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Fractional topological phase in one-dimensional flat bands with nontrivial topology
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We consider a topologically nontrivial flat-band structure in one spatial dimension in the presence of nearest-
and next-nearest-neighbor Hubbard interaction. The noninteracting band structure is characterized by a symmetry-
protected topologically quantized Berry phase. At certain fractional fillings, a gapped phase with a filling-
dependent ground-state degeneracy and fractionally charged quasiparticles emerges. At filling 1

3 , the ground
states carry a fractional Berry phase in the momentum basis. These features at first glance suggest a certain
analogy to the fractional quantum Hall scenario in two dimensions. We solve the interacting model analytically
in the physically relevant limit of a large band gap in the underlying band structure, the analog of a lowest
Landau level projection. Our solution affords a simple physical understanding of the properties of the gapped
interacting phase. We pinpoint crucial differences to the fractional quantum Hall case by studying the Berry
phase and the entanglement entropy associated with the degenerate ground states. In particular, we conclude
that the “fractional topological phase in one-dimensional flat bands” is not a one-dimensional analog of the
two-dimensional fractional quantum Hall states, but rather a charge density wave with a nontrivial Berry phase.
Finally, the symmetry-protected nature of the Berry phase of the interacting phase is demonstrated by explicitly
constructing a gapped interpolation to a state with a trivial Berry phase.
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I. INTRODUCTION

Interacting topological phases that can not be understood
at the level of noninteracting models have attracted continued
interest since the discovery of the fractional quantum Hall
(FQH) effect.1–3 FQH states can be observed in partially
filled Landau levels, i.e., in systems that would be metallic
in the absence of correlations. At certain fractional fillings, the
huge phase space for interactions provided by the macroscopic
degeneracy at the Fermi level then conspires with the nontrivial
topology of the Landau level4,5 to yield a gapped state
which is topologically distinct from any noninteracting two-
dimensional (2D) insulator. To make this distinction more
precise, the notion of topological order has been introduced
by Wen.6 The simplest FQH state can be observed at
ν = 1

3 filling. From a phenomenological viewpoint, its key
differences from the integer quantum Hall (IQH) state4,7,8

observed in a completely filled Landau level are the following:
(i) The Hall conductance σxy representing the topological
invariant of the IQH state assumes a fractional value, more
concretely σxy = 1

3
e2

h
. (ii) If periodic boundary conditions are

imposed, the system exhibits a threefold-degenerate ground
state for ν = 1

3 . (iii) The elementary excitations of the state
are fractionally charged (q = e

3 for ν = 1
3 ) and obey fractional

statistics (θ = π
3 for ν = 1

3 ).
In Ref. 9, a similar scenario as the one outlined above for the

FQH effect has been studied numerically in a 1D system: These
authors consider a topologically nontrivial flat band similar to
the model introduced by Su, Schrieffer, and Heeger10,11 (SSH)
at rational filling ν = 1

3 which is subjected to short-ranged
interactions. Their numerical data indicate remarkable similar-
ities to the FQH setting. The quantized Berry phase12,13 playing
the role of the topological invariant of the noninteracting 1D
band structure seems to assume fractional values. The system
exhibits a ground-state degeneracy of three when periodic
boundary conditions are applied. The elementary excitations
of the system carry fractional charge.

In this work, we present an exact solution of the model
for the one-dimensional fractional topological phase (1DFTP)
discussed in Ref. 9 in the physically relevant limit of a large
band gap where a projection onto the partially filled lower
band is justified. This approach is analogous to the widely
used projection onto the lowest Landau level in the FQH case.
Our solution affords an intuitive physical interpretation of all
the mentioned peculiarities of the 1DFTP and allows us to
scrutinize the key differences between the 1DFTP and the FQH
scenario at an analytical level. Our main conclusion is that the
1DFTP is not a one-dimensional analog of the 2D fractional
quantum Hall states, but rather a topologically nontrivial
charge density wave. In addition, even the phase diagram
resulting from the competition between a nearest-neighbor
(NN) and next-nearest-neighbor (NNN) interaction can be
precisely understood at the level of our exact solution.

In agreement with the general relation between Berry phase
and entanglement entropy,14 we find that a fractional von
Neumann entropy characterizes the reduced density matrix
of a translation-invariant ground state of a bipartite 1DFTP.
However, when calculating the Berry phase of the interacting
ground states we find a remarkable difference to the FQH case:
In Ref. 15, it has been shown that the Hall conductance of a
gapped system is insensitive to twisted boundary conditions
(TBC). More precisely, the Hall conductance can be expressed
as a constant Berry curvature defined on the torus of twisting
angles. For the ν = 1

3 FQH case, Niu et al.15 have shown
explicitly, that the fractionalized Hall conductance can be
viewed as the Chern number4,5 over the enlarged torus of
twisting angles that encompasses all three degenerate ground
states. In the 1D system under investigation in this work, the
Berry phase represents the charge polarization of the system12

and is defined in terms of the Berry connection rather than the
curvature which brings about a certain basis dependence. More
precisely, we can find a basis of the ground-state manifold in
which only one state carries the total Berry phase of π and the
other two states are independent of the boundary conditions.
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However, in a translation-invariant basis, each ground state can
be assigned a Berry phase of π

3 . This observation is closely
related to the well-known fact that a charge polarization only
has a relative meaning depending on the choice of a reference
unit cell.16 In contrast, the Hall conductance of a 2D system is
a directly observable quantity with an unambiguously defined
value.

Furthermore, we investigate the entanglement spectrum of
the 1DFTP employing the so-called particle cut17 and find
remarkable differences to the Laughlin ν = 1

3 state2 in the
thin-torus limit.18 In the quantum Hall case, the number of
“entanglement levels” (or, equivalently, the rank of the reduced
density matrix) is given by the number of ground states of
the Hamiltonian for the Laughlin state itself, with a reduced
number of particles, but at the original number of flux quanta.19

Thus, the particle entanglement spectrum of the ground state
probes the quasihole excitations. Using the exact solution, we
show that for the 1DFTP the rank of the reduced density matrix
is in fact much smaller than the number of quasihole states,
and in this case merely probes the fermionic nature of the
particles.

Another important difference to the 2D case is that topo-
logical order in 1D is always symmetry protected as long as
particle number is conserved (see, for instance, Refs. 20–23).
We explicitly show the symmetry-protected nature of the Berry
phase of the 1DFTP by constructing a gapped interpolation to a
trivial charge density wave without any polarization, involving
the breaking of the protecting chiral symmetry. During this
interpolation, the total Berry phase of the ground states changes
adiabatically from π to zero. In contrast, an interpolation
preserving the protecting symmetry involves a phase transition
at which the Berry phase jumps to zero.

We note that the experimental study of the predicted phase
diagram for the 1DFTP should be feasible in a synthetic system
of cold atoms in an optical lattice. As has been demonstrated
very recently, such settings even afford an experimental access
to Berry phases.24

II. MODEL AND ANALYTICAL SOLUTION

We consider a two-band lattice model similar to the dimer
model for polyacetylene originally introduced by SSH in
1979.10,11 The tight-binding Hamiltonian on which the 1DFTP
is constructed reads as (see also Ref. 9)

H0 =
∑

j

c
†
j dj+1 + d

†
j+1cj , (1)

where we have chosen unit lattice constant and cj ,dj are the
annihilation operators of the two orbitals at site j . The Bloch
Hamiltonian of this model can be written as

h0(k) = viσi, vx = cos(k),
(2)

vy = sin(k), vz = 0,

where the σi denote Pauli matrices in the band pseudospin
space. The spectrum of this Hamiltonian can be conveniently
obtained by taking the square E2

k = |v(k)|2 = 1, i.e., the model
has completely flat bands. Furthermore, the Hamiltonian
anticommutes with the chiral symmetry operation σz. The
chiral symmetry can be viewed as the combination of a

FIG. 1. (Color online) Trivial unpolarized model with vx = vz =
0 �= vy (top) with orbitals localized on the sites. Nontrivial SSH
model with polarized orbitals localized on the bonds between two
sites (bottom).

particle-hole symmetry (PHS) operation C = σzK and the
pseudo-time-reversal symmetry (TRS) operation T = K ,
where K denotes complex conjugation. If one of the bands
is filled, the system is gapped and its topological invariant ξ is
given by the winding number of the map k �→ (vx(k),vy(k))T

around the origin of the xy plane.25 For our model which is a
tight-binding analog of the SSH model,10,11 we obtain ξ = 1.
The physical consequence of this topologically nontrivial
structure is the quantized Berry phase12,13

ϕB = −i

∫ 2π

0
dkA(k) = π (mod2π ), (3)

where A(k) = 〈lk|∂k|lk〉 is the Berry connection of the Bloch
states |lk〉 of the lower band. The Berry phase is related to
the charge polarization P by 2πP = ϕB (see Ref. 12). The
topological quantization is symmetry protected, i.e., if we
allow for vz �= 0 we can adiabatically connect phases with
zero and π Berry phase. The quantized polarization of the
SSH model is illustrated in Fig. 1. The noninteracting model
in Eq. (2) is readily diagonalized as

H0 =
∑
j,σ

σγ
†
j,σ γj,σ , σ = ±, (4)

where γj,± = 1√
2
(cj ± dj+1) are the annihilation operators of

the eigenstates. From now on, we consider a fractionally filled
lower band and take into account two interaction terms V1 for
NN and V2 for NNN interactions:9

HI = V1

∑
〈i,j〉

ninj + V2

∑
〈〈i,j〉〉

ninj , (5)

where nj = c
†
j cj + d

†
j dj .

We are interested in the low-energy physics coming from
the interplay of the macroscopic degeneracy of states at the
Fermi energy EF = −1 and the interactions described by HI .
Hence, we consider the noninteracting band gap of 2|v| as
infinitely large compared to the scale of the interaction energies
V1,V2, i.e., a lowest-band projection (LBP). This assumption
is similar to a projection to the lowest Landau level familiar
in FQH physics. From a topological point of view, there is a
key difference between continuum models (e.g., Landau levels
of a homogeneous electron gas in a perpendicular magnetic
field) and lattice models. In the Landau level problem, the
same Hall conductance of one quantum of conductance can
be assigned to all Landau levels. Therefore, the topological
defects of the Landau levels only add up to a larger and
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FIG. 2. (Color online) Gapped ground state at filling ν = 1
3 and

V1 > V2. Every third bond is filled with a particle (green dot).

larger Hall conductance if more and more of them are filled.
The physical reason for this is that all eigenstates of the
underlying Hamiltonian describe cyclotron motions with the
same chirality that is fixed by the direction of the magnetic
field. In any lattice model, the situation is fundamentally
different. The topology of a lattice model is defined relative to
the total Hilbert space spanned by all bands. In more technical
terms, the total Hilbert space of all bands can be seen as an
embedding space for the bundle of occupied states. Hence, as
far as the topological invariant associated with a given energy
gap in a lattice Hamiltonian is concerned, the union of all
bands above the gap is always the “topological complement”
of all states below the gap. Along these lines, we argue that all
topological features of our lattice model must be encompassed
by the LBP approximation. This is because the total Hilbert
space of the two bands is topologically trivial so that mixing of
the lower band and its topological complement, i.e., the upper
band can only perturb a topological state found in the LBP
rather than leading to a richer topological structure.

The LBP amounts to discarding all the γ+ contributions
to the density operators. Up to constant energy shifts, the
interaction terms then read as

HI = V1

4

∑
j

ñj (2ñj+1 + ñj+2)

+ V2

4

∑
j

ñj (ñj+1 + 2ñj+2 + ñj+3), (6)

where ñj = γ
†
j,−γj,− are the lower-band occupation number

operators.
At filling ν = 1

3 , a state with the occupation number pattern
001 obviously annihilates the V1 term which immediately gives
the gapped ground state at V2 = 0 and explains its threefold
degeneracy on the ring which has been numerically observed
in Ref. 9. The degenerate states are obtained by translating the
pattern 001 (twice) by one lattice site and thus have the patterns
001,010,100. The size of the gap is V1

4 as follows immediately
from the projected form (6) of the interaction Hamiltonian.
This state is illustrated in Fig. 2. At filling ν = 1

4 , the state
0001 annihilates both terms in HI and is a ground state with a
fourfold degeneracy on a ring and a gap V2

4 .
A nontrivial situation arises at filling ν = 1

3 if both V1 and
V2 are nonzero. In this case, placing two defects of the form
0001 and one of the form 0011 at constant filling fraction into
the ground state 001 might become energetically profitable
since the 0001 string annihilates the V2 term whereas the 001
pattern does not. Simple counting of interaction energies tells
us that this defect pattern saves V2

2 and costs V1
2 due to the

0011 part. Hence, putting such defects becomes favorable at a
critical strength V c

2 = V1 at which the gap closes and a phase

transition occurs. We confirmed the appearance of the phase
transition at exactly this point in the limit of a large band gap
numerically.

III. QUANTIZED BERRY PHASE AND
SYMMETRY PROTECTION

As already mentioned above, the completely filled lowest
band of the noninteracting model is characterized by a
quantized Berry phase of π . Employing the method of
twisted boundary conditions (TBC),15,26 we would now like to
analytically calculate the Berry phase of the gapped interacting
phase obtained within the LBP. The notion of TBC can be
intuitively understood in the following way. One considers the
(arbitrarily large but finite) physical system under investigation
as one unit cell of a fictitious superlattice. The lattice sites of
the original lattice are now internal degrees of freedom of
the superlattice, i.e., orbitals constituting one supersite. Upon
Fourier transforming the superlattice, each of these orbitals
picks up a constant phase eiφX, where X labels the supercell
and φ is the superlattice momentum. In a particle-number-
conserving Hamiltonian, the phase factors of creation and
annihilation operators cancel out except for hopping terms
crossing the boundary of a supercell.

Let us first apply this program to the noninteracting
Hamiltonian (1) with a supercell of L sites. The model
only contains NN hopping. Hence, the only term switching
the supercell is the hopping between orbital L of cell X

and orbital 1 of cell X + 1. The Bloch Hamiltonian of the
superlattice associated with Eq. (1) is hence given by

H0S(φ) =
⎛
⎝L−1∑

j=1

c
†
j dj+1 + H.c.

⎞
⎠ + (e−iφc

†
Ld1 + H.c.). (7)

This model is still readily analytically diagonalized by the
operators γj,±(φ) = 1√

2
(cj ± dj+1), j = 1, . . . ,L − 1 and

γL,±(φ) = 1√
2
(cL ± e−iφd1). Remarkably, only γL,± depends

on the momentum variable φ of the superlattice. For pedagog-
ical reasons, we would like to calculate the Berry phase of this
model now in two equivalent ways. First, we interpret Eq. (7)
as a Bloch Hamiltonian with the occupied bands |uj,−(φ)〉 =
γ
†
j,−(φ)|0〉. The Berry phase is then readily calculated as

ϕB = −i

L∑
j=1

∫ 2π

0
dφ〈uj,−(φ)|∂φ|uj,−(φ)〉

= −i

∫ 2π

0
dφ〈0|γL,−(φ)∂φγ

†
L,−(φ)|0〉 = π. (8)

An equivalent way to do this calculation is to interpret the
Slater determinant |�0(φ)〉 = ∏

j γ
†
j,−(φ)|0〉 as the many-body

ground state of the Hamiltonian (7) at half-filling. In this many-
body language, the Berry phase can be written as

ϕB = −i

∫ 2π

0
dφ〈�0(φ)|∂φ|�0(φ)〉

= −i

∫ 2π

0
dφ〈0|γL,−(φ)∂φγ

†
L,−(φ)|0〉 = π. (9)
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The latter approach is more useful for the generalization to the
interacting model.

A. Interacting model

We now calculate the Berry phase of the interacting model
with the Hamiltonian H = H0 + HI [see Eqs. (1) and (5)].
As shown in Sec. II, the three degenerate exact ground states
of the interacting model for V2 < V1 at 1

3 filling are |�l〉 =∏L/3−1
j=0 γ

†
3j+l,−|0〉, l = 1,2,3. We now again apply TBC. The

interaction Hamiltonian HI , in particular in its projected form
[see Eq. (6)], does not depend on the twisting angle φ since
it does not contain any hopping terms. Therefore, even in the
presence of TBC, the interacting model can still be solved
exactly by just replacing γj,− with γj,−(φ) in the definition of
the ground states |�l〉. The resulting ground states |�l(φ)〉 are
obviously 2π periodic in φ so that the Berry phase defined
in total analogy to Eq. (9) is a well-defined geometric phase.
Explicitly, we get

ϕB
l = −i

∫ 2π

0
dφ〈�l(φ)|∂φ|�l(φ)〉 = πδl,3. (10)

Two of the ground states thus have zero Berry phase whereas
one of them has a Berry phase of π . This result affords a
simple physical interpretation. When imposing the TBC we
go to a superlattice and the Berry phase now describes the
polarization of the model in the super cell. Only |�3〉 contains
an electron which is delocalized over two supercells, namely,
the one created by γ

†
L,−. Hence, |�3〉 has a polarization of 1

2 ,
or equivalently, a Berry phase of π . In contrast, the two other
ground states are unpolarized at the level of the superlattice
description and hence do not contribute to the total Berry
phase. If we choose a different basis of ground states, we
can distribute the Berry phase differently over the three basis
states. For instance, upon combining the ground states |�l〉
into momentum states, the latter contribute equally to the Berry
phase. However, the total Berry phase ϕB = ∑

l ϕ
B
l is always

quantized to π .

B. Symmetry protection

To demonstrate the symmetry-protected nature of the
present 1DFTP, we now explicitly perform a gapped inter-
polation between this model and the trivial atomic insulator
with the noninteracting Hamiltonian H̃0 = ∑

j c
†
j cj − d

†
j dj .

The Bloch Hamiltonian of this band structure is h̃(k) = σz,
so it obviously breaks the chiral symmetry. If we subject this
model to the same interactions HI as our original model, we
again get three degenerate ground states at 1

3 filling of the lower
band. These states are separated from the rest of the spectrum
by a gap V2. We will therefore assume NNN interactions to
be present. Since H̃0 does not contain any hopping terms, this
model is completely insensitive to TBC and all three ground
states |�̃l(φ)〉 = ∏L/3−1

j=0 d
†
3j+l |0〉 have a zero Berry phase as

expected. We now consider the gapped interpolation

H (λ) = H0(λ) + HI ,
(11)

H0(λ) = √
1 − λH0 +

√
λH̃0 .

0 0.2 0.4 0.6 0.8 1
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-4.94
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-4.88

E
 (

)

FIG. 3. The low-lying part of the spectrum of the interacting
Hamiltonian H (λ), with interaction parameters V1 = 1

10 , V2 = 1
20 for

system size L = 15 and periodic boundary conditions. We note that
the ground state is threefold degenerate for each value of λ.

We first note that the Bloch Hamiltonian of the noninteracting
model H0(λ) reads as

hλ(k) = viσi, vx = √
1 − λ cos(k),

(12)
vy = √

1 − λ sin(k), vz =
√

λ .

Thus, this model also has flat bands because E2
k = |v(k)|2 = 1,

as was the case for H0. For both λ = 0 and 1, the Hamiltonian
has a threefold-degenerate ground state, separated from the
excited states by a gap, because we assumed V2 > 0. The
interaction HI does not depend on the interpolation para-
meter λ, and we find that H (λ) has a threefold-degenerate
ground state and a gap for all 0 � λ � 1.

In Fig. 3, we show the low-energy part of the spectrum for
a system with L = 15 sites at filling ν = 1

3 , with interaction
parameters V1 = 1

10 and V2 = 1
20 . We chose these parameters

to be small in comparison to the noninteracting part of the
Hamiltonian, so that the LBP is a good approximation. Indeed,
the gap for λ = 0, namely, �E ≈ 0.02397, is close to the value
V1/4 = 0.025 valid in the LBP (see Sec. II). For comparison,
the gap for interaction parameters V1 = 1

10 and V2 = 0 is
�E ≈ 0.02423. The gap for λ = 1 is �E = 0.05 = V2, the
expected value. We note that our numerical studies are
performed on system sizes similar to the ones used in Ref. 9.

The plot confirms the existence of a gap throughout the
interpolation. We only show the case of nontwisted boundary
conditions φ = 0, but the spectrum is in fact gapped for all φ

throughout the interpolation. This is true because twisting the
boundary conditions only leads to a shift in the momentum k

for Hamiltonians conserving the number of fermions, and the
one-particle energies do not depend on k.

Finally, we note that we checked explicitly that upon
increasing V2 from V2 = 0 to V2 = 1

20 (while keeping V1 = 1
10

and λ = 0 fixed), one does not close the gap. The momentum-
resolved spectra for the two cases V2 = 0, 1

20 are displayed in
Fig. 4.

To calculate the total Berry phase, we changed the boundary
conditions φ from φ = 0 to 2π , in steps of δφ = 2π

100 . We
considered the system sizes L = 3 (the noninteracting case),
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FIG. 4. The low-lying part of the energy spectrum of the 1DFTP
with L = 15 sites and F = 5 fermions. The interaction parameters
are V1 = 1

10 and V2 = 0 (left panel), and V1 = 1
10 and V2 = 1

20 (right
panel).

L = 6, and L = 9, as shown in Fig. 5 by the blue circles,
red squares, and green diamonds, respectively. The interaction
parameters are again V1 = 1

10 , V2 = 1
20 . In the noninteracting

case, the Berry phase can be calculated analytically. Namely,
ϕB is given by half the solid angle mapped out by the curve of
	v(k) on the unit sphere when k changes from k = 0 to 2π . This
leads to ϕB = π (1 − √

λ), which is shown as the black line
in Fig. 5. We find that the numerically obtained values using
exact diagonalization for ϕB at L = 3 agree perfectly with
the analytic result. The Berry phase in the interacting case
for the larger system sizes with V1 = 1

10 , V2 = 1
20 deviates

only slightly from the noninteracting result, confirming that
the LBP is a good approximation in this regime.

The Berry phase calculation clearly shows that the quanti-
zation of the Berry phase is protected by the chiral symmetry.
Upon breaking this symmetry, we can smoothly change the
Berry phase from ϕB = π to ϕB = 0, without closing the
gap in the spectrum. It is also possible to interpolate to a
trivial atomic insulator, without breaking the chiral symmetry

0 0.2 0.4 0.6 0.8 1
0

/4

/2

3 /4

B
er

ry
 p

ha
se

 
B

FIG. 5. (Color online) The numerically calculated Berry phase
for the interacting Hamiltonian H (λ) with V1 = 1

10 , V2 = 1
20 as a

function of the interpolation parameter λ for L = 3 (blue circles),
L = 6 (red squares), and L = 9 (green diamonds). The black line is
the analytic result for the noninteracting case, valid for L = 3.

-1 -0.5 0 0.5 1 1.5
v

x

-1

-0.5

0

0.5

1

vy

FIG. 6. (Color online) The map k �→ (vx(k),vy(k)) of Eq. (14),
for various values of λ: λ = 0 (black line), λ = 1

5 (red dashed), λ = 1
2

(green dotted), λ = 4
5 (blue dash-dotted), λ = 1 (black dot). The black

cross marks the origin, corresponding to E = 0, which lies on the
curve with λ = 1

2 .

[a similar deformation was considered in Ref. 9, in their
Fig. 5(a)]. To this end, we introduce the noninteracting Hamil-
tonian H̃ ′

0 = ∑
j c

†
j dj + d

†
j cj , such that the corresponding full

interacting Hamiltonian reads as

H ′(λ) = H ′
0(λ) + HI ,

(13)
H ′

0(λ) = √
1 − λH0 +

√
λH̃ ′

0.

The Bloch Hamiltonian of the noninteracting part H ′
0(λ) now

reads as

h′
λ(k) = viσi, vx = √

1 − λ cos(k) +
√

λ,
(14)

vy = √
1 − λ sin(k), vz = 0 .

Indeed, the chiral symmetry is preserved. The spectrum of
the Bloch Hamiltonian h′

λ(k) now depends on the interpo-
lation parameter λ and the momentum k, namely, E2

k =
1 + 2

√
λ(1 − λ) cos(k). In particular, for λ = 1

2 and k = π

the gap closes due to a level crossing. We show the map
k �→ (vx(k),vy(k)) as defined by Eq. (14) for several values
of λ in Fig. 6. The Berry phase ϕB corresponding to the
lower band is given by π times the winding number of the
map k �→ (vx(k),vy(k)) around the origin. We find that for
λ < 1

2 , the Berry phase is ϕB = π , while for λ > 1
2 , we

have ϕB = 0. Precisely for λ = 1
2 , the winding number is not

defined, signaled by the closing of the gap.
For the interacting Hamiltonian H ′(λ), the scenario is very

much the same, with the difference that the transition occurs
at different values of λ. We determined numerically that the
transition occurs at λ ≈ 0.34 for L = 6 and at λ ≈ 0.27 for
L = 9. Due to its limited relevance for our main line of
reasoning, we did not study the precise dependence of the
gap closing on the system size in more detail here.
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IV. ENTANGLEMENT SPECTRA

To gain further insight in the nature of the fractional
topological phase in one-dimensional flat bands, we consider
both the entanglement entropy and the entanglement spectrum.
In the study of two-dimensional topological phases, the
entanglement entropy gives insight in the type of topological
phase which is realized. Following the work of Kitaev and
Preskill27 and Levin and Wen,28 we note that entanglement
entropy Sent associated with dividing the system into two (real-
space) regions A and B reads as Sent = αL − γ + O(1/L),
containing a (nonuniversal) contribution which scales as the
length L of the boundary, as well as a universal constant
γ = lnD. The quantity D is the total quantum dimension
associated with the topological phase, which is a measure of
the particle content of the topological phase (see, for instance,
Ref. 29). In the context of the fractional quantum Hall states,
this universal term has been determined numerically17 and
agrees reasonably with the theoretical predictions.

We note that there are several interesting ways in which
one can divide (or cut) the system into two parts A and B. The
cut considered in Refs. 27 and 28 is the so-called “real-space”
cut. In the “orbital” cut, one divides the one-particle orbitals
into two sets A and B. In the “particle” cut, finally, one divides
the particles into two groups, with NA and NB the number of
particles in subsystems A and B, respectively. These different
ways of dividing the system into two pieces probe different
properties of the system, even though it might not be possible
physically to actually perform the cut.

The notion of the entanglement spectrum was first con-
sidered in the context of the quantum Hall effect by Li and
Haldane.30 In short, the entanglement spectrum corresponds
to the full spectrum of the reduced density matrix obtained by
tracing out the degrees of freedom in part B. In comparison,
the entanglement entropy combines all the eigenvalues into a
single number.

In this paper, we focus on the orbital and particle cuts. For
these cuts, the entanglement spectra for fractional quantum
Hall states were considered for various geometries in previous
literature.19,30,31

Before we turn our focus on the 1DFTP we study in this
paper, we briefly mention some results concerning the particle
entanglement spectrum. We focus on quantum Hall states
for which a model Hamiltonian is known. This includes the
Laughlin states, as well as many non-Abelian quantum Hall
states, such as the Moore-Read state.32 The reason we focus
on quantum Hall states with a known model Hamiltonian
is that one can typically obtain the number of zero-energy
ground states of these Hamiltonians, for an arbitrary number
of electrons Ne, and an arbitrary number of flux quanta Nφ .
When we divide the electrons into two groups A and B, and
trace out the electrons in group B, we are left with a system
in which the number of particles is reduced, but the number of
flux quanta is unaltered. In the case of model Hamiltonians,
one can show easily19 that the rank of the density matrix is
bounded by the number of zero-energy ground states of the
model Hamiltonian, with NA electrons but with the original
number of flux quanta Nφ .

It has been observed numerically that for the model
quantum Hall states, this upper bound is indeed reached (see,

for instance, Ref. 19). Proving that the upper bound is reached
has turned out to be hard and at presence a proof is only known
for the Laughlin states.33

In the case of the 1DFTP, we perform a similar analysis
by comparing the rank of the reduced density matrix to the
number of ground states for a system with a reduced number
of fermions, but with the same number of sites (playing
the role of the number of flux quanta Nφ). The rank of
the reduced density matrix or, equivalently, the number of
levels in the particle entanglement spectrum, has been used
beyond the realm of the fractional quantum Hall effect. In
particular, it has been used to argue for the existence of
so-called two-dimensional “fractional Chern insulators” (see
Ref. 34 for an early reference). It was found that the particle
entanglement spectrum exhibits a “gap.” The number of states
below this “entanglement gap” was found to be given by
the expected value from the quantum Hall states, showing
the relation between the fractional Chern insulators and the
fractional quantum Hall states.

A. Orbital cut

We briefly discuss the entanglement entropy associated
with cutting the system into two pieces. Because we consider
periodic boundary conditions, we effectively cut the system
in two locations when we trace out orbitals in subsystem B.
To calculate the entanglement entropy, we start by recalling
that if we work in the LBP, i.e., in terms of the fermions
γj,− introduced in Sec. II, the ground states are simple Slater
determinants |�l〉 = ∏L/3−1

j=0 γ
†
3j+l,−|0〉, l = 1,2,3. Thus, if

we perform the cut in terms of the orbitals defined by the
fermions γj,−, the entanglement entropy Sent = 0 because
the ground states can be written as a single product |�l〉 =
|ψl〉A ⊗ |ψl〉B .

However, it is more relevant physically to consider the
orbitals associated with the original fermions cj and dj . In
terms of these orbitals, the ground states are not simple
product states, and we will see that the entanglement entropy is
nonzero. We first assume that only NN interactions are present,
i.e., V2 = 0. Then, the form of the ground states in terms of
the fermions cj and dj is obtained from the explicit form of
the operators γj,−, which are given by γj,− = 1√

2
(cj − dj+1).

We divide the system into two subsystems A and B. If this
division is such that none of the occupied γj,− fermions “has
a component” in both systems A and B, the entanglement
entropy will still be zero because we can still write |�l〉 =
|ψl〉A ⊗ |ψl〉B . If, however, the division is such that one γj,−
fermion has a component in both A and B, the entanglement
entropy will be given by Sent = ln 2. Finally, if the cut is such
that both boundaries contribute, we find Sent = 2 ln 2 instead.14

We now briefly comment on what happens if we increase
the interaction parameter V2 without making the assumption
that we are working in the LBP. We will consider the case
that the parameter V2 is small enough, such that we are still
in the same phase as for V2 = 0. In this case, the ground
state will have contributions in the upper band, and is more
delocalized in comparison to the case V2 = 0. This means
that upon cutting the system, the ground states will have
longer-range correlations across the boundaries, leading to an
increased entanglement entropy, and an increase in the rank
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of the reduced density matrix. We confirmed this behavior
numerically.

B. Particle cut

We pointed out above that in the case of quantum Hall
states, the rank of the reduced density matrix, associated with
dividing the electrons in two groups, is related to the number
of ground states for the reduced number of particles, but with
the same flux. We therefore now first take a quick look into the
number of ground states of the 1DFTP, in case that the filling is
reduced from ν = 1

3 . To deduce the number of ground states of
the 1DFTP, with only nearest-neighbor interactions V1 present,
we use exactly the same arguments as in Sec. II. We consider a
system consisting of L sites, filled with F fermions. We assume
that the filling ν = F

L
� 1

3 , such that that there are ground states
with the same energy as the ground states at filling ν = 1

3 .
The number of ground states is given by the number of ways
in which we can distribute the F fermions over the L sites,
such that no three consecutive orbitals contain more than one
fermion. This number of ground states is precisely equal to
the number of quantum Hall states on the torus, in the so-
called “thin-torus” limit.35–37 Employing some combinatorics
shows that the number of ground states is given explicitly by
L
F

( L − 2F − 1
F − 1 ), if F > 0 (see also Ref. 38). For F = 0, there

is trivially only one state. We checked numerically that this
indeed gives the correct number of ground states of the 1DFTP,
when only NN interactions are present.

Because we have the exact solution of the 1DFTP model
at our disposal, we can determine the particle entanglement
spectrum exactly. As was the case for the orbital cut, it
is easiest to do so in terms of the eigenstates |�l〉 =∏L/3−1

j=0 γ
†
3j+l,−|0〉, l = 1,2,3. These states constitute a basis

for the threefold-degenerate ground state of the model at filling
ν = 1

3 . Because we divide the system into two parts A and B,
by means of dividing the fermions into two groups, we can
perform the calculation of the particle entanglement spectrum
directly in the basis of γj,− fermions. Rewriting these fermions
in terms of the original cj and dj fermions is, for the present
cut, only a local transformation, which does not change the
spectrum of the reduced density matrix.

We concentrate on the ground state |�3〉 = ∏L/3
j=1 γ

†
3j,−|0〉,

which is the Slater determinant, such that each third orbital is
filled. We now number the fermions and declare the fermions
numbered 1, . . . ,NA to belong to part A, while the remaining
fermions belong to part B. Because the ground state |�3〉 is a
single Slater determinant, it follows that the rank of the density
matrix is given by the number of ways one can divide the NA

fermions over the orbitals which are occupied in the original
ground state |�3〉 = ∏L/3

j=1 γ
†
3j,−|0〉 (we refer to Refs. 19 and

39 for more details on calculating the particle entanglement
spectrum).

It follows that the number of nonzero eigenvalues of the
reduced density matrix is given by ( L/3

NA
) = ( F

NA
). Moreover,

all these nonzero eigenvalues are equal to one another. We
note that if we had calculated the reduced density matrix of
the momentum eigenstates formed with |�l〉, with l = 1,2,3,
we would have found that the reduced density matrix has 3( F

NA
)

degenerate nonzero eigenvalues.

Having obtained the entanglement spectrum, we can now
compare the number of entanglement levels to the number of
ground states of the Hamiltonian at the reduced number of
fermions. Making use of the formula we gave above, we find
that the number of ground states of the Hamiltonian with L =
3F sites, with NA > 0 fermions, is given by 3F

NA
( 3F − 2NA − 1

NA − 1 )
(or 1, if NA = 0), which should be compared to the rank of the
reduced density matrix ( F

NA
). We find that for NA = 0, these

numbers are both equal to 1 trivially. For NA > 0, we find
that the rank of the reduced density matrix is lower than the
upper bound coming from the Hamiltonian. In particular, for
NA = 1, the former is given by F , while the latter is 3F . For
NA = F , the former is 1, while the latter is 3. In general, the
ratio of the rank of the reduced density matrix and the upper
bound is much smaller than one-third.

The fact that the rank of the reduced density matrix of
the particle entanglement spectrum is much smaller than the
upper bound coming from the Hamiltonian marks a striking
difference with the quantum Hall case, for which this upper
bound is in fact satisfied. Indeed, the “correlations” present in
the fractional quantum Hall states, which are probed by the
particle entanglement spectrum, are of a more nontrivial kind.
In the 1DFTP, they merely signal the fact that the ground states
are Slater determinants of identical fermions.

We close this section by making the following remark.
In determining the particle entanglement spectrum above, we
did not make use of the fact that the interacting fermions are
occupying a band with a nontrivial topology. In particular, we
can give exactly the same arguments for the model in which
we interpolated the bands to the trivial atomic insulator. In
that case, we obtain exactly the same particle entanglement
spectrum. Thus, the particle entanglement spectrum does not,
in the present case, distinguish between the topological and
trivial cases. This is not surprising because for the models we
study, the particle entanglement spectrum probes the fermionic
nature of the particles in the model.

V. CONCLUDING DISCUSSION

We investigated the 1DFTP, which was first considered
in Ref. 9. We solved the model in the limit where the
interactions are small compared to the band gap, by projecting
the model onto the lowest band. This projection is analogous
to considering the quantum Hall effect “in the lowest Landau
level.” The exact solution explains the observed threefold-
degenerate ground state and allows for the determination of the
phase diagram. Although the 1DFTP shares certain features
of the fractional quantum Hall states, there are also crucial
differences.

The 1DFTP exhibits a threefold-degenerate ground state
(when considering periodic boundary conditions), and frac-
tionally charged excitations, just as is the case for the ν = 1

3
fractional quantum Hall state. We considered the interacting
model in a flat band with nontrivial topology (as in Ref. 9),
as well as in a trivial flat band. By choosing the appropriate
interpolation (i.e., without breaking the chiral symmetry), we
showed that one can adiabatically interpolate the 1DFTP from
the topological to the trivial case. That way, we showed
unambiguously that both the ground-state degeneracy and
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the fractionally charged excitations should not be viewed
as emerging because of the topological band structure, but
rather as consequences of the charge density wave (CDW)
physics describing both cases. We also demonstrated that
the Berry phase changes continuously from ϕB = π for the
topological flat bands to ϕB = 0 for the trivial flat bands, in
the interpolation mentioned above.

Using the exact solution, we analytically calculated the
Berry phase associated with the degenerate ground state in the
case of the topological flat bands. This calculation revealed
that upon changing the basis for the threefold-degenerate
ground state, one can change the relative contribution from
each state to the total (quantized) Berry phase ϕB = π . This
basis dependence can be understood by realizing that in
one-dimensional systems, the Berry phase is a measure of
the charge polarization,12 which depends on the choice of the
unit cell. Thus, one can not entertain the objective notion of a
fractionalized Berry phase. In contrast, in the two-dimensional
quantum Hall effect, the fractionalized Hall conductance is a
physical observable that is directly accessible experimentally
and hence represents objective physical reality.

The basis dependence of the charge polarization alluded to
in the previous paragraph also plays a role in the entanglement
entropy associated with dividing the fermionic orbitals into two
sets. We showed that in the basis of γj,− orbitals, appearing
in the exact solution of the model, the ground states are
single Slater determinants. Dividing these orbitals into two
sets gives a vanishing entanglement entropy. In terms of the
original orbitals in which the model is phrased, the electrons
are delocalized, giving a finite polarization. Using the CDW
basis for the ground state, this in turn gives rise to a finite
entanglement entropy p ln 2, where p = 0,1,2 is the number
of fermions delocalized over the cut.

We also considered the entanglement spectrum associated
with dividing the fermions themselves into two sets. In the
context of fractional quantum Hall states (and fractional Chern
insulators), the particle entanglement spectrum of the ground
state is directly related to the excitations of the system. This
is signaled by the rank of the reduced density matrix, which

equals the upper bound set by the Hamiltonian of the system
itself. In calculating the entanglement spectrum for the 1DFTP,
we found that the rank of the reduced density matrix is
in general much lower, and can be understood completely
by considering the fermionic nature of the particles. This
implies that the ground state of the 1DFTP does not contain
the correlations necessary to provide full knowledge of the
excitations of the system, in contrast to the quantum Hall case.

The exact solution revealed that in the presence of NN
interactions only, there is a threefold-degenerate ground state
at filling ν = 1

3 . Upon adding a repulsive NNN interaction,
one finds that there is a (fourfold-) degenerate ground state
at filling ν = 1

4 . Thus, by merely changing the range of the
two-body interaction, we can change the filling at which
the ground state occurs from having an odd denominator to
one having an even denominator. In the quantum Hall case,
one can not perform such a simple change in the filling fraction
because the fermionic nature of the electrons does not allow
for a fermionic Laughlin state at even denominator filling.

The Moore-Read quantum Hall state32 does have even
denominator filling fraction. The model Hamiltonian which
has the Moore-Read quantum Hall state as its ground state is a
three-body interaction. In the flat-band models we considered
in this paper, one can also consider three-body interactions.
In fact, it is straightforward to construct an electrostatic
three-body interaction in terms of the γj,− fermions, which
has the expected sixfold-degenerate ground state at filling
1
2 . Although this model shares some properties with its
quantum Hall cousin, it exhibits the same differences as the
1DFTP in comparison to the Laughlin states. We note that
the entanglement spectra of fractional topological insulators
in the one-dimensional thin-torus limit has been considered in
Ref. 40, which has some overlap with the results presented in
this paper.
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