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We propose a hierarchical dynamics approach for evaluation of nonequilibrium dynamic response properties
of quantum impurity systems. It is based on a hierarchical equations of motion formalism, in conjunction with
a linear response theory established in the hierarchical Liouville space. This provides an accurate and universal
tool for characterization of a variety of response and correlation functions of local impurities, as well as transport
related response properties. The practicality of our proposed approach is demonstrated via the evaluation of
various dynamical properties of a single-impurity Anderson model. These include the impurity spectral density,
local charge fluctuation, local magnetic susceptibility, and current-voltage admittance, in both equilibrium and
nonequilibrium situations. The numerical results are considered to be quantitatively accurate, as long as they
converge quantitatively with respect to the truncation of the hierarchy.
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I. INTRODUCTION

Recent advances in fabrication, manipulation and measure-
ment of artificial quantum impurity systems such as quantum
dots have led to a resurgence of interest of nanostructures in
both experiment and theory. A favorable feature of these nanos-
tructures is the outstanding tunability of device parameters.
Understanding the dynamical properties of quantum impurity
systems is of fundamental importance for the development
of solid-state quantum information processing1–3 and single-
electron devices.4,5 Moveover, quantum impurity models serve
as essential theoretical tools, covering a broad range of
important physical systems. For instance, the Hubbard lattice
model can be mapped onto the Anderson impurity model
via a self-consistent dynamical mean-field theory.6–8 Besides
the strong electron-electron (e-e) interactions, local impurities
are also subject to interactions with itinerant electrons in
surrounding bulk materials, which serve as the electron
reservoir as well as thermal bath. The interplay between the
local e-e interactions and nonlocal transfer coupling gives rise
to a variety of intriguing phenomena of prominent many-
body nature, such as Kondo effect,9–11 Mott metal-insulator
transition,12–14 and high-temperature superconductivity.15–17

Characterizing the system responses to external perturba-
tion of experimental relevance is of fundamental significance
in understanding the intrinsic properties of quantum impurity
systems and their potential applications. For instance, the
magnetic susceptibility of an impurity system reflects the
redistribution of electron spin under an applied magnetic field,
and its investigation may have important implications for fields
such as spintronics.

For the accurate characterization of dynamical properties of
the impurity such as the impurity spectral function and dynami-
cal charge/magnetic susceptibility, a variety of nonperturbative
numerical approaches have been developed, such as numerical
renormalization group method,11,18,19 density matrix renor-
malization group approach,20–22 and quantum Monte Carlo

method.23–26 While most of work has focused on equilibrium
properties, the accurate characterization of nonequilibrium
dynamical properties has remained very challenging.

In many experimental setups,9,10 artificial quantum im-
purity systems attached to electron reservoirs are subject
to applied bias voltages. This stimulates the experimental
and theoretical exploration of nonequilibrium processes in
quantum impurity systems. A variety of interesting physical
phenomena have been observed, which originate from the
interplay between strong electron correlation and nonequi-
librium dissipation.27–30

In the past few years, a number of nonperturbative theo-
retical approaches have been devised to treat systems away
from equilibrium. These include the time-dependent numeri-
cal renormalization group method,31–33 time-dependent den-
sity matrix renormalization group method,34 nonequilibrium
functional renormalization group,35,36 quantum Monte Carlo
method,37–39 iterative real-time path integral approach,40,41

and nonequilibrium Bethe ansatz.42–44 Despite the progress
made, quantitative accuracy is not guaranteed for the resulted
nonequilibrium properties, because of the various simplifi-
cations and approximations involved in these approaches.
Therefore an accurate and universal approach which is capable
of addressing nonequilibrium situations is highly desirable.

In this work, we propose a hierarchical dynamics approach
for the characterization of nonequilibrium response of local
impurities to external fields. A general hierarchical equations
of motion (HEOM) approach has been developed,45–47 which
describes the reduced dynamics of open dissipative systems
under arbitrary time-dependent external fields. The HEOM
theory resolves the combined effects of e-e interactions,
impurity-reservoir dissipation, and non-Markovian memory
in a nonperturbative manner. In the framework of HEOM, the
nonequilibrium dynamics are treated by following the same
numerical procedures as in equilibrium situations. The HEOM
theory is, in principle, exact for an arbitrary equilibrium
or nonequilibrium system, provided that the full hierarchy
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inclusive of infinite levels are taken into account.45 In practice,
the hierarchy needs to be truncated at a finite level for
numerical tractability. The convergence of calculation results
with respect to the truncation level should be carefully
examined. Once the convergence is achieved, the numerical
outcome is considered to reach quantitative accuracy for
systems in both equilibrium and nonequilibrium situations.

It has been demonstrated that the HEOM approach leads to
an accurate and universal characterization of strong electron
correlation effects in quantum impurity systems, and treats the
equilibrium and nonequilibrium scenarios in a unified manner.
For the equilibrium properties of Anderson model systems, the
HEOM approach achieves the same level of accuracy as the lat-
est state-of-the-art NRG method.48 In particular, the universal
Kondo scaling of zero-bias conductance and the logarithmic
Kondo spectral tail have been reproduced quantitatively. For
systems out of equilibrium, numerical calculations achieving
quantitative accuracy remain very scarce. One of the rare cases
where numerically exact solution is available is the dynamic
current response of a noninteracting quantum dot to a step-
pulse voltage.49,50 This has been precisely reproduced by the
HEOM approach.51 However, there are very few calculations at
the level of quantitative accuracy for systems involving strong
e-e interactions, since most of the existing methods involve
intrinsic approximations. Based on the HEOM formalism,
quantitative accuracy should be achieved once the numerical
convergence with respect to the truncation level of hierarchy
is reached.

There are two schemes to evaluate the response properties
of quantum impurity systems in the framework of HEOM:
(i) calculate relevant system correlation/response functions
based on a linear response theory constructed in the HEOM
Liouville space48 and (ii) solve the EOM for a hierarchical set
of density operators to obtain the transient reduced dynamics
of system in response to time-dependent external perturbation,
followed by a finite difference analysis. These two schemes
are completely equivalent in the linear response regime, as
have been verified numerically. In previous studies, we had
employed the above second scheme to evaluate the dynamic
admittance (frequency-dependent electric current in response
to external voltage applied to coupling electron reservoirs) of
quantum dot systems, which had led to the identification of
several interesting phenomena, including dynamic Coulomb
blockade,52 dynamic Kondo transition,46 and photon-phonon-
assisted transport.53

In this work, we will elaborate the above first scheme of
HEOM approach. The external perturbation may associate
with an arbitrary operator in the impurities subspace, or
originates from a homogeneous shift of electrostatic potential
(and hence the chemical potential) of electron reservoir. The
detailed numerical procedures will be exemplified through the
evaluation of a variety of response properties of a single-
impurity Anderson model, including the impurity spectral
density function, local charge fluctuation spectrum, local
magnetic susceptibility, and dynamic admittance.

The remainder of paper is organized as follows. We will
first give a brief introduction on the HEOM method in Sec. II.
In Sec. III, we will elaborate the establishment of a linear
response theory in the HEOM Liouville space. Calculation
on system correlation/response functions which are directly

relevant to the response properties of primary interest will be
discussed in detail. We will then provide numerical demon-
strations for the evaluation of various dynamical properties
in Sec. IV. Finally, the concluding remarks will be given in
Sec. V.

II. A REAL-TIME DYNAMICS THEORY FOR
NONEQUILIBRIUM IMPURITY SYSTEMS

A. Prelude

Consider a quantum impurity system in contact with two
electron reservoirs, denoted as the α = L and R reservoirs,
under the bias voltage V = μL − μR. The total Hamiltonian
of the composite system assumes the form of

Htotal = Hsys +
∑
αk

(εαk + μα) d̂
†
αkd̂αk

+
∑
αμk

(tαkμd̂
†
αkâμ + H.c.). (1)

The impurity system Hamiltonian Hsys is rather general, in-
cluding many-particle interactions and external field coupling.
Its second quantization form is given in terms of electron
creation and annihilation operators, â†

μ ≡ â+
μ and âμ ≡ â−

μ ,
which are associated with the system spin-state μ. The
reservoirs are modeled by a noninteracting Hamiltonian; see
the second term on the right-hand side (rhs) of Eq. (1), where
d̂
†
αk (d̂αk) and εαk are the creation (annihilation) operator and

energy of single-electron state |k〉 electron of α reservoir,
respectively. While the equilibrium chemical potential of total
system is set to be μ

eq
α = 0, the reservoir states are subject

to a homogeneous shift, μα , under applied voltages. The last
term on the rhs of Eq. (1) is in a standard transfer coupling
form, which is responsible for the dissipative interactions
between the system and itinerary electrons of reservoirs. It
can be recast as H ′ = ∑

αμ(f̂ +
αμâ−

μ + â+
μ f̂ −

αμ), where f̂ +
αμ ≡∑

k tαkμd̂
†
αk = (f̂ −

αμ)†. Throughout this paper, we adopt the
atomic unit e = h̄ = 1 and denote β = 1/(kBT ), with kB being
the Boltzmann constant and T the temperature of electron
reservoirs. Introduce also the sign variables, σ = +/− and
σ̄ ≡ −σ the opposite sign of σ .

The α reservoir is characterized by the spectral den-
sity Jαμν(ω) ≡ π

∑
k t∗αkμtαkνδ(ω − εαk). It influences the

dynamics of reduced system through the reservoir correla-
tion functions C̃σ ;st

αμν(t − τ ) ≡ 〈f̂ σ
αμ(t)f̂ σ̄

αν(τ )〉α , Here, 〈(·)〉α ≡
trα[(·) e−βHα ]/trα(e−βHα ) and f̂ σ

αμ(t) ≡ eiHαt f̂ σ
αμe−iHαt , with

Hα being the Hamiltonian of α-reservoir. The superscript
“st” highlights the stationary feature of the nonequilibrium
correlation function, under a constant μα . It is related to the
reservoir spectral density, Jαμν(ω) ≡ J−

αμν(ω) ≡ J+
ανμ(ω), via

the fluctuation-dissipation theorem:45

C̃σ ;st
αμν(t) =

∫ ∞

−∞
dω

eσiωtJ σ
αμν(ω − μα)

1 + eσβ(ω−μα )
. (2)

Physically, C̃σ ;st
αμν(t), with σ = + or −, describes the processes

of electron tunneling from the α reservoir into the specified
system coherent state or the reverse events, respectively.

We will be interested in nonequilibrium dynamic responses
to a time-dependent external field acting on either the local
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system or the reservoirs. For the latter case, we include a
time-dependent shift in chemical potential δ�α(t), on top of
the constant μα , to the α reservoir. Its effect can be described by
rigid homogeneous shifts for the reservoir conduction bands,
resulting in the nonstationary reservoir correlation functions
of

Cσ
αμν(t,τ ) = exp

[
σ i

∫ t

τ

dt ′ δ�α(t ′)
]

C̃σ ;st
αμν(t − τ ). (3)

This is the generalization of C̃σ ;st
αμν(t) = eσiμαt C̃

σ ;eq
αμν (t), as

inferred from Eq. (2), with the equilibrium counterpart being
of μ

eq
α = 0. In the following, we focus on the situation of

diagonal reservoir correlation, i.e., J σ
αμν(ω) = J σ

αμμ(ω) δμν ,
and C̃σ ;st

αμν(t) = C̃σ ;st
αμμ(t) δμν . In constructing closed HEOM,45

we should expand C̃σ ;st
αμμ(t) in a finite exponential series,

C̃σ ;st
αμμ(t) �

M∑
m=1

ησ
αμme−γ σ

αμmt . (4)

Involved are a total number of M = N ′ + N poles from
the reservoir spectral density and the Fermi function in the
contour integration evaluation of Eq. (2). Various sum-over-
poles schemes have been developed, including the Matsubara
spectrum decomposition scheme,45 a hybrid spectrum de-
composition and frequency dispersion scheme,46 the partial
fractional decomposition scheme,54 and the Padé spectrum
decomposition (PSD) scheme,55,56 with the primary focus on
the Fermi function. To our knowledge, the PSD scheme has
the best performance until now. We will come back to this
issue later; see the remark (6) in Sec. II B. In the present work,
we use the (N−1/N ) PSD scheme.55,56 It leads to a minimum
M = N ′ + N in the exponential expansion of Eq. (4) and thus
an optimal HEOM construction.45

The exponential expansion form of the reservoir correlation
function in Eq. (4) dictates the explicit expressions for the
HEOM formalism.45 For bookkeeping, we introduce the
abbreviated index j = {σαμm} for γj ≡ γ σ

αμm and so on, or
j = {σμ} for âj ≡ âσ

μ . Denote also j̄ = {σ̄ αμm} or {σ̄μ}
whenever appropriate, with σ̄ being the opposite sign of σ = +
or −. The dynamical variables in HEOM are a set of auxiliary
density operators (ADOs), {ρ(n)

j1...jn
(t); n = 0,1, . . . ,L}, with

L being the terminal or truncated tier of hierarchy. The
zeroth-tier ADO is set to be the reduced system density
matrix, ρ(0)(t) ≡ ρ(t) ≡ trbath [ρtotal(t)], i.e., the trace of the
total system and bath composite density matrix over reservoir
bath degrees of freedom.

B. Hierarchical equations of motion formalism

The HEOM formalism has been constructed from the
Feynman–Vernon influence functional path integral theory,
together with the Grassmann algebra.45 The initial system-
bath decoupling used for expressing explicitly the influence
functional is set at the infinite past. It does not introduce any
approximation for the characterization of any realistic physical
process starting from a stationary state, which is defined via
the HEOM that includes the coherence between the system
and bath. The detailed construction of HEOM is referred to
Ref. 45. Here we just briefly introduce the HEOM formalism
and discuss some of its key features.

The final HEOM formalism reads45

ρ̇
(n)
j1...jn

= −[
iL(t) + γ

(n)
j1...jn

(t)
]
ρ

(n)
j1...jn

− i

′∑
j

Aj̄ ρ
(n+1)
j1...jnj

− i

n∑
r=1

(−)n−r Cjr
ρ

(n−1)
j1...jr−1jr+1...jn

. (5)

The boundary conditions are γ (0) = ρ(−1) = 0, together with
a truncation by setting all ρ(n>L) = 0. The initial conditions to
Eq. (5) will be specified in conjunction with the evaluation of
various response and correlation functions in Sec. III.

The time-dependent damping parameter γ
(n)
j1...jn

(t) in Eq. (5)
collects the exponents of nonstationary reservoir correlation
function [cf. Eqs. (3) and (4)]:

γ
(n)
j1...jn

(t) =
n∑

r=1

[
γjr

− σ iδ�α(t)
]
σ,α∈jr

. (6)

This expression has been used directly in the HEOM evaluation
of transient current dynamical properties under the influence of
arbitrary time-dependent chemical potentials applied to elec-
trode leads.46,51,52,57 Note that γj ≡ γ σ

αμm = γ
σ ;eq
αμm − σ iμα . In

Sec. III C, we will treat δ�α(t) as perturbation and derive the
corresponding linear response theory formulations for various
transport current related properties under nonequilibrium
(μα 
= 0) conditions.

To evaluate nonequilibrium correlation functions of local
system via linear response theory (cf. Sec. III B), the time-
dependent reduced system Liouvillian in Eq. (5) assumes the
form

L(t) = Ls + δL(t). (7)

Here, Ls · ≡ [Hsys, · ] remains the commutator form involving
two Hsys actions onto the bra and ket sides individually.
However, the time-dependent perturbation δL(t) may act only
on one side, in line with the HEOM expressions for local
system correlation functions.48,58–61 Other features of HEOM
and remarks, covering both the theoretical formulation and
numerical implementation aspects, are summarized as follows.

(1) The Fermi-Grassmannian properties. (i) All j indexes
in a nonzero nth-tier ADO, ρ

(n)
j1...jn

, must be distinct. Swap

in any two of them leads to a minus sign, such as ρ
(2)
j2j1

=
−ρ

(2)
j1j2

. In line with this property, the sum of the tier-
up dependence in Eq. (5) runs only over j 
∈ {j1, . . . ,jn}.
(ii) Involved in Eq. (5) are also Aj̄ ≡ Aσ̄

μ and Cj ≡ Cσ
αμm.

They are Grassmann superoperators, defined via their actions
on an arbitrary operator of fermionic or bosonic (bifermion)
nature, ÔF or ÔB, by

Aj̄ Ô
F/B ≡ âj̄ Ô

F/B ∓ ÔF/Bâj̄ ,
(8)

Cj Ô
F/B ≡ ηj âj Ô

F/B ± η∗̄
j
ÔF/Bâj .

In particular, even-tier ADOs are bosonic, while odd-tier ones
are fermionic. The case of opposite parity would also appear
in conjunction with applications; see comments following
Eq. (19).

(2) Physical contents of ADOs. While the zero-tier ADO
is the reduced density matrix, i.e., ρ(0)(t) = ρ(t), the first-tier
ADOs, ρ

(1)
j ≡ ρσ

αμm, are related to the electric current through
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the interface between the system and α-reservoir, Iα(t), as
follows:

Iα(t) = −2 Im
∑
μm

Tr[â+
μ ρ−

αμm(t)]. (9)

Moreover, we have
∑

m ρσ
αμm(t) = trbath[f̂ σ

αμ(t)ρtotal(t)],
and can further relate trbath[f̂ σ

αμ(t)f̂ σ ′
α′μ′(t)ρtotal(t)] to the

second-tier ADOs, and so on. Note that f̂ +
αμ(t) ≡

eiHαt (
∑

k tαkμd̂
†
αk)e−iHαt = [f̂ −

αμ(t)]† are defined in the bath-
space only. Apparently, the Fermi-Grassmannian properties
in remark (1) above are rooted at the fermionic nature of
individual {f̂ σ

αμ}.
(3) Hermitian property. The ADOs satisfy the Hermitian

relation of [ρ(n)
j1...jn

(t)]† = ρ
(n)
j̄n...j̄1

(t), whenever the perturbed
iδL(t) action assumes Hermitian; see the comments following
Eq. (7).

(4) Nonperturbative nature. The HEOM construction
treats properly the combined effects of system-bath coupling
strength, Coulomb interaction, and bath memory time scales,
as inferred from the following observations. (i) For nonin-
teracting electronic systems, the coupling hierarchy stops at
second tier level (L = 2) without approximation.45 (ii) HEOM
is of finite support, containing in general only a finite number
of ADOs. Let K be the number of all distinct j indexes.
Such a number draws the maximum tier level Lmax = K ,
at which the HEOM formalism ultimately terminates. The
total number of ADOs, up to the truncated tier level L, is∑L

n=0
K!

n!(K−n)! � 2K , as L � Lmax = K . (iii) The hierarchy
resolves collectively the memory contents, as decomposed
in the exponential expansion of bath correlation functions of
Eq. (4). It goes with the observation that an individual ADO,
ρ

(n)
j1...jn

, is associated with the collective damping constant

Re γ
(n)
j1...jn

in Eq. (6). Meanwhile, ρ(n)
j1...jn

has the leading (2n)th-
order in the overall system-bath coupling strength. One may
define proper non-Marvokianicity parameters to determine in
advance the numerical importance of individual ADOs.61–63

(iv) Convergency tests by far—for quantum impurity systems
with nonzero e-e interactions, calculations often converge
rapidly and uniformly with the increasing truncation level
L. Quantitatively accurate results are usually achieved at a
relatively low value of L.

(5) Nonequilibrium versus equilibrium. The HEOM
formalism presented earlier provides a unified approach
to equilibrium, nonequilibrium, time-dependent and time-
independent situations. In general, the number K of distinct
ADO indexes amounts to K = 2NαNμM , as inferred from
Eq. (4), with Nμ being the number spin-orbitals of system
in direct contact to leads. The factor 2 accounts for the two
choices of the sign variable σ , while Nα = 2 for the distinct
α = L and R leads. Interestingly, in the equilibrium case,
together with the JL(ω) ∝ JR(ω) condition, one can merger
all leads into a single lead to have the reduced K = 2NμM .
The resulting equilibrium HEOM formalism that contains
no longer the α-index can therefore be evaluated at the
considerably reduced computational cost.

(6) Control of accuracy and efficiency. The bath correlation
function in exponential expansion of Eq. (4) dictates the
accuracy and efficiency of the HEOM approach. (i) The

accuracy in the exponential expansion of Eq. (4) is found
to be directly transferable to the accuracy of HEOM. In other
words, HEOM is exact as long as the expansion is exact.
(ii) The expansion of Eq. (4) is uniformly convergent, and
becomes exact when M goes to infinity, for any realistic bath
spectral density with finite bandwidth at finite temperature
(T 
= 0). (iii) The (N−1/N ) PSD scheme adopted in this
work is considered to be the best among all possible sum-
over-poles expansion of Fermi function.55,56,64 In particular, it
is dramatically superior over the commonly used Matsubara
expansion expression. The PSD scheme leads to the optimal
HEOM, with a minimum K-space size, for either equilibrium
or nonequilibrium case, as discussed in remark (5) above.

(7) Computational cost. The CPU time and memory space
required for HEOM calculations are rather insensitive to the
Coulomb coupling strength and to the equilibrium versus
nonequilibrium and time-dependent and time-independent
types of evaluations. However, it grows exponentially as the
temperature T → 0, with respect to system-bath hybridization
strength, due to the significant increase of both the converged
K-space and L-space sizes.

To conclude, HEOM is an accurate and versatile tool,
capable of universal characterizations of real-time dynam-
ics in quantum impurity systems, in both equilibrium and
nonequilibrium cases. These remarkable features have been
demonstrated recently in several complex quantum impurity
systems,48 with the focus mainly on equilibrium properties.
The HEOM approach is also very efficient. Calculations often
converge rapidly and uniformly with the increasing truncation
level L. Quantitatively accurate results are usually achieved at
a relatively low level of truncation.48 We will show in Sec. IV
that these features will largely remain in the evaluations of
nonequilibrium properties.

III. NONEQUILIBRIUM RESPONSE THEORY

A. Linearity of the hierarchical Liouville space

To highlight the linearity of HEOM, we arrange the
involving ADOs in a column vector, denoted symbolically
as

ρ(t) ≡ {
ρ(t), ρ(1)

j (t), ρ(2)
j1j2

(t), . . .
}
. (10)

Thus Eq. (5) can be recast in a matrix-vector form [each
element of the vector in Eq. (10) is a matrix] as follows:

ρ̇ = −iL(t)ρ, (11)

with the time-dependent hierarchical-space Liouvillian, as
inferred from Eqs. (5)–(7), being of

L(t) = Ls + δL(t)I + δV(t) . (12)

It consists not just the time-independent Ls part, but also
two time-dependent parts and each of them will be treated
as perturbation at the linear response level soon. Specifically,
δL(t)I , with I denoting the unit operator in the hierarchical
Liouville space, is attributed to a time-dependent external field
acting on the reduced system, while δV(t) is diagonal and due
to the time-dependent potentials δ�α(t) applied to electrodes.

We may denote δ�α(t) = xαδ�(t), with 0 � xL ≡ 1 +
xR � 1; thus δ�(t) = δ�L(t) − δ�R(t). It specifies the ad-
ditional time-dependent bias voltage, on top of the constant
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V = μL − μR, applied across the two reservoirs. As inferred
from Eq. (6), we have then

δV(t) = −S δ�(t), (13)

where S ≡ diag{0,S
(n)
j1...jn

; n = 1, . . . ,L}, with

S
(n)
j1...jn

≡
n∑

r=1

(σxα)σ,α ∈jr
. (14)

Note that S(0) = 0.
The additivity of Eq. (12) and the linearity of HEOM lead

readily to the interaction picture of the HEOM dynamics in
response to the time-dependent external disturbance δL(t) =
δL(t)I + δV(t). The initial unperturbed ADOs vector as-
sumes the nonequilibrium steady-state form of

ρst(T ,V ) ≡ {
ρ̄, ρ̄

(1)
j , ρ̄

(2)
j1j2

, . . .
}
, (15)

under given temperature T and constant bias voltage V .
It is obtained as the solutions to the linear equations,
Lsρ

st(T ,V ) = 0, subject to the normalization condition for
the reduced density matrix.45,46,51 The unperturbed HEOM
propagator reads Gs(t) ≡ exp(−iLs t). Based on the first-order
perturbation theory, δρ(t) ≡ ρ(t) − ρst(T ,V ) is then

δρ(t) = −i

∫ t

0
dτ Gs(t − τ )δL(τ )ρst(T ,V ). (16)

The response magnitude of a local system observable Â is
evaluated by the variation in its expectation value, δA(t) =
Tr{Âδρ(t)}. Apparently, this involves the zeroth-tier ADO
δρ(t) in δρ(t) ≡ {δρ(t), δρ(n)

j1...jn
(t); n = 1, . . . ,L}. In contrast,

the response current under applied voltages cannot be extracted
from δρ(t), because the current operator is not a local
system observable. Instead, as inferred from Eq. (9), while
the steady-state current Īα through α reservoir is related to
the steady-state first-tier ADOs, ρ̄

(1)
j ≡ ρ̄σ

αμm, the response
time-dependent current, δIα(t) = Iα(t) − Īα , is obtained via
δρ

(1)
j (t) = δρσ

αμm(t).
The above two situations will be treated respectively,

by considering δL(τ ) = δL(t)I and δL(τ ) = δV(t), in the
coming two sections; Sec. III B treats the local system response
to a time-dependent external field acting on the reduced
system, while Sec. III C addresses the issue of electric current
response to external voltage applied to reservoirs.

B. Nonequilibrium correlation and response functions of system

Let Â and B̂ be two arbitrary local system operators, and
consider the correlation functions, CAB(t − τ ) = 〈Â(t)B̂(τ )〉st

and SAB(t − τ ) = 〈{Â(t),B̂(τ )}〉st, and response function,
χAB(t − τ ) = i〈[Â(t),B̂(τ )]〉st. It is well known that for the
equilibrium case they are related to each other via the
fluctuation-dissipation theorem. The nonequilibrium case is
rather complicated, and the relation between nonequilibrium
correlation and response functions is beyond the scope of the
present paper.

We now focus on the evaluation of local system corre-
lation/response functions with the HEOM approach. This is
based on the equivalence between the HEOM-space linear
response theory of Eq. (16) and that of the full system-plus-
bath composite space.

We start with the evaluation of nonequilibrium steady-state
correlation function CAB(t) = 〈Â(t)B̂(0)〉st, as follows. By
definition, the system correlation function can be recast into
the form of

CAB(t) = Trtotal
{
ÂGtotal(t)

[
B̂ρst

total(T ,V )
]}

≡ Trtotal[Âρ̃total(t)] = Tr[Âρ̃(t)]. (17)

The ρst
total(T ,V ) and Gtotal(t) in the first identity are the

steady-state density operator and the propagator, respectively,
in the total system-bath composite space under constant bias
voltage V . Define in the last two identities of Eq. (17) are
also ρ̃total(t) ≡ Gtotal(t)ρ̃total(0) and ρ̃(t) ≡ trbath[ρ̃total(t)], with
ρ̃total(0) = B̂ρst

total(T ,V ). Equation (17) can be considered in
terms of the linear response theory, in which the perturbation
Liouvillian induced by an external field δε(t) assumes the
form of −iδL(t)(·) = B̂(·)δε(t), followed by the observation
on the local system dynamical variable Â. Both Â and B̂ can
be non-Hermitian. Moreover, δL(t) is treated formally as a
perturbation and can be a one-side action rather than having a
commutator form.

For the evaluation of CAB(t) with the HEOM-space
dynamics, the corresponding perturbation Liouvillian is
δL(t) = δL(t)I , with the above defined δL(t). It leads to
−iδL(τ )ρst(T ,V ) = B̂ρst(T ,V )δε(τ ) involved in Eq. (16).
The linear response theory that leads to the last identity of
Eq. (17) is now of the ρ̃(t) being just the zeroth-tier component
of

ρ̃(t) ≡ {
ρ̃(t), ρ̃(1)

j (t), ρ̃(2)
j1j2

(t), . . .
} = Gs(t)ρ̃(0), (18)

with the initial value of [cf. Eq. (15)]

ρ̃(0) = B̂ρst(T ,V ) = {
B̂ρ̄,B̂ρ̄

(1)
j , B̂ρ̄

(2)
j1j2

, . . .
}
. (19)

The HEOM evaluations of SAB(t) and χAB(t) are similar,
but with the initial ADOs of ρ̃(0) = {B̂,ρst(T ,V )} and
i[B̂,ρst(T ,V )], respectively.

Care must be taken when propagating Eq. (18), for the
HEOM propagator Gs(t) involving the Grassmann superoper-
ators Aj̄ and Cj defined in Eq. (8). Note that the steady-state
system density operator ρ̄ is always of the Grassmann-even
(or bosonic) parity. Therefore, the zeroth-tier ADO ρ̃(t) in the
above cases is of the same Grassmann parity as the operator
B̂, while the ADOs at the adjacent neighboring tier level are
of opposite parity. The HEOM propagation in Eq. (18) is then
specified accordingly.

It is also worth pointing out that the HEOM evaluation of
equilibrium correlation and response functions of the local
system can be simplified when JL(ω) ∝ JR(ω). In this case,
two reservoirs can be combined as a whole entity bath,
resulting in a HEOM formalism that depends no longer on
the reservoir-index α.

C. Current response to applied bias voltages

1. Dynamic differential admittance

Consider first the differential circuit current through a two-
terminal transport system composed of an quantum impurity
and two leads, δI (t) = 1

2 [δIL(t) − δIR(t)], in response to a
perturbative shift of reservoir chemical potential δ�(t).
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We have

δIα(t) =
∫ t

0
dτ Gα(t − τ ) δ�(τ ). (20)

The HEOM-space dynamics results in

Gα(t) = 2 Re
∑
μm

Tr[â+
μ ρ̃−

αμm(t)], (21)

with ρ̃−
αμm(t) denoting the first-tier ADOs in ρ̃(t) [see Eq. (18)]

with the initial value of [cf. Eqs. (13)–(15)]

ρ̃(0) = −Sρst(T ,V ) ≡ −{
0,S

(1)
j ρ̄

(1)
j ,S

(2)
j1j2

ρ̄
(2)
j1j2

,. . .
}
. (22)

Denote the half-Fourier transform,

Gα(ω) ≡
∫ ∞

0
dt eiωtGα(t). (23)

The admittance is given by G(ω) = 1
2 [GL(ω) − GR(ω)], with

its zero-frequency component recovering the steady-state
differential conductance as dĪ/dV = G(ω = 0).

2. Current-number and current-current response functions

Consider now the differential current δIα(t) in response
to an additional time-dependent chemical potential δ�α′ (t)
applied on a specified α′ reservoir. Note that the Hamiltonian
of the total composite system, Eq. (1), is now subject to a per-
turbation of δHtotal(t) = N̂α′δ�α′ (t), with N̂α′ = ∑

k d̂
†
α′kd̂α′k

being electron number operator of the α′ reservoir. Thus the
hierarchical Liouville space linear response theory leads to

δIα(t) =
∫ t

0
dτ Gαα′ (t − τ ) δ�α′ (τ ) , (24)

where the kernel is characterized by the nonequilibrium
steady-state current-number response function,

Gαα′ (t − τ ) = −i 〈[Îα(t),N̂α′(τ )]〉st , (25)

with 〈(·)〉st ≡ Trtotal[(·)ρst
T (T ,V )]. Equation (25) can be derived

by following Eqs. (9), (16), and (24), and the HEOM evaluation
of Gαα′ (t − τ ) can be achieved as follows. Equation (13) is
recast as δL(t) = −Sα′δ�α′ (t), where Sα′ = diag{0,Sα′

j1...jn
},

where Sα′
j1...jn

is similar to S
(n)
j1...jn

of Eq. (14) but with xα = δαα′ .
Therefore

Sα′
j1...jn

=
n∑

r=1

(σδαα′)σ,α∈jr
. (26)

Its rhs collects the signs (σ = +1 or −1) in the involving
(j ≡ {σαμm}) indexes whenever α = α′. The suitable initial
values for the vector of ADOs are

ρ̃α′(0) = −Sα′ρst(T ,V ) = −
{

0,Sα′
j ρ̄

(1)
j ,Sα′

j1j2
ρ̄

(2)
j1j2

,. . .
}

,

followed by the unperturbed HEOM-space evolution,

ρ̃α′ (t) = Gs(t)ρ̃α′(0) ≡ {
ρ̃(t ; α′), ρ̃

(1)
j (t ; α′), . . .

}
. (27)

The involving first-tier ADOs, ρ̃
(1)
j (t ; α′) ≡ ρ̃σ

αμm(t ; α′), are
used to evaluate the current-number response function [cf.
Eq. (21)]:

Gαα′ (t) = 2 Re
∑
μm

Tr[â+
μ ρ̃−

αμm(t ; α′)]. (28)

Apparently, Gα(t) = xLGαL(t) + xRGαR(t), which is just the
dynamic admittance considered in Sec. III C1.

The nonequilibrium steady-state current-current response
function, χαα′ (t), can be obtained numerically by taking the
time derivative of Gαα′ (t),

χαα′ (t) ≡ i〈[Îα(t),Îα′(0)]〉st = Ġαα′ (t). (29)

In the hierarchical Liouville space, χαα′(t) can be explicitly
expressed by the zeroth-, first- and second-tier ADOs, as
inferred from Eq. (28) and the EOM for ρ̃−

αμm(t ; α′). Its Fourier
transform, the current-current response spectrum, may carry
certain information about the shot noise of the impurity system.

In general, the correlation/response functions between an
arbitrary local system operator Â and the electron number
operator N̂α′ of the α′ electrode can be evaluated via the zeroth-
tier ADO ρ̃(t ; α′) of Eq. (27), such as i〈[Â(t),N̂α′(0)]〉st =
−Tr[Â ρ̃(t ; α′)], by using the HEOM Liouville propagator. Its
time derivative gives i〈[Â(t),Îα′(0)]〉st.

IV. RESULTS AND DISCUSSIONS

We now demonstrate the numerical performance of the
HEOM approach on evaluation of nonequilibrium response
properties of quantum impurity systems. The hierarchical
Liouville-space linear response theory established in Sec. III is
employed to obtain the relevant correlation/response functions,
from which the response properties are extracted.

It is worth emphasizing that the numerical examples
presented in this section aim at verifying the accuracy
and universality of the proposed methodology, rather than
addressing concrete physical problems. To this end, the widely
studied standard single-impurity Anderson model (SIAM) is
considered. The Hamiltonian of the single-impurity is Hsys =
ε↑n̂↑ + ε↓n̂↓ + Un̂↑n̂↓, with n̂μ = â†

μâμ being the electron
number operator for the spin-μ (↑ or ↓) impurity level. The
impurity is coupled to two noninteracting electron reservoirs
(α = L and R). For simplicity, the spectral (or hybridization)
function of α reservoir assumes a diagonal and Lorentzian

form, i.e., Jαμν(ω) = δμν
�αW 2

α

2[(ω−μα )2+W 2
α ] , with �α and Wα being

the linewidth and bandwidth parameters, respectively.
Note that the same set of system parameters are adopted

for all calculations (except for specially specified): ε = ε↑ =
ε↓ = −0.5, U = 1.5, T = 0.02, � = �L = �R = 0.1, WL =
WR = 2, all in units of meV. The nonequilibrium situation
concerns a steady state defined by a fixed bias voltage applied
antisymmetrically to the two reservoirs, i.e., μL = −μR = V0

2
with V0 = −V = 0.2, and/or 0.7 meV. A recently developed
[N−1/N ] Padé spectrum decomposition scheme55,56 with
N = 8 (i.e., M = 9) is used for the efficient construction of
the hierarchical Liouville propagator associated with Eq. (5).

To obtain quantitatively converged numerical results, we
increase the truncation level L and the number of exponential
terms M continually until convergence is reached. Table I
lists the probabilities that the impurity is singly occupied
by spin-μ electron (Pμ = 〈μ|ρ̄(T ,V )|μ〉 with μ =↑ or ↓);
or doubly occupied (P↑↓ = 〈↑↓|ρ̄(T ,V )|↑↓〉). Here, ρ̄(T ,V )
is the nonequilibrium steady-state reduced density matrix
under temperature T and antisymmetric applied voltage V .
Calculations are done at different truncation level L (up
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TABLE I. Spin-μ single- and double-occupation probabilities (Pμ

and P↑↓) and steady-state current of an SIAM with two electrons
reservoirs under an antisymmetrically applied bias voltage of V0 =
−V = 0.7 meV. Calculations are done by solving the HEOM of
Eq. (5) truncated at different level L. The parameters adopted are
(in units of meV) ε = ε↑ = ε↓ = −0.5, U = 1.5, �L = �R = 0.1,
WL = WR = 2, and T = 0.02. For comparison, the numbers of
equilibrium situation of V0 = 0 are shown in the parentheses.

L Pμ P↑↓ Ī (nA)

1 0.500 (0.500) 0.001 (0.000) 0.003
2 0.441 (0.462) 0.025 (0.027) 4.654
3 0.439 (0.454) 0.024 (0.025) 4.920
4 0.440 (0.457) 0.024 (0.024) 4.799
5 0.440 (0.457) 0.024 (0.024) 4.799

to L = 5) and fixed M = 9. Apparently, the HEOM results
converge rapidly and uniformly with the increasing L, i.e., with
higher-tier ADOs included explicitly in Eq. (5). In particular,
the remaining relative deviations between the results of L = 4
and L = 5 are less than 0.1%, indicating that the L = 4 level
of truncation is sufficient for the present set of parameters. It
is also affirmed M = 9 is sufficient to yield convergent results
(see Supplemental Material).65 These are further affirmed by
the calculated steady-state current Ī (V ) across the impurity,
which also converges quantitatively with rather minor residual
uncertainty at L = 4 and M = 9. Note also that the truncation
at L = 1 level results in the sequential current contribution,
which is negligibly small for the present nonequilibrium
system setup. The values of Ī evaluated at different truncation
levels clearly indicate the current contributions from different
orders of cotunneling processes.

In the following, we first show the spectral function of the
SIAM calculated by using the HEOM approach (see Fig. 1),
and then present the evaluation of some typical response
properties in both equilibrium and nonequilibrium situations.
These will include the local charge fluctuation spectrum SQ(ω)
(see Fig. 2), local magnetic susceptibility χM (ω) (see Fig. 3),
and differential admittance G(ω) (see Fig. 5). All calculations
are carried out at the truncation level of L = 4 and M = 9.
Based on the analysis of Table I, the resulting response
properties are expected to be quantitatively converged with
respect to L = 4 and M = 9.

Figure 1 depicts the HEOM calculated spin-μ spectral
function of the impurity,

Aμ(ω) = 1

π
Re

{∫ ∞

0
dt eiωt 〈{âμ(t),â†

μ(0)}〉st

}
. (30)

The effect of bias voltage V0 on Aμ(ω) is illustrated in
Fig. 1(a). Clearly, the equilibrium Aμ(ω) reproduces correctly
the well-known features of SIAM, such as the Hubbard peaks
at around ω = ε and ω = ε + U , and the Kondo peak centered
at ω = μeq = 0.66 In Ref. 48, the equilibrium Aμ(ω) of SIAM
in the Kondo regime has been investigated with the HEOM
approach thoroughly and the existence of Kondo resonance is
manifested by the correct universal scaling behavior there.
In the nonequilibrium situation where an external voltage
is applied antisymmetrically to the L and R reservoirs, the
Hubbard peaks remain largely unchanged in both position

FIG. 1. (Color online) The HEOM calculated spectral function
of an SIAM system, A(ω) = A↑(ω) = A↓(ω), in unit of (π�)−1.
The parameters adopted are specified in the caption of Table I. The
three panels exhibit the variations of A(ω), particularly the evolution
of the Kondo and Hubbard peaks, vs (a) the applied bias voltage V0,
(b) the temperature T , and (c) the shift of impurity level energy ε

by a gate voltage, respectively. In (b) the four solid lines from top
to bottom at ω = −0.1 meV correspond to T = 0.02, 0.05, 0.1, and
0.3 meV, respectively.

and height. In contrast, the Kondo peak is split by the
voltage into two, which appear at ω = V0

2 and ω = −V0
2 and

correspond to the shifted reservoir chemical potentials μL and
μR, respectively. Obviously, as the bias voltage V0 increases
from 0 to 0.2 meV, then to 0.7 meV, the progressive splitting
of Kondo peak is observed in Fig. 1(a). Figure 1(b) plots
the calculated A(ω) of the same SIAM system at various
temperatures. Apparently, as the temperature increases over
an order of magnitude, the two Hubbard resonance peaks
at ω = ε and ω = ε + U almost remain intact. In contrast,
the split peaks at ω = μL and μR vanish quickly at the
higher temperature. This clearly highlights the strong electron
correlation features in the present nonequilibrium SIAM. To
further verify that the split peaks near ω = 0 are of Kondo
nature, we examine the variation of A(ω) versus a gate voltage
applied to the dot. The gate voltage is considered to shift the
impurity level energy ε by 0.1 meV, and the corresponding
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FIG. 2. (Color online) HEOM calculated local charge fluctuation
spectrum, SQ(ω) of Eq. (31), in unit of e2. The parameters adopted
are the same as those specified in caption of Table I.

change of calculated A(ω) is shown in Fig. 1(c). Apparently,
as ε drops from −0.5 to −0.6 meV by the gate voltage, the
two Hubbard resonance peaks at ω = ε and ω = ε + U are
displaced by 0.1 meV. In contrast, the two peaks at ω = ±V0

2
remain pinned to the reservoir chemical potentials μL and μR ,
indicating that these two peaks are indeed of Kondo origin.

Usually, the Hubbard peaks at ω = ε and ω = ε + U

converge more rapidly than the resonance peaks at ω = ±V0
2

when truncation level L increases. This also reflects the
Kondo nature of resonance peaks at ω = ±V0

2 .65 Moreover,
there is a long-time oscillatory tail in the real time evolution
which is crucial for the appearance of Kondo peaks. We also
find that the short-time dynamics of the retarded Green’s
function and high-frequency part of A(ω) converge more
rapidly when the truncation level L increases. In other words,
in the HEOM framework, one can extract the spectral function
at high-frequency range at a relatively lower truncation level
and relatively shorter evolution time than those at resonance
frequencies, without compromising the accuracy.

We then exemplify the numerical tractability of HEOM
approach via evaluation of three types of response properties.
These include the local charge fluctuation spectrum SQ(ω),

FIG. 3. (Color online) HEOM calculated local magnetic suscep-
tibility, χM (ω) of Eq. (32), in unit of g2μ2

B/kBT . The parameters
adopted are the same as those specified in caption of Table I.

local magnetic susceptibility χM (ω), and differential admit-
tance spectrum Gαα′ (ω), defined respectively as follows:

SQ(ω) ≡
∫ ∞

−∞
dt eiωt 〈{�Q̂(t),�Q̂(0)}〉st , (31)

χM (ω) ≡ i

∫ ∞

0
dt eiωt 〈[M̂(t),M̂(0)]〉st , (32)

Gαα′ (ω) ≡ −i

∫ ∞

0
dt eiωt 〈[Îα(t),N̂α′(0)]〉st . (33)

In Eq. (31), �Q̂(t) = Q̂(t) − 〈Q̂〉st, with Q̂ = ∑
μ n̂μ being

the total impurity occupation number operator. Therefore
�Q̂(t) describes the fluctuation of occupation number around
the averaged value. For χM (ω) of Eq. (32), M̂ = gμBŜz is the
impurity magnetization operator, which originates from the
electron spin polarization induced by external magnetic field.
Here, g is the electron g factor, μB is the Bohr magneton, and
Ŝz = (n̂↑ − n̂↓)/2 is the impurity spin polarization operator.
In Eq. (33), Gαα′ (ω) is just the half-Fourier transform of
current-number response function of Eq. (25) or Eq. (28).
The time t = 0 in the individual Eqs. (31)–(33) represents the
instant at which the external perturbation (magnetic field or
bias voltage) is interrogated.

It is worth pointing out that all the three types of response
properties satisfy the following symmetry: the real (imaginary)
part is an even (odd) function of ω. This is due to the time-
reversal symmetry of steady-state correlation functions, i.e.,
CAB(t) = [CBA(−t)]∗. In particular, for SQ(ω) of Eq. (31),
Â = B̂ = �Q̂. Consequently, it can be shown that SQ(ω) is
a real function. For clarity, Figs. 2, 3, and 5 will only exhibit
the ω � 0 part of the dynamic response properties, while the
ω < 0 part can be retrieved easily by applying the symmetry
relation.

The local charge fluctuation spectrum SQ(ω) has been stud-
ied in the context of shot noise of quantum dot systems.67–69

Figure 2 depicts the HEOM calculated SQ(ω) of the SIAM
under our investigation. At equilibrium, the spectrum exhibits
a crossover behavior, where the two peaks centered at around
ω = |ε| = 0.5 meV and ω = |ε + U | = 1 meV largely overlap
and form a broad peak. The positions of these two peaks
correspond to the excitation energies associated with change
of impurity occupancy state. In nonequilibrium situation, the
crossover peak is observed to move to a lower energy, since
the chemical potential of reservoir R is drawn closer to the
impurity state by the applied voltage.

The local magnetic susceptibility χM (ω) is a response
property of fundamental significance, particularly for strongly
correlated quantum impurity systems. It has been studied by
various methods such as NRG.70 Figure 3 displays the HEOM
calculated χM (ω) of the SIAM of our concern. In both equi-
librium and nonequilibrium situations, the main characteristic
features of χM (ω) appear at around zero energy. Moreover,
the magnitude of χM (ω) is found to reduce significantly in
presence of applied bias voltage, especially in the low energy
range. This is consistent with the diminishing spectral density
at around zero frequency due to the voltage-induced splitting
of Kondo peak, see Fig. 1.

To verify the numerical accuracy of our calculated local
magnetic susceptibility, we compare the HEOM approach with
the latest high-level NRG method. The comparison is shown
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FIG. 4. (Color online) Static local magnetic susceptibility multi-
plied by temperature, χM (ω = 0) T (in unit of g2μ2

B/kB ), vs T/TK

for a series of equilibrium symmetric SIAM systems of different
U . Here, TK is the Kondo temperature, and U , T , and W are in
unit of �. The HEOM results (scattered symbols) are compared with
the latest full density matrix NRG calculations (lines) of Ref. 70,
the Fig. 6 there. The NRG calculations are for very large reservoir
bandwidth W , while the HEOM results are obtained with relatively
smaller bandwidths (W = 10 and 20) for saving computational cost.
The four lines from top to bottom correspond to U = 12, 8, 4, and 2,
respectively.

in Fig. 4, where the equilibrium static magnetic susceptibil-
ities, χM (ω = 0), of various symmetric SIAM systems are
calculated to reproduce the Fig. 6 of Ref. 70. Apparently, the
HEOM and NRG results agree quantitatively with each other.

The dynamic admittance is one of the most exten-
sively studied response properties of quantum dot systems.
The frequency-dependent admittance has been studied by
scattering theory71–74 and nonequilibrium Green’s function
method.75–79 The HEOM approach has also been used to
calculate the dynamic admittance of noninteracting51 and
interacting quantum dots.52,57 This was realized by calculating
the transient current in response to a delta-pulse voltage.51 In
the following, we revisit the evaluation for dynamic admittance
G(ω) via an alternative route, i.e., by calculating the current-
number response functions of Eq. (25).

FIG. 5. (Color online) HEOM calculated dynamic admittance,
G(ω) = 1

4 [GLL(ω) + GLR(ω) − GRL(ω) − GRR(ω)] with Gαα′ (ω)
defined by Eq. (33), in unit of e2/h. The parameters adopted are
the same as those specified in caption of Table I.

FIG. 6. (Color online) Calculated differential conductance
dI/dV of various symmetric SIAMs as a function of scaled voltage
V/TK . Here, TK is the Kondo temperature calculated by TK =
1
2

√
�U exp(−πU/4� + π�/4U ), with � = �L + �R . Systems of

three different combinations of parameters U and � (in units of meV)
are demonstrated, with T/TK = 1 and �L = �R . The inset depicts
dI/dV versus unscaled voltage. The bandwidths of electrodes are
WL = WR = 10 meV.

Figure 5 depicts the HEOM calculated differential
admittance of the SIAM under study, G(ω) = 1

4 [GLL(ω) +
GLR(ω) − GRL(ω) − GRR(ω)] = 1

2 [GL(ω) − GR(ω)]; cf.
Eq. (20), with Gαα′ (ω) defined by Eq. (33). Here we
have chosen antisymmetrically applied probe ac bias,
δ�L(t) = −δ�R(t) = 1

2δ�(t). As discussed extensively in
Ref. 46, the characteristic features of G(ω) appearing at
around ω = |ε| and ω = |ε + U | correspond to the transitions
between Fock states of different occupancy, while the
low-frequency features highlight the presence of dynamic
Kondo transition. Apparently, the dynamic Kondo transition
is suppressed by the applied voltage, which is analogous to
the scenario of χM (ω) as shown in Fig. 3.

At last we investigate the universal scaling properties
of nonequilibrium differential conductance dI/dV (or the
zero-frequency admittance). The universal scaling relation of
nonequilibrium properties of impurity systems with Kondo
correlations have been studied.80–82 For instance, Rosch et al.
have concluded that the nonequilibrium conductance at high
voltages scales universally with V/TK (see the inset of Fig. 1
in Ref. 81). To demonstrate the high accuracy of our HEOM
approach in regimes far from equilibrium, we calculate the
conductance of various symmetric SIAMs versus scaled and
unscaled voltages, as displayed in Fig. 6. Clearly, while the
difference in dI/dV -V becomes more accentuated at a larger
V (see the inset of Fig. 6), the dI/dV -V/TK exhibits a
universal scaling relation for systems of different parameters.
Such a universal relation holds for all voltages examined (up
to V/TK = 30). Therefore the HEOM approach reproduces
quantitatively the previously predicted universal scaling rela-
tion for nonequilibrium conductance at high voltages.

V. CONCLUDING REMARKS

In this work, we develop a hierarchical dynamics approach
for evaluation of nonequilibrium dynamic response properties
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of quantum impurity systems. It is based on a hierarchical
equations of motion formalism, in conjunction with a linear
response theory established in the hierarchical Liouville space.
It provides a unified approach for arbitrary response and
correlation functions of local impurity systems, and transport
current related response properties.

The proposed hierarchical Liouville-space approach re-
solves nonperturbatively the combined effects of e-e inter-
actions, impurity-reservoir dissipation, and non-Markovian
memory of reservoirs. It provides a unified formalism for equi-
librium and nonequilibrium dynamic response properties of
quantum impurity systems and can be applied to more complex
quantum impurity systems without extra derivation efforts.
Moreover, the HEOM results converge rapidly and uniformly
with higher-tier ADOs included explicitly and one can often
obtain convergent results at a relative low truncation level
L. With our present code and the computational resources at
our disposal, the lowest temperature that can be quantitatively
accessed is T � 0.1 TK for a symmetric SIAM.

For equilibrium properties, our HEOM approach has
achieved the same level of accuracy as the latest state-of-
the-art NRG method.48 In this work, the accuracy of HEOM
approach for calculations of nonequilibrium properties is
validated by reproducing some known numerical results or
analytic relations,70,81,83,84 such as the static local magnetic

susceptibility, and the universal scaling relation of high-
voltage conductance.

In conclusion, the developed hierarchical Liouville-space
approach provides an accurate and universal tool for inves-
tigation of general dynamic response properties of quantum
impurity systems. In particular, it addresses the nonequilibrium
situations and resolves the full frequency dependence details
accurately. It is thus potentially useful for exploration of
quantum impurity systems and strongly correlated lattice
systems (combined with dynamical mean field theory), which
are of experimental significance for the advancement of
nanoelectronics, spintronics, and quantum information and
computation.
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