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We study an SU(2) symmetric spin-3/2 model on the z = 3 Bethe lattice using the infinite time evolving
block decimation (iTEBD) method. This model is shown to exhibit a rich phase diagram. We compute several
order parameters which allow us to identify a ferromagnetic, a ferrimagnetic, an antiferromagnetic, as well as a
dimerized phase. We calculate the entanglement spectra from which we conclude the existence of a symmetry
protected topological phase that is characterized by S = 1/2 edge spins. Details of the iTEBD algorithm used
for the simulations are included.
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I. INTRODUCTION

The study of quantum antiferromagnets are a challeng-
ing and interesting topic in condensed matter physics. The
interplay between strong correlations, quantum fluctuations,
and frustration can yield very exciting new phases with often
unexpected properties. One-dimensional quantum spin chains
have been proven to be very useful in understanding many
of these interesting phases. For these systems, very powerful
analytical and numerical methods exist. A major advance
on the numerical side was the introduction of the density-
matrix-renormalization group (DMRG) method which allows
for the efficient simulation of one-dimensional systems.1 One
of the first successes of the DMRG method was its use
to prove the famous Haldane conjecture for integer spin
chains numerically. The Haldane conjecture states that the
Heisenberg antiferromagnetic (HAF) chain with integer spin
S has a nonzero excitation gap and exponentially decaying spin
correlation functions (while spin chains with half-integer spin
are gapless).2,3 For odd integer spins, the Haldane phase is an
example of a so-called symmetry protected topological phase
(SPTP) which is characterized by S = 1/2 edge spins. This
kind of phase cannot be characterized by symmetry breaking
but instead by using cohomology theory.4–9

In this paper we make use of an extension of the DMRG
algorithm to the Bethe lattice and study the phase diagram
of a general SU(2) symmetric S = 3/2 spin model on a
Bethe lattice with coordination number z = 3. This model
has a special point in this phase diagram, the so-called
Affleck-Kennedy-Lieb-Tasaki (AKLT) point, at which the
ground state is known exactly.10 The AKLT wave function
for this model is a quantum paramagnet with exponentially
decaying correlation functions.10–13 We argue that the AKLT
point extends to a phase which is similar to the Haldane phase
in one-dimensional spin chains in that it is characterized by a
fractionalized edge spin (the precise meaning of an edge spin in
this context is explained in Sec. IV). Beside the Haldane phase,
the model is shown to exhibit different magnetic phases as well
as a dimerized phase. Even though there exist experimental
systems, such as dendrimers that realize the tree structure14

related to the Bethe lattice considered in this work, we are

mainly interested in this system because of its theoretical
nature. The S = 3/2 model has already been shown to exhibit
a very complex phase diagram on the mean field level and
in one-dimensional systems.15–17 The main goal is to present
a conclusive phase diagram of the model utilizing recently
introduced algorithms which allow an efficient simulation of
quantum spin systems on Bethe lattices. We use a descendant
of Vidal’s infinite time-evolving block decimation algorithm
(iTEBD)18 adapted to the treelike structure. The iTEBD
method as well as the DMRG have already successfully been
applied to reproduce, e.g., the phase diagram of the transverse
field Ising model and the spin-1/2 XXZ model on the z = 3
Bethe lattice.19–23 We include details of the algorithm in this
paper and discuss a number of improvements that make it more
stable.

This paper is organized as follows: In Sec. II we introduce
the model and discuss some of its basic properties leading up
to section Sec. III where we describe the method we used to
obtain the results. In Sec. IV we first take a closer look at
symmetry protected topological phases before we present the
results in Sec. V. The key points of this paper are summarized
again in Sec. VI.

II. MODEL

Throughout this paper we consider the following nearest-
neighbor spin-3/2 model Hamiltonian

H =
∑

i

α �Si · �Si+1 + β(�Si · �Si+1)2 + γ (�Si · �Si+1)3 (1)

on a Bethe lattice with coordination number z = 3. A different
parametrization of the Hamiltonian is given by

α = cos ϕ cos θ, (2)

β = sin ϕ cos θ, (3)

γ = sin θ, (4)

with ϕ ∈ [−π,π ] and θ ∈ [−π
2 , π

2 ]. The symmetries of this
model include translation, spatial inversion, SU(2), and time
reversal (TR). This model is known to exhibit an AKLT-like
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wave function at the point α = 1.0, β = 116
243 , γ = 16

243 when
placed on a z = 3 Bethe lattice.24 The AKLT state has symme-
try protected S = 1/2 edge spins which are discussed in detail
in Sec. IV. Furthermore, this model exhibits a SU(4) symmetry
at four points in the phase diagram connected by a SO(5)
symmetric line which is given by15,16 α = − 1

96 (31J0 + 23J2),
β = 1

72 (5J0 + 17J2), and γ = 1
18 (J0 + J2) with J0,J2 > 0.

The Bethe lattice and its finite counterpart, the Cayley tree,
has first been used in statistical mechanics.25–27 More recently
it has also proved to be a highly instructive testing ground
for tensor network methods as it is loop-free, thus removing
one of the major sources of entanglement. Additionally,
the Bethe lattice is self-similar, enabling the application of
efficient infinite-system methods. This lattice is infinite by
definition and thus there are no surface effects.28 Note that
the thermodynamic limit of the Cayley tree and the Bethe
lattice are not equivalent. This inequivalence is rooted in
the large number of surface sites contained in any Cayley
tree.29 Whereas in most systems the ratio of boundary to
bulk sites reduces to zero for large systems, it remains finite
for the Cayley tree. The finite tree is thus dominated by the
boundary conditions, making it unsuitable to study the model’s
properties in the thermodynamic limit.

III. TENSOR PRODUCT STATE BASED SIMULATIONS ON
A TREE LATTICE

For our simulations we use the infinite tree tensor network
state (iTTN)20,23,30–32 representation of the ground state wave
function. The iTTN states are the natural choice of ansatz state
for our model system since they model the tree’s geometry. We
thus employ this representation to compute the ground state
properties numerically, using the infinite time-evolving block
decimation (iTEBD) method18,33,34 adapted to infinite trees.
The iTEBD method is a descendant of the density matrix
renormalization group (DMRG) method1,35,36 based on matrix
product states (MPSs)11 which can be generalized to trees. For
the sake of completeness, we first review some of the properties
of MPSs, followed by an introduction to TTN states.

A. Matrix-product states

A translationally invariant MPS for a chain of length L can
formally be written in the following form:

|ψ〉 =
∑
{mj }

tr
[
	m1
 · · · 	mL



]|m1 · · ·mL〉. (5)

Here 	m are χ × χ matrices with χ being the dimension of
the matrices used in the MPS. The index m = −S, . . . ,S is
the “physical” index, e.g., enumerating the spin states on
each site, and 
 is a χ × χ , real, diagonal matrix. Ground
states of one-dimensional gapped systems can be efficiently
approximated by matrix-product states,37–39 in the sense that
the value of χ needed to approximate the ground state wave
function to a given accuracy converges to a finite value as
N → ∞. We therefore think of χ as being a finite (but
arbitrarily large) number, which can be used to control the
simulation’s precision.

The matrices 	, 
 can be chosen such that they satisfy the
canonical conditions for an infinite MPS34,40∑

m

	m
2	†
m =

∑
m

	†
m
2	m = 1. (6)

These equations can be interpreted as stating that the transfer
matrix

Tαα′;ββ ′ =
∑
m

	α
mβ

(
	α′

mβ ′
)∗


β
β ′ (7)

has a right eigenvector δββ ′ with eigenvalue λ = 1.
(∗ denotes complex conjugation.) Similarly, T̃αα′;ββ ′ =∑

m(	α′
mβ ′)∗	α

mβ
α
α′ has a left eigenvector δαα′ with λ = 1.
We further require that δαα′ is the only eigenvector with
eigenvalue |λ| � 1 (which is equivalent to the requirement
that |ψ〉 is a pure state41).

The considerations given here become most intuitive when
one considers, formally, an infinite chain. We form a partition
of the chain by cutting a bond which results in two half-chains.
The wave function can then be Schmidt decomposed42 in the
form

|ψ〉 =
∑

α

λα|αL〉|αR〉, (8)

where |αL〉 and |αR〉 (α = 1, . . . ,χ ) are orthonormal basis
vectors of the left and right partition, respectively. In the
limit of an infinite chain, and under the canonical conditions
(6), the Schmidt values λα are simply the entries of the 


matrix 
αα . The λ2
α are the eigenvalues of the reduced density

matrix of either of the two partitions, and are referred to
as the entanglement spectrum. The entanglement entropy is
S = −∑

α λ2
α ln λ2

α . This is the von Neumann entropy of the
reduced density matrix. The states |αL〉 and |αR〉 can be
obtained by multiplying together all the matrices to the left and
right of the bond, e.g., if the broken bond is between sites 0 and
1, |αL〉 = ∑

{mj },j�0[
∏

k�0 
	mk
]γα|· · ·m−2m−1m0〉. Here γ

is the index of the row of the matrix; when the chain is infinitely
long, the value of γ affects only an overall factor in the wave
function. Reviews of MPSs as well as the canonical form can
be found in Refs. 34 and 43.

B. Tree tensors networks

While MPSs are the natural choice of ansatz state for
one-dimensional systems, they are not well suited for large
higher-dimensional systems. For these systems the ideas
behind MPSs can be generalized to create a new class of states
known as tensor product (TPSs) or projected entangled pair
states (PEPSs).44,45 The construction of these states is based
on the bipartite nature of trees, allowing them to be split into
two subsystems via the Schmidt decomposition, analogous
to one-dimensional chains. Thus the generalization of the
one-dimensional construction to trees is straightforward but
in order to introduce our ansatz and the notation we will cover
it here as well.

To describe a tree of coordination number z (i.e., each vertex
has z nearest neighbors), we place tensors 	[i] of order z + 1
on the vertices and vectors 
k on the edges of the tree graph
in Fig. 1. We then connect the tensor’s indices in a way that
mimics the model’s underlying lattice structure. A state |ψ〉
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(a) (b)

FIG. 1. (Color online) The two different tilings for the infinite
Bethe lattice that were employed in the simulations.

on the z = 3 Bethe lattice can in this representation be written
as

|ψ〉 =
d∑

...m0,m1...=1

tTr

( ∏
k∈bonds


k ×
∏

i∈sites

	[i]mi

)

| · · · m0m1 · · ·〉.
While the dimension d of the physical indices mi is dictated
by the model, the dimension χ of the virtual indices ak can
be chosen arbitrarily and is only limited by computational
resources. This ansatz can easily be extended to lattices with
a higher coordination number but in this publication we will
only cover the case of z = 3. Analogous to MPSs, the tensors
in a tree tensor network can be chosen such that they satisfy
the conditions for a canonical tensor network:∑

ak


2
ak

= 1, (9)

∑
mi

∑
akal

	mi

akalam

2

ak

2

al

(
	

mi

akala′
m

)∗ = δama′
m
. (10)

The advantages of the canonical form of TPSs are the same
as for MPSs, i.e., the canonical form provides a well-defined
basis for evaluations of observables and the imaginary-time
evolution.

C. Imaginary-time evolution

In order to obtain the model’s ground state within this class
of iTTN we evolve an initial state |ψ〉 in imaginary time. Since
the Hamiltonian is given by the sum over nearest neighbors
of products of commuting operators, we can implement
the imaginary-time evolution as a product of local unitary
operators using the second-order Suzuki-Trotter decomposi-
tion of the evolution operator e−Ht = limn→∞(e−Hδt )n. This
decomposition incurs a systematic nonaccumulating error of
O(δt2) which can be neglected if the time step δt is sufficiently
small (in our simulations we use δt = 10−6 as the final
time step). While in principle each site tensor 	[i] and bond
tensor 
k can be different for different sites and bonds, we
will calculate the ground state within the translation-invariant
sector of iTTN. In this picture let us consider the effects of
the imaginary-time evolution of the tree tensor network by a
translationally invariant Hamiltonian. If given a translation-
invariant state, the symmetry of the Hamiltonian guarantees it
to never be broken in time, thus enabling us to describe the full
state by examining only a small number of sites. However, if

the system is in a phase in which the translational symmetry
is spontaneously broken, it turns out to be advantageous to
allow for a larger unit cell and to guide the wave function into
a symmetry broken state.

Since the infinite Bethe lattice is self-similar, a translation-
invariant ansatz state is the natural choice. For numerical
reasons it is advantageous to slightly break that translational
invariance by adopting a larger unit cell. Canonically a two-
site unit cell is used, but here we will extend this scheme
and for some calculations employ a six-site unit cell (see
Fig. 1), which enables us to also capture more involved states
such as a dimerized state. In accordance with the canonical
iTEBD algorithm, the two-site unit cell consists of two site
tensors A and B and three bond vectors 
x , 
y , and 
z,
whereas the six-site cell uses six site tensors and nine bond
tensors.

We now have all the ingredients necessary to compute
the ground state. By repeatedly applying the near-unitary
operators U (δt) = e−Hδt to an initial state |ψ〉 and then
truncating the entanglement spectrum we can obtain the
ground state. The operator’s near-unitary nature allows us
to perform the truncation in a well-defined basis, yielding a
stable algorithm to find the ground state on the Bethe lattice.
This procedure was introduced in the context of MPSs as
iTEBD18 and later on generalized the Bethe lattice.20,21,23

The same algorithm is also used to find an approximate TPS
representation on higher-dimensional lattices in the so-called
simple update.46 However, as the update algorithm ignores the
loops present in a two-dimensional lattice, the TPS found is
not optimal to represent the 2D ground state.

The update procedure for the imaginary-time evolution of a
tree tensor network consisting of an infinitely repeated two-site
unit cell is now given by the following steps (Fig. 2):

(1) Contract the site tensors with the adjacent bond vectors,
leaving one bond open.

= =
QRD

= =QRD

(a)

=

(b)

=SVD

(c)

= =

(d)

FIG. 2. (Color online) The simple update procedure for a single
two-site unit cell. By repeating this procedure for every tensor
combination one full update step is completed. Details on the
procedure are provided in the text.
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(2) Compute the QR decomposition of the resulting tensors
relative to the open bond. This modification was recently
introduced by Wang et al.47 to reduce the scaling of the update
with the bond dimension and to stabilize the update procedure.

(3) Contract the evolution operator with the R tensors
resulting from the QR decomposition and calculate the singular
value decomposition of the resulting four-index tensor.

(4) Truncate the entanglement spectrum to χ entries and
absorb the unitary matrices in the Q tensors.

(5) Contract the tensors with the inverse bond vectors to
obtain the updated site tensors.

By repeating this procedure for every bond, one full update
step is completed, i.e., the full lattice is updated. Repeatedly
applying the update to the system while decreasing the time
step brings the initial wave function increasingly closer to the
true ground state wave function.

For a general Bethe lattice with coordination number z the
computational cost of this algorithm scales as O(χ3z−3) +
O(d2χz+1) and is dominated by the cost of the SVD step. The
high cost of the SVD limits our algorithm to values of χ ≈ 40
on a desktop machine when no additional symmetries are used.

D. Symmetries

The algorithm’s performance can be improved by exploiting
the model’s symmetries, which enable a decomposition of
the matrices into block-diagonal matrices, hence reducing the
cost of the numerical operations. Here we made use of the
models U (1) symmetry in the Sz sector. By implementing this
symmetry the computational cost can be significantly reduced,
allowing a larger cut-off dimension of χ ≈ 80. Details of how
to implement this symmetry can be found in, e.g., Refs. 48
and 49.

IV. SYMMETRY PROTECTED TOPOLOGICAL PHASES

Symmetry protected topological phases (SPTPs) are gapped
phases which cannot be characterized by any local order
parameters and are distinct from trivial phases (i.e., product
states) only in the presence of certain symmetries. In a
series of works it had been shown that these phases can be
completely characterized using projective representations of
the symmetries present.4–9,50,51 In spin systems this means
physically that the spin fractionalizes and the projective
representation is due to localized spin-half degrees at the edge
of a cut. We briefly review SPTPs for one-dimensional systems
and show that the concept directly generalizes to the Bethe
lattice.

We start from a state |ψ〉 on an infinite chain that is
invariant under an internal symmetry. The internal symmetry
is represented in the spin basis by a unitary matrix � acting
on each site so that |ψ〉 → [

⊗
i �(i)]|ψ〉. We perform a

Schmidt decomposition of the system into two subsystems
[see Fig. 3(a)] by cutting one bond. We now only consider the
important Schmidt states which correspond to Schmidt values

α > ε for a given ε > 0. These Schmidt states transform
under a symmetry transformation as (modulo an overall phase)[⊗

i

�(i)

]
|αR〉 =

∑
α′

Uαα′ |α′R〉, (11)

(a)

(b)

FIG. 3. (Color online) Diagrammatic representation of the AKLT
wave function on (a) a chain and (b) a z = 3 Bethe lattice. The red
ovals are representing S = 1/2 singlets. A Schmidt decomposition at
the blue line cuts in both cases one singlet, leaving behind localized
S = 1/2 edge spins.

where U is a unitary matrix which commutes with the 


matrices.8,41 Similarly, the left Schmidt states |αL〉 transform
by the conjugate matrix. As the symmetry element g is varied
over the whole group, a set of matrices Ug results. The
matrices Ug form a χ -dimensional (projective) representation
of the symmetry group. A projective representation is like
an ordinary regular representation up to phase factors, i.e., if
�g�h = �gh, then

UgUh = eiρ(g,h)Ugh. (12)

The phases ρ(g,h) can be used to classify different topological
phases.5,7–9

As a concrete example, we now consider the Haldane phase
around the AKLT state in the presence of aZ2 × Z2 symmetry.
The generators of the symmetry group are the spin rotations
Rx = exp(iπSx) and Rz = exp(iπSz). The phases for each
spin rotation individually (e.g., U 2

x = eiα1) can be removed by
redefining the phase of the corresponding U matrix. However,
the representations of RxRz and RzRx can also differ by a
phase, which it turns out must be ±1:

UxUz = ±UzUx. (13)

That is the matrices either commute or anticommute. This
resulting phase cannot be gauged away because the phases
of Ux and Uz enter both sides of the equation in the
same way. Thus we have two different classes of projective
representations. If the phase is −1, then the spectrum of 


is doubly degenerate since 
 commutes with the two unitary
matrices Ux , Uz which anticommute among themselves. For
the AKLT state considered here, the Schmidt states have
half-integer edge spins (see Fig. 3). Thus we find Ux = σx and
Uz = σz, therefore UxUz = −UzUx , and the Haldane phase is
protected if the system is symmetric under bothRx andRz. An
analogous argument can be made for inversion symmetry (i.e.,
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spatial inversion of the system at a bond) and time reversal
symmetry.5,8

Using the above arguments, we can now characterize the
S = 3/2 AKLT state on the z = 3 lattice. As illustrated
in Fig. 3(b), a single cut through a bond separates the
Bethe lattice into two disconnected subsystems. In the AKLT
state, any of the bonds has a S = 1/2 singlet and thus
the Schmidt states have localized half-integer spins at the
edges. Thus the transformation of the Schmidt states under
a symmetry operation yields a (projective) representation U of
the symmetry group which characterizes the phase. Note that
there are in fact different kinds of SPTPs that can be realized
on the Bethe lattice depending on the fractionalization of the
spin. For example, in an S = 1 model on a z = 3 lattice with
strong dimerization (two strong bonds and one weak bond),
we would obtain a network of S = 1 Haldane chains.

V. NUMERICAL RESULTS

We employ our variant of the iTEBD algorithm to study
the bilinear-biquadratic-bicubic Heisenberg model defined in
Eq. (1) over the full parameter range of ϕ = −π · · ·π , θ =
−π

2 · · · π
2 . To ensure unbiased results we use different iTEBD

implementations, one with a two-site unit cell and one with a
six-site unit cell (see Fig. 1). The simulations were conducted
both with and without explicitly conserving the model’s
U (1) symmetry and were started from different initial wave
functions ranging from completely random to fully polarized
initial states. Furthermore, we also studied the dependence on
the evolution scheme by starting the imaginary-time evolution
with a slightly modified evolution operator (e.g., by adding a
small ferromagnetic or symmetry-breaking interaction term to
the Hamiltonian) and only later in the calculation using the
actual Hamiltonian to converge the trial wave function to the
ground state. The convergence of the algorithm can be checked
by considering the increase of observables and the entropy
when increasing the bond dimension, as shown in Fig. 4.

FIG. 4. (Color online) The entropy for a cut in θ direction through
the phase diagram at ϕ = 0.9 for various values of χ showing the
entropy to be clearly converged when increasing the bond dimension.

The simulations were started with a large time step of
δt = 0.1 which was then in several steps decreased to δt =
10−6, reducing the Trotter error to insignificance. These checks
are commonly accepted best practice for any imaginary-time
evolution, as the overlap of the initial state and the true
ground state has to be finite in order for the algorithm to
be able to evolve the trial wave function to the ground
state. Hence we have to ascertain the result’s independence
of the procedure and the initial states. As expected we
find the strongest dependence on the initial tensors in the
ferromagnetic (antiferromagnetic) phase when starting with
an antiferromagnetic (ferromagnetic) initial state, but no
significant correlation otherwise. To establish that our findings
are not dependent on the unit cell, i.e., the constraint of a
two-site unit cell, we also implemented a variant of the iTEBD
algorithm that operates on a six-site unit cell, see Fig. 1(a). This
implementation enables us to also describe a dimerized phase
which would otherwise be able to escape characterization as
it is not commensurable with a two-site unit cell.

The phase diagram was obtained by placing a grid in the
parameter plane and calculating the ground state for each point
of the grid. Deep in the ferromagnetic and antiferromagnetic
phases the grid points were chosen with a distance of � = 0.1
in each angle. Closer to the phase transitions we reduced that
spacing to � = 0.01 to better resolve the phase boundaries.
Special attention was paid to the four SU(4) symmetric points
shown in the phase diagram Fig. 5 where we ran a variety
of simulations to ascertain the model’s behavior. With the
exception of the multicritical point at ϕ = 2.93, θ = 0.17 we
were not able to observe any behavior diverging from the
encompassing phase. The phase diagram was then drawn by
tracing the transition points we obtained from the grid.

FIG. 5. (Color online) The phase diagram as determined by the
tree network iTEBD method. We established the presence of an
antiferromagnetic phase (I), a ferromagnetic phase (II), the Haldane
phase (III), a dimerized phase (IV), and a ferrimagnetic phase (V). For
reference purposes the phase diagram also includes the AKLT point
denoted by a black star and the SO(5) symmetric line denoted by the
dotted line between phases I and II. The SU(4) symmetric points are
marked by white stars and lie on the SO(5) line.
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FIG. 6. (Color online) The (staggered) magnetization for ϕ = 0.9
with χ = 24 as a function of θ in radians. Shown here is only
the central part of the phase diagram −0.6 < θ < 0.6, where the
phase transitions occur. The ferromagnetic phase can be identified
as the region with maximal uniform magnetization per site, whereas
the antiferromagnetic phase is distinguished by the finite staggered
magnetization and vanishing uniform magnetization per site. In
between those two phases are the dimerized and the Haldane phases,
where both the staggered (ms

z) and uniform magnetization (mz)
vanish. In the ferrimagnetic phase they take intermediate values. The
colors correspond to the phases introduced in Fig. 5.

Our results for the phase diagram of the bilinear-
biquadratic-bicubic Heisenberg model are shown in Fig. 5.
We find five different phases: a Néel phase, a ferromagnetic
polarized phase, the Haldane phase, a dimerized phase, and a
ferrimagnetic phase.

A. (Anti-)ferromagnetic phases

We start our analysis of the phase diagram with the
straightforward phases, i.e., the AFM and FM phases. First we
consider the staggered magnetization ms

z and the uniform mag-
netization mz. The polarized phases can easily be identified by
observing the two different order parameter’s behavior shown
in Fig. 6. In the ferromagnetic region θ < −π

6 the staggered
magnetization ms

z disappears, while the magnetization per
site mz is maximal in this region. The opposite holds for
the antiferromagnetic part of the phase diagram, where only
the staggered magnetization remains nonzero. Inspired by the
(anti-)nematic order found in mean-field studies16 we also
calculate the octupolar order parameter in the vicinity of
the SO(5) line. Again we observe the absence of different
order, except for some small contributions in the ferromagnetic
region at negative ϕ. This might be due to remnants of the
classical order persisting to zero temperature.

B. Dimerized phase

We determine a dimerized phase to be present in the region
denoted by IV in the phase diagram (Fig. 5). This phase is
hard to characterize due to its diminutive size and vanishing
magnetization, however, careful calculations strongly indicate
its existence. To determine the properties of this elusive plains
we calculate the xy and z components of the dimer order

FIG. 7. (Color online) Behavior of the dimer order parameters
defined in Eq. (14) for a cut through the phase diagram at ϕ = 0.9
with χ = 24 as a function of θ in radians. The increase of the dimer
order parameters occurs at the boundary between the Haldane and
the ferrimagnetic phase.

parameters Dxy and Dxy defined via

D
xy

i,j,k = 〈(
Sx

i S
y

j + S
y

i Sx
j

) − (
Sx

j S
y

k + S
y

j Sx
k

)〉
,

Dz
i,j,k = 〈

Sz
i S

z
j − Sz

jS
z
k

〉
,

where i, j , and k label consecutive lattice sites residing on
different shells [e.g., sites A, B, and C in Fig. 1(b)]. Calculation
of these order parameter components reveals them to vanish
for the magnetically ordered phases, as well as in the Haldane
phase. Only in the dimer phase do they assume finite values as
can be seen in Fig. 7. The hypothesis of a dimer phase is further
corroborated by the vanishing magnetization. As opposed to
the Haldane phase we also fail to observe finite edge spins in
this phase. Together these observations indicate the existence
of a narrow dimerized phase close to the SO(5) symmetric line.

C. Ferrimagnetic phase

We found a ferrimagnetic phase that exists between the
dimer phase and the ferromagnetic phase. This phase shows
both a finite staggered magnetization as well as a finite
magnetization per site, but displays vanishing dimer order
parameters. As a test for this phase we try adding a small
(staggered) field in the z direction to the Hamiltonian. Per-
forming the simulation with this modified Hamiltonian results
in strong polarization which could be both antiferromagnetic
or ferromagnetic depending on the applied field.

D. Haldane phase

The last phase is a phase with exponentially decaying
correlations and no broken symmetries (i.e., no local order
parameter exists) which is identified as a SPTP. In this
phase the entanglement spectrum always displays an even
degeneracy in the entire phase, which is clearly visible in the
iTEBD calculations. The identification of this phase rests on
the presence of a finite S = 1/2 edge spin and its characteristic
degeneracies in the entanglement spectrum shown in Fig. 8.
As a direct evidence we also calculated the edge spin of
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FIG. 8. (Color online) Entanglement spectrum throughout a cut
in the phase diagram at ϕ = 0.9 with χ = 24 for various values of θ

in radians. Clearly visible is the doubling of the levels in the Haldane
phase.

the Schmidt states directly and find a localized spin-1/2. In
our simulations we are also able to observe the AKLT point
where the ansatz state reduces to an exact tensor network with
bond dimension χ = 2. By adding small perturbations which
destroy all the necessary symmetries to protect the phase, it is
possible to drive the system out of the Haldane phase without
a phase transition (i.e., the degeneracies in the spectrum are
lifted for an arbitrarily small perturbation). We also checked

numerically that the phase is robust against small perturbations
which do not break the symmetries needed to protect it. All of
these observation can be explained by the presence of a SPT
phase as discussed in Sec. IV.

VI. SUMMARY

In this work we have studied a general SU(2) symmetric
spin-3/2 model on the z = 3 Bethe lattice using the infinite
time evolving block decimation (iTEBD) method. We found
that the model exhibits a rich phase diagram containing several
magnetic phases, a dimerized phase, as well as a symmetry
protected topological phase (SPTP). The magnetic phases
were identified by calculating the uniform and the staggered
magnetization. We found a polarized ferromagnetic phase,
an antiferromagnetic, as well as a ferrimagnetic phase with
finite (staggered) magnetization. Our simulations suggest the
presence of a dimerized phase with vanishing magnetization
and finite dimer order parameters. We also identified a
symmetry protected topological phase which shows all the
key features of the Haldane phase. This phase is characterized
by spin-1/2 edge spins and degeneracies in the entanglement
spectrum.
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41D. Pérez-Garcı́a, M. M. Wolf, M. Sanz, F. Verstraete, and J. I. Cirac,

Phys. Rev. Lett. 100, 167202 (2008).
42E. Schmidt, Math. Ann. 63, 433 (1907).
43D. Perez-Garcia, F. Verstraete, M. Wolf, and J. Cirac, Quantum Inf.

Comput. 7, 401 (2007).

44F. Verstraete, J. J. Garcı́a-Ripoll, and J. I. Cirac, Phys. Rev. Lett.
93, 207204 (2004).

45G. Vidal, Phys. Rev. Lett. 101, 110501 (2008).
46H. C. Jiang, Z. Y. Weng, and T. Xiang, Phys. Rev. Lett. 101, 090603

(2008).
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