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Noise effects and tomography of remote entangled spins in quantum dots
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We investigate how decoherence affects the entanglement established between two quantum dots in
microcavities, and propose a tomographic scheme able to measure the entangled state. The scheme we consider
establishes the entanglement via the exchange and measurement of a photon. Making the realistic assumption of
noise dominated by pure-dephasing processes, we find that the photon must be exchanged and measured on time
scales shorter than the quantum dots’ characteristic dephasing time for appreciable levels of entanglement to be
achieved. The tomographic scheme is able to reconstruct the full density matrix of the quantum dots, and requires
only single spin rotations and the injection of an additional photon. Remarkably, we find that the additional photon
need not be exchanged and measured on a time scale shorter than the dephasing time for accurate tomography,
and also allows many to be used in order to increase the measurement signal.
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I. INTRODUCTION

Entanglement is a resource in the field of quantum infor-
mation and plays a particularly important role in quantum
communication and quantum networks.1,2 As such, there has
been a huge amount of research into schemes which are able to
effectively generate entanglement between spatially separated
systems. Examples include using a direct coupling between
the two systems,3–5 through projective measurements,6–10 and
even via correlated dissipative processes.11–13

One such implementation is the generation of remote spin-
spin entanglement shared between semiconductor quantum
dots (QDs) in microcavities via the exchange and subsequent
measurement of a photon.14–17 The spin-dependent optical
transitions of a charged QD can cause linearly polarized
photons to undergo giant Faraday rotations, which can be
utilized to construct QD-photon entanglement. Allowing a
photon entangled with one such QD to interact with another
QD and subsequent measurement of the photon can cause
the two QDs to become entangled. This scheme is promising
since the subjects of the entanglement—the QDs—constitute
good candidates for the storage and manipulation of quantum
information.5,18 The photon which transmits the entanglement,
on the other hand, is an ideal candidate to transmit quantum
information owing to its intrinsically long coherence time.19–21

We note that the understanding and ability to control QD-
cavity systems is advancing considerably, with resonance
fluorescence,22–24 quantum-dot-induced phase shifts,25 and
more recently QD-photon entanglement26,27 having been
measured and characterized.

In the ideal case of the entangling procedure mentioned
above, maximally entangled states of the two QDs can be
achieved. One source of errors which may cause a deviation
from this ideal scenario is the unavoidable coupling of the QDs
to their solid-state environments. In typical In(Ga)As QDs,
the coupling of an excess electron to the nuclear spins in the
QD semiconductor via the hyperfine interaction is thought to
dominate over other sources of decoherence, such as coupling
to bulk phonons via spin-orbit interactions.28–30 This can cause
a loss of coherence of the electron, which will necessarily
impair the entangling procedure described above. Thus, it is

important to establish what limitations noise is likely to put on
the entanglement which can be achieved, and to determine how
any possible entanglement may be experimentally verified.

In this work we investigate the effects of decoherence on
the level and type of entanglement which can be obtained.
In addition, we propose a tomographic scheme which would
allow for the complete reconstruction of the QD-QD density
matrix after the entangling procedure has been performed.
Our tomographic scheme relies only on single spin rotations
of the QDs, and the injection of an additional photon. For the
pure-dephasing noise considered, we find that the tomography
is unaffected by the time taken for the second photon to be
exchanged and measured. As such, the tomographic procedure
reveals the true state of the QDs after entanglement has been
established. In addition, we show that it is possible to use many
photons for the tomography in order to boost the measurement
signal.

II. SUMMARY OF ENTANGLEMENT SCHEME

The entanglement scheme first proposed in Ref. 14 relies
on the spin-dependent optical transition from the ground state
of a singly charged QD to an excited trion state (X−). The
trion state consists of a pair of electrons each having angular
momentum projection ±h̄/2, bound to a heavy hole which has
angular momentum projection ±3h̄/2.31,32 There are therefore
two excited states, |↑↓, ⇑〉 and |↑↓, ⇓〉, having angular
momentum projection +3h̄/2 and −3h̄/2, respectively. Simple
application of the Pauli exclusion principle and conservation
of angular momentum reveals that an incident photon having
left-circular polarization |L〉 and angular momentum +h̄ can
excite the |↑〉 → |↑↓, ⇑〉 transition, but does nothing to |↓〉.
Similarly, a right-circularly polarized photon |R〉 can excite
the | ↓〉 → |↑↓, ⇓〉 transition, but otherwise does nothing.
Placing such a QD inside a cavity causes left- and right-
circularly polarized photons to acquire different phase shifts,
depending on the spin orientation of the electron in the
QD.14–16

Following Ref. 14, we ignore the side leakage of the cavity
κs (or κs < κ), where κ/2 is the cavity field decay rate into the
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input/output modes, and work in a regime with |ω − ωc| � g

and g > (κ,γ ), where ω and ωc are the frequencies of external
field and cavity mode, g is the coupling strength between
the trion X− and the cavity mode, and γ /2 is the X− dipole
decay rate. In doing so, a linearly polarized photon undergoes
a giant Faraday rotation with near-unity reflectance. The whole
process can be expressed as the unitary

Ui(ϕ) = exp[iϕ(|L〉〈L| ⊗ |↑〉〈↑|i + |R〉〈R| ⊗ |↓〉〈↓|i)],
(1)

where ϕ is the difference in phase shifts experienced by
left- and right-circular polarizations, and the index indicates
interaction of the photon with the ith QD. By adjusting
ω − ωc ≈ ±κ/2, giant Faraday rotations of ϕ = ±π

2 can be
achieved.14 From a quantum information perspective Eq. (1)
constitutes an entangling gate between the QD and the incident
photon. By allowing a photon to interact with one such QD
in a cavity followed by another, an entangled state of the
photon and both QDs is produced. To see this, we take a
vertically polarized initial state of the photon, |φph〉 = |V 〉 =
(1/

√
2)(|R〉 + |L〉), while that of QDs as |φi〉 = αi |↑〉i +

βi |↓〉i for i = 1,2. Thus, the initial state of the whole system
is |φtot〉 = |φph〉 ⊗ |φ1〉 ⊗ |φ2〉, and following the interaction
of the photon with both QD-cavity systems we have |φf 〉 =
U2(π

2 )U1(π
2 )|φtot〉 giving

|φf 〉 = |H 〉[α1α2|↑〉1|↑〉2 − β1β2|↓〉1|↓〉2]

+ i|V 〉[α1β2|↑〉1|↓〉2 + α2β1|↓〉1|↑〉2], (2)

where |H 〉 = (1/
√

2)(|R〉 − |L〉) is a horizontally polarized
photon. Thus, when measuring the photon in the linearly
polarized basis, {|V 〉,|H 〉}, the state of the QDs collapses to
the (normalized) states

|
〉 =
√

2(α1α2|↑〉1|↑〉2 − β1β2|↓〉1|↓〉2) for |H 〉 or (3)

|�〉 =
√

2(α1β2|↑〉1|↓〉2 + α2β1|↓〉1|↑〉2) for |V 〉. (4)

Upon setting α1,2 and β1,2 to 1/
√

2, we find |
〉 → |φ−〉 =
(1/

√
2)(|↑↑〉 − |↓↓〉) while |�〉 → |ψ+〉 = (1/

√
2)(|↑↓〉 +

|↓↑〉), which are maximally entangled Bell states. We call
Eq. (3) the “
” outcome and Eq. (4) the “�” outcome, alluding
to symmetry present in the corresponding state of the QDs in
this idealized case.

III. NOISE EFFECTS ON THE ENTANGLEMENT
GENERATION

Matters relating to the imperfect implementation of the
operation described by Eq. (1) have been discussed in
Ref. 14. In this section, our aim is to investigate the nonunitary
dynamical evolution of the QDs during the entangling pro-
cedure. We therefore assume that the QD-photon interaction
happens instantaneously, and consider three time intervals
during which the QDs undergo decoherent processes: t1 labels
the time from the release of the photon until it reaches the
first QD, t2 is the time taken for the photon to travel from
the first QD to the second, and t3 the time from the second
interaction until the photon is measured. During each of
these times the combined photon-QDs system is assumed to
undergo nonunitary evolution generated by a master equation

of Lindblad form33 (we set h̄ = 1):

ρ̇ = −i[H,ρ] +
∑

l

(
LlρL

†
l − 1

2
{ρ,L

†
l Ll}

)
, (5)

where ρ is the density matrix of the combined photon-QDs
system, H is the free Hamiltonian, and the set {Ll} are
Lindblad operators describing the decoherent processes we
wish to consider. We assume the QDs to be under the
influence of a magnetic field along the z axis such that
the Hamiltonian for the QDs system reads H = ε

2 (σ z
1 + σ z

2 ),
where σ z

i = |↑〉〈↑|i − |↓〉〈↓|i and ε is the field strength. We
assume the initial state of the entire system is the separable
pure state |φtot〉 given above, with the coefficients α1,2 and β1,2

set to 1/
√

2. Following both photon-QD interactions and the
three periods of time for which the system evolves according
to Eq. (5), the final state of the entire system is

ρf = eLt3 [U2(eLt2 [U1(eLt1 |φtot〉〈φtot|)U †
1 ])U †

2 ], (6)

where the Liouvillian superoperator is defined to satisfy
ρ̇ = Lρ in Eq. (5). We then measure out the photon and
analyze the post-measurement ensemble {pk,ρk}, for k = 
,�

representing the two measurement outcomes. The probability
for each outcome is given by pk = Tr[ρf(πk ⊗ 1 ⊗ 1)], where
π
 = |H 〉〈H | and π� = |V 〉〈V |, while the post-measurement
state itself is ρk = Trph[ρf(πk ⊗ 1 ⊗ 1)]/pk , where 1 is the
identity operator, and Trph denotes a trace over the photon
degrees of freedom only.

For electron spins in QDs, experiments have measured
relaxation times as long as T1 ∼ ms.28,34 In separate exper-
iments, spin coherence decay time scales have been measured
to be T2 ∼ μs, at best.35 As such, we expect any superposition
of |↑〉 and |↓〉—as is required for the QD-entanglement
scheme—to be affected by pure-dephasing processes on a
time scale T2, well before spin relaxation processes become
important. We therefore consider the pure-dephasing form of
Eq. (5), which is achieved with the pair of Lindblad operators
Li = √

�2/2σ z
i for i = 1,2, and where �2 = 1/T2.

We first remark on two important features. First, the mea-
surement probabilities are unaffected by the nonunitary evo-
lution of the QDs; the probability that the post-measurement
state is ρ
 or ρ� remains the same and equal to 1/2 for all
times. This is perhaps to be expected, since pure dephasing
does not affect the diagonal elements of the QD density
matrix when expressed in the basis {|↑〉,|↓〉}, and it is these
states through which the QDs are coupled to the photon. Put
another way, although there is an asymmetry between the dots
owing to the fact that the photon interacts with one first, this
asymmetry cannot be distinguished by pure-dephasing noise
and the form of QD-photon interaction. Our second remark,
and another manifestation of these symmetry arguments, is
that the post-measurement states depend only on the sum of the
three time intervals, t = t1 + t2 + t3. Thus, for pure-dephasing
noise considered here, there is no particular waiting period
which affects the post-measurement states more than the
others.

The entanglement fidelity of the two post-measurement
states is defined as Fk = √〈k|0ρk|k〉0, for k = 
,�, where
|
〉0 = |φ−〉 and |�〉0 = |ψ+〉 are the states obtained in the
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FIG. 1. (Color online) Entanglement (solid red) and entanglement
fidelity of the � (blue dashed) and 
 (blue dot-dashed) post-
measurement states of the QDs, as a function of the total time
t = t1 + t2 + t3 of pure dephasing. For the entanglement fidelity of
the 
 state we have set ε = 10/T2.

absence of noise.2 From Eq. (6) we find

F
 =
√

1
2 [1 + e−2t/T2 cos (2εt)], (7)

F� =
√

1
2 (1 + e−2t/T2 ), (8)

and where the cosine factor appearing for F
 is present since
the magnetic field in the z direction causes oscillations between
the entangled states |φ−〉 and |φ+〉 = (1/

√
2)(|↑↑〉 + |↓↓〉).

We quantify the entanglement itself using the entanglement of
formation,36 given by

E(t) = −x(t) log2[x(t)] − [1 − x(t)] log2[1 − x(t)] (9)

defined in terms of the function x(t) = (1/2)[1 +
√

1 − C(t)2]
which itself depends on the concurrence C(t), which in the
present case takes on the simple form C(t) = e−2t/T2 . We
find that both the entanglement and the entanglement fidelity
decrease in an exponential fashion with time.12,37,38 The
nonzero value of fidelity approached reflects that the large-t
limit of the QD system is the maximally mixed state which
has nonzero overlap with the target states |φ−〉 and |ψ+〉.

In Fig. 1 we plot entanglement (red solid curve) and
the entanglement fidelities F� (blue dashed) and F
 (blue
dot-dashed) as a function of t = t1 + t2 + t3 in units of the
pure-dephasing time scale T2. In order for greater levels of
entanglement to be reached, all sequence operation times must
be kept as small as possible: We require that t1,t2,t3 � T2.
Without the use of spin echo techniques, T2 times can be as
short as ns, primarily due to the slowly varying magnetic field
induced by the nuclear spins.39 However, spin echo techniques
are able to extend this time scale up to the μs range.35,40 As
discussed in Ref. 16, for QDs in microcavities as we consider,
the necessary rotations of the QDs can be performed by single
photons reflecting off the QD-cavity system in the usual way.

IV. TOMOGRAPHY OF QD STATE

We now propose a method to perform tomography of the
post-measurement state of the QDs. The general idea is to
apply only single qubit rotations to the QDs, to then inject
a second photon into the system, and to determine the state
of the QDs through measurement of the second photon. The

FIG. 2. Summary of method for QD tomography. The first photon
interacts with the QDs and then is measured, leaving the QDs in
one of two post-measurement states, which we describe by a set of
coefficients αij [see Eq. (10)]. We then immediately apply single spin
rotations to the QDs. Next, a second photon interacts with one or both
of the quantum dots. The measurement statistics of the second photon
then reveal one of the αij coefficients, depending on which rotations
were performed on the QDs.

advantage of using only single spin rotations is that they are
more easily achieved experimentally, and that they cannot
affect the level of entanglement shared between the QDs. The
tomographic scheme is depicted in Fig. 2.

Recent experiments have demonstrated rotations of elec-
trons in QDs on picosecond time scales.41 We therefore assume
that the rotations we require are effectively instantaneous
compared to our other time scales of interest, namely T2 ∼ μs
and T1 ∼ ms. We begin by writing a completely general density
matrix for the QDs in its Hilbert-Schmidt decomposition:

ρQDs = 1

4

3∑
i,j=0

αij σi ⊗ σj , (10)

where we define α00 = 1 and σ0 = 1. We note that the
real coefficients αij = Tr(ρQDsσi ⊗ σj ) are expectation values
of measurements made on the QDs, and are a complete
representation of the state. Equation (10) represents the post-
measurement state of the QDs, i.e., ρ
 or ρ� . Following the
measurement, we immediately apply single spin rotations to
the QDs with general unitary transformations of the form
Ri(θ) = exp[ i

2θ · σ i], where σ i = (σx
i ,σ

y

i ,σ z
i ), θ = (θx,θy,θz)

is a vector of the rotation angles, and the index refers to the
ith QD. We write the state of the QDs after the rotations have
been performed as ρ̃QDs = R1(θ1)R2(θ2)ρQDsR2(θ2)†R1(θ1)†,
where θ1 and θ2 describe the rotations performed on the
two QDs. We note that the rotations applied to the QDs are
equivalent to a transformation of the matrix with elements
αij . That is, the rotated state ρ̃QDs also has a Hilbert-Schmidt
decomposition of the same form as Eq. (10) but with
coefficients α̃ij = Tr(ρ̃QDsσi ⊗ σj ) which are functions of the
original coefficients αij .

The second photon injected into the system is also vertically
polarized, giving a complete density operator ρtot = |V 〉〈V | ⊗
ρ̃QDs before interaction with the QDs. Once the second photon
has been allowed to interact with the QDs, we trace out the
QD degrees of freedom to obtain the reduced density operator
of the second photon only. This reduced density operator is
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given by

ρ(1,2)
γ = TrQDs(e

Lτ3 [U2(eLτ2 [U1(eLτ1ρtot)U
†
1 ])U †

2 ]), (11)

where TrQDs is a trace over the degrees of freedom of the
QDs, and the times τn for n = 1,2,3 parametrize the second
photon’s path through the QD system. The (1,2) superscript
indicates that the photon interacts with both QDs. In order to
evaluate Eq. (11) it is useful to define a projection operator, P ,
which projects onto the diagonal QD subspace; i.e., we have
Pρ = ∑

a |a〉〈a|ρ|a〉〈a| where a ∈ {|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉}.
For pure-dephasing noise we find that PLρ = LPρ = 0,
while the form of Ui(ϕ) means that PUi(ϕ)ρUi(ϕ)† =
Ui(ϕ)PρUi(ϕ)†. Lastly, since TrQDs(. . . ) = TrQDs(P . . . ), we
find that ρ(1,2)

γ = TrQDs(U2U1PρtotU
†
1U

†
2 ). Using this, together

with the form of Ui , we find that the relevant part of the
QD-QD-photon state is

U2U1PρtotU
†
1U

†
2

= 1
8

[(
1γ ⊗ 1 ⊗ 1 − σ

γ
x ⊗ σz ⊗ σz

)
+ α̃z0

(
1γ ⊗ σz ⊗ 1 − σγ

x ⊗ 1 ⊗ σz

)
+ α̃0z

(
1γ ⊗ 1 ⊗ σz − σγ

x ⊗ σz ⊗ 1
)

+ α̃zz

(
1γ ⊗ σz ⊗ σz − σγ

x ⊗ 1 ⊗ 1
)]

, (12)

where 1γ = |R〉〈R| + |L〉〈L| and σ
γ
x = |R〉〈L| + |L〉〈R| act on

the photon, and the coefficients α̃ij = Tr(ρ̃QDsσi ⊗ σj ) pertain
to the rotated QD-QD density operator. Taking the trace of
Eq. (12) gives

ρ(1,2)
γ = 1

2

(
1 −α̃zz

−α̃zz 1

)
, (13)

where the matrix is written in the circularly polarized {|R〉,|L〉}
basis. Equation (13) is the reduced density operator of
the second photon following its interaction with the two
QDs. Remarkably, we see that for the pure-dephasing noise
considered here, this state does not depend on any of the time
intervals τn describing its path through the QD system. Thus,
any pure-dephasing noise affecting the QDs after the necessary
rotations have been applied does not affect the accuracy of the
tomographic scheme. This is a consequence of the properties
of the projection operator P used above, that U1 and U2

couple only to the diagonal elements of ρ̃QDs, and that the
pure-dephasing noise does not affect these elements.

Measurement of the second photon in the usual linearly
polarized basis, {|V 〉, |H 〉}, leads to outcome probabilities
of the form P� = 1

2 (1 − α̃zz) and P
 = 1
2 (1 + α̃zz) for the

� and 
 outcomes, respectively. Analyzing the statistics
of this measurement it is therefore possible to extract the
value of α̃zz = P
 − P� . Since the rotations applied to the
QD-QD state before the injection of the second photon
amount to a rotation of the matrix with elements αij into that
with elements α̃ij , we see that the second photon ultimately
carries information regarding the original unrotated state
ρQDs. Specifically, with the rotations X = exp(− i

2
π
2 σx) and

Y = exp( i
2

π
2 σy) (and the identity) on dots 1 and 2, we find that

α̃zz → αij with i,j �= 0; see Table I. Thus, we see that single
spin rotations and a second photon can be used to probe the
state of the QDs.

TABLE I. Those αij coefficients that can be obtained from the
reduced density matrix of the second photon by applying rotation(s)
to the QDs.

QD1 QD2 α̃zz

1 1 −→ αzz

1 X −→ αzy

1 Y −→ αzx

X 1 −→ αyz

Y 1 −→ αxz

X Y −→ αyx

Y X −→ αxy

X X −→ αyy

Y Y −→ αxx

We also note that the procedure described gives information
regarding correlations in the QD-QD state. For example, when
no rotations are performed on the QDs, we have α̃zz = αzz. This
is perhaps to be expected, since from Eq. (1) we see that the
QD-photon interaction depends on the spin projection along
the z axis. Thus, we expect a photon having interacted with both
QDs to depend on the correlation of the spin-projections, αzz.
When rotations are performed an element αij with i,j �= 0 is
moved into the position α̃zz leading to information regarding a
different correlation. For example, with the rotation Y applied
to both QDs, we find α̃zz = αxx .

In order to obtain the remaining αi0 and α0j coefficients
(the Bloch vector elements of each QD), we allow the second
photon sent through to interact with only one of the two QDs.
In place of Eq. (11) we then have

ρ(1)
γ = TrQDs(eLτ3 [eLτ2 [U1(eLτ1ρtot)U

†
1 ]]) (14)

with a similar expression for ρ(2)
γ . Using methods similar to

those used above, we obtain a reduced density matrix for the
second photon of the form

ρ(1)
γ = 1

2

(
1 iα̃z0

−iα̃z0 1

)
, (15)

with a similar expression for ρ(2)
γ but with α̃z0 replaced with

α̃0z. Once again, since the diagonal elements of Eq. (14) which
the trace picks out are unaffected by pure-dephasing noise,
we see that the reduced photon state does not depend on τn.
Choosing combinations of the rotations X and Y , we find that
α̃z0 (or α̃z0) can be made equal to the remaining prerotation
coefficients of the QD-QD state (see Table II). To extract

TABLE II. Coefficients α0i and αi0 that can be obtained from the
reduced density matrix of the second photon by applying a rotation
to one QD before the second photon interacts only with one of the
QDs.

QD1 QD2 α̃z0 or α̃oz

1 (no interaction) −→ αz0

X (no interaction) −→ αy0

Y (no interaction) −→ αx0

(no interaction) 1 −→ α0z

(no interaction) X −→ α0y

(no interaction) Y −→ α0x
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the value of α̃z0 from the photon, we now need to measure
the photon in the diagonal |+45◦〉 = (|R〉 + i|L〉)/√2 and
|−45◦〉 = (|R〉 − i|L〉)/√2 basis. The outcome probabilities
would then be P+45◦ = 1

2 (1 − α̃z0) and P−45◦ = 1
2 (1 + α̃z0),

and α̃z0 can be found from the quantity P−45◦ − P+45◦ .
An extremely useful property of our tomographic procedure

is that any further photons injected into the system after the
second will be measured having the same polarization as
the second with unit probability. To see this, we consider
the state of the QDs after we have injected and measured
a second photon in order to measure a QD-QD correlation
αij with i,j �= 0. The relevant (diagonal) part of the QDs
following measurement of the second photon is Pχ =
(1/pk)Trph(πkU2U1PρtotU

†
1U

†
2 ), for k = 
,�. Using Eq. (12)

we can see that this state is one having Tr(χσz ⊗ σz) = αzz = 1
or αzz = −1, depending on the two measurement outcomes
k = 
 and k = �, respectively. Therefore, if an additional
photon is injected (after the second) without performing
any rotations of the QDs, since P� = 1

2 (1 − αzz) and P
 =
1
2 (1 + αzz), this additional photon will be measured having
the same polarization as the second with unit probability. We
note that since the measurement probabilities depend only
on αzz this result is independent of the precise form of the
post-measurement QD-QD state. The process can be repeated
continuously to build up a string of photons all of which will be
measured having the same polarization, with the probability
that this polarization is H or V corresponding precisely to
the value αij determined by the rotations performed after the
first entangling photon. A similar property is also true when
we measure elements αi0 and α0j , where now the string of
photons will all have polarization |−45◦〉 or |+45◦〉.

Thus, we see that with only single spin rotations of the QDs,
we are able to reconstruct the complete post-measurement
state. Moreover, owing to the form of the QD-photon interac-
tion, pure-dephasing noise affecting the QDs after the rotations
have been preformed has no bearing on the accuracy of the
tomographic procedure. Thus, while it is important for the
initial photon’s path through the QD system to be achieved on
a time scale shorter than T2 (in order to generate an appreciable
amount of entanglement), the amount of entanglement that is
measured by the second photon reflects the true amount that
was present immediately after the rotations are performed.
Additionally, any photons injected after measurement of the
second will be measured having the same polarization as the
second with unit probability, and can therefore be used to
strengthen the signal.

It should be noted that the arguments above hold only for
pure-dephasing T2-type noise: The details of the tomographic
process mean that the T2 time scale is unimportant. As such, it
is unnecessary to employ any spin echo techniques to lengthen
T2, since the important time scale becomes the spin relaxation
time scale T1. Unlike pure-dephasing processes, spin relax-
ation processes do affect the diagonal elements of the QD-QD
density matrix. As such, if the parameters describing the
second photon’s path through the QD system, τn, were of the
order of the spin relaxation time scale, T1, we would find that
the reduced state of the second photon does depend on τn. Thus,
for accurate tomography to be achieved, it is still necessary that
the second photon traverse the QD system on a time scale �T1.

V. SPIN RELAXATION

Though it seems that with current technologies the dephas-
ing time scale of electron spins in QDs is likely to be far
shorter than the spin relaxation time scale, it is nevertheless
interesting to briefly investigate what differences may occur if
the coherence of the QDs were limited by relaxation processes.
In order to do so, we now consider the set of Lindblad operators
given by Li = √

�1σ
−
i for i = 1,2, where σ−

i = |↓〉〈↑|i and
T −1

1 = �1 is the spin relaxation time.
Our current protocol consists of the injection and mea-

surement of a first photon to establish entanglement, the
application of rotations to the QDs, followed by the injection
and measurement of a string of photons whose polarizations
reveal information about the QD state established. For noise
originating from spin relaxation processes, the first stage of
this protocol is largely unaffected. For appreciable levels of
entanglement to be achieved, the first photon’s path through
the QD system, characterized by the times tn, must be short,
but now compared to the spin relaxation time T1. We do note,
however, that now the measurement outcome probabilities do
change, and we have

P� = 1
2e−t1�1 (1 + e−t2�1 − e−(t1+t2)�1 ) (16)

and P
 = 1 − P� . Thus, in this case we see that the three time
intervals play a decreasingly important role in the evolution
of the probabilities. We also see that as t1 and t2 increase the
probability of obtaining the 
 outcome tends to 1 while that
of the � outcome tends to unity. This can be understood by
noting that spin relaxation transfers population to the state
|↓↓〉 which has overlap only with |
〉.

For spin relaxation we find that the tomographic procedure
described in the previous section still works, though it does
not share some of the helpful features previously described.
Namely, while a reduced photon state of the form of Eq. (13)
is found, for the combinations of rotations described in
Table I, the value α̃zz becomes a combination of the original
αij values, as well as the times describing the second photon’s
path through the system. We note, however, that tomography
ought still to be possible, but will require specific knowledge
of T1, and the ability to vary the time taken for the second
photon to pass through the system.

We lastly note an intriguing feature of spin relaxation
noise, which is that it allows for the level of entanglement
to be boosted by additional photons which pass through the
system and are measured. Numerical simulations suggest that
if photons can be sent through the system and measured at a
sufficient rate, sequences of measurement outcomes all being
� will correspond to a state of the QDs with entanglement
maintained at a particular level. We believe future research in
this direction to be worthwhile, though beyond the scope of
this work.

VI. SUMMARY

In Ref. 14 a scheme to entangle two spatially separated
QDs in microcavities was proposed. The scheme relies on a
QD-state-dependent rotation of the polarization of a photon
which is exchanged. In this work we have investigated the
effects of nonunitary dynamical evolution of the QDs, caused

035315-5



PINEIRO-ORIOLI, MCCUTCHEON, AND RUDOLPH PHYSICAL REVIEW B 88, 035315 (2013)

by the coupling to their solid-state environment. We found that
pure-dephasing of the QDs necessarily decreases the level of
entanglement that can be attained.

We then proposed a method to perform tomography of
the state of the QDs, which relies on only single spin
local rotations of the QDs, and the injection of additional
photons. Interestingly, while the level of entanglement attained
is sensitive to pure-dephasing noise, the accuracy of the
tomographic procedure is not. Thus, the time in which to
perform the tomography is limited only by the spin relaxation
time scale, which is typically orders of magnitude greater

than the pure-dephasing time. Lastly, we found that within
the pure-dephasing time, many photons can be injected into
the system in order to boost the tomographic measurement
signal.
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