �k are ill-defined as
�k → 0.
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