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Evidence for a ν = 5/2 fractional quantum Hall nematic state in parallel magnetic fields
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We report magnetotransport measurements for the fractional quantum Hall state at filling factor ν = 5/2
as a function of applied parallel magnetic field (B||). As B|| is increased, the 5/2 state becomes increasingly
anisotropic, with the in-plane resistance along the direction of B|| becoming more than 30 times larger than in the
perpendicular direction. Despite the very large resistance anisotropy, the anisotropy ratio remains constant over
a relatively large temperature range, yielding an energy gap which is the same for both directions. Our data are
qualitatively consistent with a fractional quantum Hall nematic phase.
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The origin and properties of the fractional quantum Hall
state (FQHS) at the even-denominator Landau level (LL) fill-
ing factor ν = 5/2 (Ref. 1) have become of tremendous current
interest. This is partly because the quasiparticle excitations of
the 5/2 FQHS are expected to obey non-Abelian statistics2 and
be useful for topological quantum computing.3 The stability
and robustness of the 5/2 state, and its sensitivity to the
parameters of the hosting two-dimensional electron system
(2DES), are therefore of paramount importance. This stability
has been studied as a function of 2DES density, quantum well
width, disorder, and a parallel magnetic field (B||) applied in the
2DES plane.4–18 The role of B|| is particularly important. It has
been used to shed light on the spin polarization of the ν = 5/2
state, which in turn has implications for whether or not the state
is non-Abelian.4,8,14 But the application of B|| in fact has more
subtle consequences. It often induces anisotropy in the 2DES
transport properties in the excited-state (N = 1) LL and, at
sufficiently large values of B||, leads to an eventual destruction
of the ν = 5/2 FQHS,5,6,12 replacing it by a compressible,
anisotropic ground state. This anisotropic state is reminiscent
of the nonuniform density, stripe phases seen at half-integer
fillings in the higher (N > 1) LLs.19,20

Here we study the ν = 5/2 FQHS as a function of B|| in
a very-high-quality 2DES. We find that the application of B||
leads to a quick weakening of the 5/2 FQHS and a strong
anisotropy in transport as the resistance along B|| becomes
much larger than in the perpendicular direction. Specifically,
the resistance anisotropy ratio grows exponentially with B|| up
to B|| � 1.5 T, where it reaches about 30. For B|| > 1.5 T, the
anisotropy remains constant up to B|| � 3.6 T, the B|| above
which the FQHS at ν = 5/2 disappears and the system turns
into a compressible state. Remarkably, for B|| � 3.6 T and at
low temperatures (T � 100 mK), the resistances along the two
in-plane directions monotonically decrease with decreasing
temperature while the anisotropy ratio remains nearly constant.
From the temperature dependence of the resistances, we are
able to measure the energy gap (�) for the 5/2 FQHS along
the two in-plane directions. Despite the enormous transport
anisotropy, � has the same magnitude along both directions.
Our data therefore strongly suggest that the ground state
of the system is an anisotropic FQHS. We discuss possible
interpretation of such a ground state, including a FQH nematic
phase.

In our sample, which was grown by molecular beam
epitaxy, the 2DES is confined to a 30-nm-wide GaAs quantum
well, flanked by undoped Al0.24Ga0.76As spacer layers and
Si δ-doped layers. The 2DES has a density of n = 3.0 ×
1015 m−2 and a very high mobility, μ � 2500 m2/Vs. It
has a very strong ν = 5/2 FQHS, with an energy gap of
� � 0.4 K, when B|| = 0. The sample is 4 mm × 4 mm with
alloyed InSn contacts at four corners. For the low-temperature
measurements, we used a dilution refrigerator with a base
temperature of T � 20 mK, and a sample platform which could
be rotated in situ in the magnetic field to induce a parallel
field component B|| along the x direction (the [11̄0] crystal
direction).21 We use θ to express the angle between the field
and the normal to the sample plane, and denote the longitudinal
resistances measured along and perpendicular to the direction
of B|| as Rxx and Ryy , respectively.

Figure 1 shows Rxx (red) and Ryy (black) measured as a
function of the total magnetic field in the filling range 2 < ν <

3; the Hall resistance Rxy is also shown (in blue) in Fig. 1(a).
The traces in Fig. 1(a) were taken at θ = 0, i.e., for B|| = 0,
and exhibit a very strong ν = 5/2 FQHS with an energy gap
of �0.4 K and an Rxy which is well quantized at 0.4h/e2. As
seen in Figs. 1(b)–1(d), the application of B|| causes a very
pronounced anisotropy in the in-plane transport at and near
ν = 5/2, and Rxx becomes much larger than Ryy . At θ = 26◦,
e.g., Rxx is about 30 times Ryy .23 Note that in our experiments
B|| is applied along the x direction so that the “hard” axis we
observe for in-plane transport is along the direction of B||. This
is consistent with previous reports on B||-induced resistance
anisotropy near 5/2.5,6,12,21

In Fig. 2 we show the temperature dependence of Rxx and
Ryy at ν = 5/2 for different values of θ . In the temperature
range 50 < T < 100 mK, both Rxx and Ryy are activated and
follow the relation R ∼ exp(−�/2kBT ), where � is FQH
energy gap. At θ = 0 Ryy is larger than Rxx by about a factor
of 2. This anisotropy is caused by a mobility anisotropy, as the
latter is often seen in very-high-mobility samples. With the
application of a very small B|| along the x direction (|θ | � 5◦),
the anisotropy reverses so that Rxx exceeds Ryy . This trend
continues with increasing θ and, at θ = 26◦, Rxx becomes
30 times larger than Ryy . However, despite the very large
anisotropy, both Rxx and Ryy remain activated and yield very
similar values for �.24
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FIG. 1. (Color online) (a) Longitudinal resistances Rxx (red) and Ryy (black), and Hall resistance Rxy (blue) measured as a function of
perpendicular magnetic field. The deep minima in Rxx and Ryy , as well as the well-quantized Rxy plateau, indicate a strong FQHS at ν = 5/2.
(b)–(d) Rxx and Ryy measured at finite tilting angles, θ = 6◦, 11◦, and 31◦ are shown as a function of total magnetic field. The in-plane
component of the magnetic field (B||) is along the x direction. Note that the Rxx traces in (c) and (d) are divided by factors of 2 and 4. Strong
transport anisotropy near ν = 5/2 grows as θ increases. All traces were recorded at the base temperature of our measurements, T � 20 mK.

The transport energy gaps at ν = 5/2 measured as a
function of B|| up to �3.6 T are summarized in Fig. 3.
We denote the energy gaps deduced from the temperature
dependence of Rxx and Ryy by �xx and �yy , respectively. It
is clear in Fig. 3 that �xx � �yy , despite the large anisotropy
observed in Rxx and Ryy . In Fig. 3 we also plot the observed
transport anisotropy as a function of B||. Here we used the
values of Rxx and Ryy resistances at T = 60 mK, converted
them to resistivities ρxx and ρyy following the formalism
presented in Ref. 25, and plot the ratio α = ρxx/ρyy . As a
function of B||, this ratio grows very quickly, approximately
exponentially up to B|| � 1 T, and then saturates at higher
B||. The energy gaps �xx and �yy , however, exhibit a very
steep drop at small B||, followed by a more gradual and
monotonic decrease at higher B||. For θ > 36◦ (B|| � 3.6 T)
we cannot measure the gap for the 5/2 FQHS, as it becomes too
weak.

The data presented above provide clear evidence for a strong
ν = 5/2 FQHS whose in-plane transport is very anisotropic
in the presence of applied B||. And yet its energy gap is
the same for the two in-plane directions. These observations
imply a ν = 5/2 FQHS whose transport is anisotropic at finite
temperatures. A possible interpretation of our data is that
we are observing a FQH nematic phase. It has been argued
in numerous theoretical studies that such liquid-crystal-like
FQH phases might exist in 2D systems where the rotational
symmetry is broken.26–35 Now in a 2DES with finite (non-zero)
electron layer thickness, such as ours, it is known that B||
breaks the rotational symmetry as it couples to the electrons’
out-of-plane motion and causes an anisotropy of their real-
space motion as well as their Fermi contours.36 Recently
it was demonstrated experimentally that such a B||-induced
anisotropy is qualitatively transmitted to the quasiparticles at
high magnetic fields, for example to the composite Fermions
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FIG. 2. (Color online) Temperature dependence of Rxx (red circles) and Ryy (black squares) at ν = 5/2, measured at different tilting angles,
θ . The excitation gap deduced from the slopes of these plots decreases as θ is increased, while the transport anisotropy increases.
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FIG. 3. (Color online) Measured excitation gaps, �xx (red circles)
and �yy (black squares), are shown as a function of the in-plane
magnetic field B||. �xx and �yy nearly equal each other and decrease
with increasing B||. Also plotted (blue triangles) is the transport
anisotropy factor α, defined as the ratio between the resistivities ρxx

and ρyy . Note the logarithmic scale on the right: α grows exponentially
with B|| at small B||, and saturates at large B|| � 1 T.

near ν = 1/2 in the lowest LL.37 It is therefore reasonable
to expect that B|| also breaks the rotational symmetry in our
2DES in the N = 1 LL and induces a FQH nematic phase at
ν = 5/2.

A FQH nematic phase was in fact recently proposed
theoretically31 to explain the experimental observations of Xia
et al.38 for another FQHS in the N = 1 LL, namely, at ν = 7/3.
In the model of Ref. 31, the ground state is a FQHS but the
dc longitudinal resistance at finite temperatures is anisotropic,
as it reflects the anisotropic property of the thermally excited
quasiparticles. The energy gap for the excitations, however, is
predicted to be the same for Rxx and Ryy . These features are
consistent with our experimental data. According to Mulligan
et al., the FQH nematic phase with anisotropic transport is
stable only at very low temperatures.31 As temperature is raised
above a critical value that depends on the details of the sample’s
parameters and transport properties, Rxx should abruptly drop
and Ryy suddenly rise so that they have the same value, signal-
ing an isotropic FQH phase. Mulligan et al. also report that,
thanks to the small symmetry-breaking B|| field, this finite-
temperature transition might become rounded so that Rxx and
Ryy approach each other more slowly at high temperatures
(see Fig. 3 of Ref. 31). As mentioned above, our data at low
temperatures are qualitatively consistent with the predictions
of Ref. 31 for a FQH nematic state. At higher temperatures
(Fig. 4), our data exhibit a downturn in Rxx as temperature is
raised above �0.1 K, signaling that transport is becoming less
anisotropic, also generally consistent with Ref. 31 predictions.
However, up to the highest temperatures achieved in our
measurements (�0.2 K, which is comparable to the ν = 5/2
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FIG. 4. (Color online) Rxx and Ryy are shown vs temperature for
two values of tilt angle. Ryy monotonically increases with increasing
temperature, while Rxx shows a downturn at high temperatures
T � 120 mK, indicating a smaller anisotropy.

FQHS excitation gaps in our sample for θ = 6◦ and θ = 16◦),
we do not see a transition to a truly isotropic state.39

While the above interpretation of our data based on a FQH
nematic state is plausible, there might be alternative explana-
tions. For example, it has been theoretically suggested that the
low-energy charged excitations of the FQHSs in the N = 1 LL
have a very large size, as they are complex composite Fermions
dressed by roton clouds.40 Because of their large size, these
excitations are prone to become anisotropic in the presence
of B||. Such anisotropy, even if small in magnitude, could
lead to a much larger transport anisotropy of the quasiparticle
excitations at finite temperatures, because this transport would
involve hopping or tunneling of the quasiparticles between the
localized regions.

To summarize, our magnetotransport measurements reveal
that the application of a B|| leads to a ν = 5/2 FQHS,
whose in-plane longitudinal resistance is highly anisotropic
at low temperatures. The resistance anisotropy ratio remains
constant over a relatively large temperature range, and the
energy gap we extract from the temperature dependence of
the resistances is the same for both directions. Our data are
generally consistent with a FQH nematic phase, although
other explanations might be possible. Regardless of the
interpretations, our results attest to the very rich and yet not
fully understood nature of the enigmatic ν = 5/2 FQHS.
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