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Majorana fermions hold promise for quantum computation, because their non-Abelian braiding statistics allows
for topologically protected operations on quantum information. Topological qubits can be constructed from pairs
of well-separated Majoranas in networks of nanowires. The coupling to a superconducting charge qubit in a
transmission line resonator (transmon) permits braiding of Majoranas by external variation of magnetic fluxes.
We show that readout operations can also be fully flux controlled, without requiring microscopic control over
tunnel couplings. We identify the minimal circuit that can perform the initialization-braiding-measurement steps
required to demonstrate non-Abelian statistics. We introduce the Random Access Majorana Memory (RAMM), a
scalable circuit that can perform a joint parity measurement on Majoranas belonging to a selection of topological
qubits. Such multiqubit measurements allow for the efficient creation of highly entangled states and simplify
quantum error correction protocols by avoiding the need for ancilla qubits.
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I. INTRODUCTION

After the first signatures were reported1–4 of Majorana
bound states in superconducting nanowires,5–7 the quest for
non-Abelian braiding statistics8–11 has intensified. Much inter-
est towards Majorana fermions arises from their technological
potential in fault-tolerant quantum computation.12–16 Their
non-Abelian exchange statistics would allow quantum gates
belonging to the Clifford group to be performed with ex-
tremely good accuracy. Moreover, topological qubits encoded
nonlocally in well-separated Majorana bound states would be
resilient against many sources of decoherence. Even without
the applications in quantum information processing, observing
a new type of quantum statistics would be a milestone in the
history of physics.

The two central issues for the application of Majorana
fermions are (i) how to unambiguously demonstrate their non-
Abelian exchange statistics and (ii) how to exploit their full
potential for quantum information processing. The first issue
requires an elementary circuit that can perform three tasks:
initialization of a qubit, braiding (exchange) of two Majoranas,
and finally measurement (readout) of the qubit. In view of the
second issue, this circuit should be scalable and serve as a first
step towards universal fault-tolerant quantum computation.

Here we present such a circuit, using a superconducting
charge qubit in a transmission line resonator (transmon17–20)
to initialize, control, and measure the topological qubit. In
such a hybrid system, named top transmon,21 the long-range
Coulomb couplings of Majorana fermions can be used to braid
them and to read out their fermion parity.21,22 While there exist
several proposals to control or measure Majorana fermions
in nanowires,11,21–32 combining braiding and measurement
without local adjustment of microscopic parameters remains a
challenge. We show that full macroscopic control is possible if
during the measurement one of the Majorana fermions is
localized at a T junction between three superconducting
islands (see Fig. 1). All three steps of the braiding pro-
tocol, initialization-braiding-measurement, can then be per-
formed by adjusting magnetic fluxes through split Josephson
junctions. Because local control of microscopic parameters is

not necessary, our scheme is less sensitive to problems arising
from electrostatic disorder and screening of gate voltages by
the superconductor.

This design principle of flux-controlled braiding and mea-
surements can be scaled up from a minimal braiding experi-
ment setup to a multiqubit register that supports a universal set
of quantum gates and allows measurement of any product of
Pauli matrices belonging to a selection of topological qubits.
Multiqubit parity measurements are a powerful resource in
quantum information processing, allowing for the efficient
creation of long-range entanglement and direct measurement
of stabilizer operators (thus removing the overhead of ancilla
qubits in quantum error correction schemes). Because the
data stored in the register can be accessed in any random
order, it truly represents a Random Access Majorana Memory
(RAMM).

The structure of the paper is as follows. In Sec. II we present
the circuit that can demonstrate the non-Abelian Majorana
statistics. In Sec. III we take a longer-term perspective
and describe the Random Access Majorana Memory, whose
potential for quantum computation is discussed in Sec. IV.
Finally, we conclude in Sec. V. For the benefit of the reader,
we include more detailed derivations and discussions in the
Appendixes.

II. MINIMAL CIRCUIT FOR THE DEMONSTRATION
OF NON-ABELIAN STATISTICS

To demonstrate non-Abelian Majorana statistics one needs
to read out the parity of two Majoranas γA and γB , and braid
one of these Majoranas γB with another one γC . We seek a
transmon circuit that can combine these operations in a fully
flux-controlled way, by acting on the Coulomb coupling of the
Majoranas. Since γB must be coupled first to one Majorana
(for the braiding) and then to another (for the readout), it must
be able to contribute to two different charging energies. This
is possible if γB is localized at a T junction between three
superconducting islands.

We thus arrive at the minimal circuit shown in Fig. 2(a).
It consists of five superconducting islands, each containing a
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FIG. 1. (Color online) Two circuits that can demonstrate non-
Abelian statistics, by the initialization, braiding, and measurement
of pairs of Majorana bound states (circles). Braiding is performed
twice to flip the fermion parity of γA and γB (Ref. 13). Majoranas
that can be coupled by Coulomb charging energy are connected by a
thin line; the line is solid if the Majoranas are strongly coupled and
dashed if they are uncoupled. A thick line indicates tunnel coupling
of Majoranas. The T-shaped circuit of Ref. 11 (left column) requires
control over tunnel couplings, while the π -shaped circuit considered
here (right column) does not, because both readout and braiding
involve a Majorana localized at a T junction.

nanowire supporting two Majorana bound states, enclosed in
a transmission line resonator. The two bigger superconductors
form a transmon qubit and the three smaller islands are
embedded between the two transmon plates. The Josephson
couplings between the islands can be controlled by magnetic
fluxes �k (k = 0,1,2,3). The nanowires form a π -shaped cir-
cuit, with two T junctions where three Majorana bound states
belonging to adjacent superconductors are tunnel coupled. At
low energies the three overlapping Majorana bound states at
a T junction form a single zero mode, so that effectively the
system hosts six Majorana bound states γA,γB, . . . ,γF .

The three relevant energy scales for the device are (i) the
charging energy EC,k = e2/2Ck determined by the total
capacitance Ck of the four upper superconductors in Fig. 2(a),
(ii) the Josephson energies EJ,k(�k) = EJ,k(0) cos(e�k/h̄),
and (iii) the Majorana tunnel couplings EM at both T junctions.
For strong Josephson coupling, EJ,k � EC,k,EM, the phases
of the order parameter on superconducting islands (measured
with respect to the lower superconductor) are pinned to the
value φk ≡ 0. We distinguish two different operating regimes
of the device: one for the braiding procedure and one for
initialization and readout.

A. Flux-controlled braiding

During the braiding procedure we set �0 = 0 so that
the charging energy of the large island can be completely
neglected. The charging energies of the small islands can be
considered perturbatively,17 resulting in long-range Coulomb

couplings,

Uk = 16

(
EC,kE

3
J,k

2π2

)1/4

e−
√

8EJ,k/EC,k cos(qkπ/e), (1)

between the Majorana bound states in the corresponding
island.21 The offset charge qk accounts for the effect of nearby
gate electrodes. In order to keep our analytic calculations more
transparent, we assume that Uk � EM. This condition is not
required for braiding to stay accurate in view of the topological
nature of the latter (see also Appendix F). In this case, the
low-energy sector of the system is described by the effective
Hamiltonian (see Appendix A)

Hbraiding = −i�1γBγE − i�2γEγF − i�3γEγC, (2)

�1 = U1√
1 + 2 cos2(e�1/2h̄)

× cos α23√
cos2 α12 + cos2 α23 + cos2 α31

, (3a)

�2 = U2
cos α31√

cos2 α12 + cos2 α23 + cos2 α31

, (3b)

�3 = U3
cos α12√

cos2 α12 + cos2 α23 + cos2 α31

, (3c)

where α12 = (e/2h̄)(�1 + �2), α23 = (e/2h̄)(�2 + �3), and
α31 = −α12 − α23 are gauge-invariant phase differences be-
tween the smaller islands. The three couplings �i are all tun-
able with exponential sensitivity via the fluxes �i , increasing
from �min (the off state) to �max (the on state) when |�i |
increases from 0 to �max < h/4e. On the other hand, the
tunnel couplings at the T junction vary slowly with the fluxes,
so the three overlapping Majoranas remain strongly coupled
throughout the operation.

Out of the six Majorana operators, we define three fermionic
creation operators:

c
†
1 = 1

2 (γA + iγB), (4a)

c
†
2 = 1

2 (γC + iγD), (4b)

c
†
3 = 1

2 (γE + iγF ). (4c)

We will braid the Majoranas γB and γC by using γE and γF

as ancillas, as specified in Fig. 2. At the beginning and at the
end, the Majoranas γE and γF are strongly coupled (|�2| =
�max). If all other couplings are off we are left with two
degenerate states that define a topological qubit. In the odd-
parity sector they are ( 1

0 ) = |10〉|0〉 and ( 0
1 ) = |01〉|0〉. During

the exchange of Majoranas γB and γC the fluxes �1, �2, and
�3 are varied between 0 and ±�max according to the table
shown in Fig. 2(b). Computing the non-Abelian Berry phase
for this adiabatic cycle as in Ref. 22 shows that braiding has the
effect of multiplying the topological qubit state with the matrix

U = 1√
2

(
1 −i

−i 1

)
, (5)

up to corrections of order �min/�max, with �min/�max � 1
because of the exponential sensitivity of these quantities to
magnetic fluxes. Repeating the cycle n times corresponds to
applying the gate Un.
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FIG. 2. (Color online) (a) Minimal circuit for flux-controlled demonstration of non-Abelian Majorana statistics. Two large superconducting
plates form a Cooper pair box in a transmission line resonator, i.e., a transmon qubit. Three smaller superconducting islands are embedded
between the two transmon plates. Each superconducting island contains a nanowire supporting two Majorana bound states. At low energies,
the three overlapping Majorana bound states at a T junction form a single zero mode so that effectively the system hosts six Majorana bound
states, labeled γA, γB , γC , γD , γE , and γF . The Coulomb couplings between the Majorana fermions can be controlled with magnetic fluxes
�k . This hybrid device can measure the result of the braiding operation as a shift in the microwave resonance frequency when the fermion
parity iγAγB switches between even and odd. (b) Sequence of variation of fluxes during the initialization (steps 0–2), braiding (steps 3–8), and
measurement (step 9). (c) Illustration of the steps required for initialization, braiding, and measurement. Fusion channels of pairs of Majorana
fermions colored red, blue, and white are chosen to be the basis states in Eq. (4). To unambiguously demonstrate the non-Abelian nature of
Majoranas, one needs to collect statistics of measurement outcomes when the adiabatic cycle describing the braiding operation (steps 3–8) is
repeated n times between initialization and measurement. The probabilities of observing changes in the cavity’s resonance frequency pflip for
different values of n should obey the predictions summarized in the table in (c). The sequence of probabilities shown in the table repeats itself
periodically for larger values of n.

B. Initialization and readout

The ancillas need to be initialized in the state |0〉. This
can be achieved by turning the couplings �2 and �3 on and
allowing the system to relax to the ground state by adiabatically
switching off �3 before �2 [step 0 in Fig. 2(b)]. In addition
to the initialization of the ancillas, the braiding needs to be
preceded and followed by a readout of the topological qubit.
For that purpose, before and after the braiding flux cycle
we increase �0 from 0 to �max, so that the spectrum of the
transmon depends on the fermion parity P = iγAγB .21 During
the measurement we set �1 = �2 = �3 = 0, to decouple the
four Majoranas γC,γD,γE,γF from γA,γB and to minimize the
effect of cross capacitances.33

In this configuration it is possible to execute a projective
measurement on the fermion parity P by irradiating the
resonator with microwaves. The system composed by the
transmon qubit and microwave resonator can be described by
the Hamiltonian

Hreadout = σz

[
1

2
h̄	0 + P�+ cos

(πq0

e

)]

+P�− cos
(πq0

e

)
+ h̄ω0a

†a + h̄g(σ+a + σ−a†).

(6)

Here, ω0 is the bare resonance frequency of the cavity, g

is the strength of the coupling between photons and the
transmon qubit, and h̄	0 � √

8EJ,0EC is the transmon plasma
frequency, with EC the charging energy of the transmon
including the contributions of the small islands. We have
defined σ± = (σx ± iσy)/2 and

�± = δε1 ± δε0

2

1√
1 + 2 cos2(e�0/2h̄)

,

where δε1, δε0 ∝ exp(−√
8EJ,0/EC) are determined by the en-

ergy levels εn = ε̄n − (−1)nδεn cos(πq0/e) of the transmon.17

We assume that the induced charge is fixed at q0 = 0 for
maximal sensitivity.

The transmission line resonator is typically operated far
from resonance, in the so-called dispersive regime,17,19,20 when
(n + 1)g2 � δω2, with n the number of photons in the cavity
and δω = 	0 − ω0. The Hamiltonian (6) then produces a
parity-dependent resonance frequency (see Appendix B)

ωeff(P) = ω0 + σz g2(δω + 2P�+/h̄)−1. (7)
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A flip of the topological qubit can thus be measured as a shift
in the resonance frequency by the amount

ωshift = 4 h̄g2 �+
h̄2δω2 − 4�2+

. (8)

The probability of observing a change in the resonance
frequency of the cavity after n consecutive braidings, pflip(n),
is dictated by the Majorana statistics: pflip(n) = |〈1|Un |0〉|2 =
|〈0|Un |1〉|2. The sequence of probabilities pflip = 1

2 ,1, 1
2 ,0

for n = 1,2,3,4 repeats itself periodically. Therefore, the
non-Abelian nature of Majoranas can be probed by collecting
statistics for different values of n.

III. RANDOM ACCESS MAJORANA MEMORY

The π circuit of Fig. 2 is the minimal circuit which can
demonstrate non-Abelian Majorana statistics, but it does not
allow for the application of two independent braidings. The
full computational power of Majoranas can be achieved by
increasing the number of T junctions. We adopt the triangular
loop geometry introduced by Sau, Clarke, and Tewari,23 which
is the minimal circuit for a fully flux-controlled topological
qubit [see Fig. 3(a)]. It consists of five Majorana islands
placed between the upper and lower superconducting plates
of a transmon qubit, referred to as the bus and (phase) ground
respectively, and a transmission line resonator for the readout.

In this geometry the braiding and readout can be performed
in a similar way as in the case of the π circuit. In the braiding
configuration, we set �0 = 0. Any pair of the Majoranas
γA,γB,γC can now be braided with the help of magnetic
fluxes �k (k = 1,2, . . . ,5). The qubit manipulations and
corresponding quantum gates are shown in Appendix D. The
fourth Majorana γD forming the topological qubit need not
be moved and is situated on the ground island, while γE

and γF serve as ancillas. Moreover, the parity of any pair
of Majoranas γA,γB,γC can be measured by moving them
to the “measurement” island, the one coupled to the bus via
the flux �1 in Fig. 3(a). During the measurement �k = 0
(k = 1,2, . . . ,5) and �0 = �max, so that all the small islands
are coupled via large Josephson energy either to the bus or
to the ground. Therefore, the measurement configuration is

described by the readout Hamiltonian (6), where P is the
parity of the two Majoranas in the measurement island.

Since the typical length of a transmon is hundreds of
microns, it is in principle possible to scale up the design by
considering a register of several topological qubits, shown in
Fig. 3(b). The measurement configuration is still described
by the readout Hamiltonian (6) (see Appendix C), where the
parity operator is now

P = iN
N∏

n=1

γnXγnY . (9)

Here γnX and γnY denote Majorana fermions on the mea-
surement island belonging to topological qubit n: X,Y ∈
{A,B,C}. Thus, a readout of the resonance frequency cor-
responds to a projective measurement of this multiqubit
operator. Although the product in Eq. (9) runs over all N

qubits, we can still choose not to measure a qubit by moving
the corresponding pair of coupled ancillas γnE,γnF to the
measurement island. Because these ancillas are always in a
state |0〉, they do not influence the measurement outcome.
Since the Majorana fermions can be selectively addressed, we
call this architecture a Random Access Majorana Memory.

The number of qubits in a RAMM register cannot be
increased without limitations. First, the frequency shift ωshift

decreases with the number of topological qubits. The main
decrease is caused by the reduction of the coupling �+ with
the number of topological qubits, which occurs because the
Majorana fermions at the T junctions are localized in three
different islands (see Appendix C). An additional decrease is
caused by the renormalization of the total capacitance of the
transmon due to the small islands. Furthermore, each topolog-
ical qubit introduces an extra pathway for quasiparticles to be
exchanged between the bus and the ground. Such quasiparticle
poisoning rates at thermal equilibrium are negligibly small,
and the poisoning due to nonequilibrium quasiparticles can, at
least in principle, be controlled by creating quasiparticle traps.

The limited number of qubits is not an obstacle for the
scalability of quantum computation. Beyond this limit, the
computation can be scaled up by using several transmons
in a single transmission line resonator, and the coupling
between the topological qubits in different registers can be

FIG. 3. (Color online) (a) Minimal transmon circuit for fully flux-controlled topological qubit. The nanowires are placed in a triangular
loop formed out of three T junctions (Ref. 23). In this geometry, all single-qubit Clifford gates can be implemented. (b) Schematic overview
of a Random Access Majorana Memory consisting of eight topological qubits. Compensating fluxes (dotted circles) are included between the
topological qubits to ensure that the gauge-invariant phase differences in the different topological qubits are independent of each other (see
Appendix C).
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achieved by introducing tunable Josephson junctions between
the transmons. Furthermore, the computation can be paral-
lelized, because transmons can be coupled to several different
transmission line resonators.34–36

IV. MULTIQUBIT MEASUREMENTS AS A SOURCE
OF COMPUTATIONAL POWER

Multiqubit measurements in the RAMM offer two sig-
nificant benefits. First, these measurements can be applied
without any locality constraint, so that the quantum fan-
out,35 the number of other qubits with which a given qubit
can interact, can become large for the RAMM architecture.
Second, the overhead in the computational resources can be
reduced because the products of Pauli matrices involving
several topological qubits can be measured directly. We
demonstrate these advantages in the realization of a universal
set of gates, fast creation of maximally entangled states, and
implementation of error correction schemes.

Quantum gates. All single-qubit Clifford gates, the
controlled-NOT (CNOT) gate, and the π/8 phase gate required
for universal quantum computation,37 can be realized in the
RAMM with errors that are exponentially small in macro-
scopic control parameters (see Appendixes B and D). Single-
qubit Clifford gates can be realized with braiding operations
only, and the quantum circuits for the two remaining gates are
summarized in Fig. 4. The CNOT gate, shown in Fig. 4(a), is a
modified version of the Bravyi-Kitaev algorithm38,39 involving
three topological qubits (target, control, and one ancilla). Effi-
cient π/8 phase gate implementations are based on distillation
protocols,40 requiring several noisy qubits to prepare one qubit
in a particular state |A〉 = (|0〉 + eiπ/4 |1〉) /

√
2. This state can

then be used to perform the π/8 gate using the circuit shown
in Fig. 4(b). Distillation may take place in dedicated RAMM
registers (see Appendix D) in parallel with other computation
processes, and the distilled state can be teleported to the
computational register [see Fig. 4(c)].

Preparation of two-dimensional cluster states. The RAMM
can be used to efficiently create maximally entangled multi-
qubit states, such as two-dimensional (2D) cluster states,41–43

which make it possible to realize any quantum circuit by means
of single-qubit operations and measurements.44 To generate a
2D cluster state in the RAMM architecture one has first to

assign a label to each topological qubit in order to establish its
position and neighbours on a logical lattice [see Fig. 5(a)]. Due
to the nonlocality of measurements in the RAMM, the logical
lattice does not need to be related to the physical system. The
cluster state may be prepared in several ways.41,43 An efficient
procedure requires measuring the stabilizers

Kα = σx,α

∏
〈β,α〉

σz,β, (10)

where α goes through all sites of the logical lattice and β labels
the nearest neighbors of α. The total number of measurements
required is equal to the number of qubits in the cluster state.
In Fig. 5(b) we draw a circuit to create the nine-qubit 2D
cluster state in a RAMM register. To verify their entanglement
properties, one possibility is provided by the teleportation
protocol of Ref. 44.

Efficient quantum error correction. Although topological
qubits have intrinsically low error rates, grouping them into
a RAMM register additionally allows to implement efficient
error correction. Error correction schemes37,45 are based on
measurements of stabilizer generators, which are products of
Pauli matrices belonging to different qubits. The measurement
outcomes give error syndromes, which uniquely characterize
the errors and the qubits where they occurred. The RAMM
allows for efficient error correction schemes, due to the
possibility of measuring stabilizers of different lengths, as well
as correcting errors using single-qubit Clifford gates. There are
two advantages in comparison with architectures where only
single- and two-qubit operations are available: higher error
thresholds and reduced overhead in computational resources.

In order to quantitatively compare these advantages, we
consider the seven-qubit Steane code46 as a concrete example
of quantum codes, and assume a realistic error model. We
find that the error threshold of the RAMM can be an order of
magnitude larger than the error threshold of a reference archi-
tecture that can perform only single- and two-qubit operations
(see Appendix E). Additionally, the RAMM implementation
of the Steane code is much more compact. Already in the first
level of concatenation, the fault-tolerant implementation of
syndrome measurements in the reference architecture requires
24 ancillas for each logical qubit, while none are needed in the
RAMM.

FIG. 4. Quantum circuits for universal quantum computation in the RAMM. In this figure, p1,p2,p3 = ±1 represent results of projective
single- or multiqubit measurements, whose outcomes, carried by classical channels (double lines), determine postselected unitary operations.
(a) CNOT gate. Here R1 = exp[i π

4 σx(1 − p1)], R2 = exp[i π

4 p2p3σz], R3 = exp[i π

4 p2p3σx], R4 = exp[−i π

4 p3σx] are all gates obtainable by

braidings. (b) π/8 phase gate T = diag(1, exp i π

4 ), relying on distillation of the state |A〉 = (|0〉 + exp i π

4 |1〉)/√2. The required unitary
operations are in this case Rψ = exp[−i π

8 σz(1 − p1)] and RA = R1. (c) Teleportation protocol. Here R = exp[i π

4 σz(1 − p1p2)] exp[i π

4 σx(1 −
p3)]. Apart from teleporting the unknown quantum state |ψ〉, the protocol leaves the remaining two qubits in an entangled Bell state |�〉.
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FIG. 5. Preparation of a nine-qubit 2D cluster state with a
RAMM. The nine qubits (represented by circles) are arranged in
a 3 × 3 square logical lattice, and numbered from left to right and
top to bottom. (a) The nine stabilizer operators K1, . . . ,K9 necessary
to prepare the 2D cluster state. They are products of Pauli matrices,
involving all qubits connected by lines, with black and gray dots
representing σx and σz operators, respectively. (b) The quantum
circuit creating the 2D cluster state in a nine-qubit RAMM register,
consisting in a sequence of projective multiqubit measurements of
the nine stabilizers.

Although we have calculated the improvements only for the
seven-qubit Steane code, the advantages are characteristic for
all error correction schemes, including surface codes.47,48

V. DISCUSSION

To control and manipulate quantum information contained
in the Majorana zero modes of superconducting nanowires
it is necessary to braid them and measure their parity. We
have designed a transmon circuit where both operations can
be performed by controlling the magnetic fluxes through split
Josephson junctions, without local adjustment of microscopic
parameters of the nanowires. The minimal circuit for the
demonstration of non-Abelian Majorana statistics is a π -
shaped circuit involving four independent flux variables. An
extended circuit consisting of many topological qubits in
parallel allows for nonlocal multiqubit measurements in a
Random Access Majorana Memory, providing the possibilities

of efficient creation of highly entangled states and simplified
(ancilla-free) quantum error correction.

Since all the requirements for the realization of the π circuit
and RAMM are satisfied with the typical energy scales of
existing transmon circuits and transmission line resonators (see
Appendix F), flux-controlled circuits are a favorable architec-
ture for the demonstration of non-Abelian Majorana statistics
and the realization of fault-tolerant quantum computation.
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APPENDIX A: THEORETICAL DESCRIPTION OF THE
π -SHAPED CIRCUIT

The π -shaped circuit discussed in the main text is repro-
duced here in Fig. 6. We label the two superconducting plates
forming the transmon “bus” and “ground,” both hosting two
Majorana bound states, labeled γb1,γb2 and γg1,γg2 respec-
tively. The smaller superconducting islands are labeled with
an integer k = 1,2,3. Each of them supports two Majorana
bound states γk1,γk2. We will work in a gauge where all phases
are measured with respect to the phase of the ground island.
We denote by φ the phase of the bus and by φk that of the kth
island.

We start from the Lagrangian of the system,

L = T − VJ − VM. (A1)

The first term is the charging energy

T = h̄2

8e2
C0φ̇

2 + h̄2

8e2

3∑
k=1

[
CG,k φ̇2

k + CB,k(φ̇k − φ̇)2
]

+ h̄

2e

[
q0φ̇ +

3∑
k=1

qkφ̇k

]
. (A2)

Here C0 is the capacitance between bus and ground, while CG,k

(CB,k) is the capacitance between the kth Majorana island
and the ground (the bus). The last two terms include the
induced charge q0 on the bus and qk on Majorana islands.
The effect of cross capacitances between Majorana islands is

FIG. 6. (Color online) The π -shaped transmon circuit discussed
in the main text, reproduced here with labels of the ten Majorana
bound states.
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negligible assuming that they are small in comparison with the
capacitances to the bus and the ground.

The second term is the Josephson potential

VJ = EJ,0(�) (1 − cos φ) +
3∑

k=1

EJ,k(�k)(1 − cos φk).

The Josephson energies EJ,0(�0) = 2EJ,0(0) cos(e�0/h̄) and
EJ,k(�k) = 2EJ,k(0) cos(e�k/h̄) can be varied in magnitude
by changing the fluxes between 0 and |�max| � h/4e. We
are assuming for simplicity that the split junctions are
symmetrical, but this requirement can be removed without
affecting our results.

The third term is the Majorana-Josephson potential

VM = EM
[
iγb2γg1 cos

(
1
2φ + αbg

)
+ iγg1γ11 cos

(
αg1 − 1

2φ1
)

+ iγ11γb2 cos
(

1
2φ1 − 1

2φ + α1b

)]
(A3)

+EM
[
iγ12γ21 cos

(
1
2φ1 − 1

2φ2 + α12
)

+ iγ21γ31 cos
(

1
2φ2 − 1

2φ3 + α23
)

+ iγ31γ12 cos
(

1
2φ3 − 1

2φ1 + α31
)]

.

The two sets of square brackets in this expression group
the terms corresponding to the two T junctions. All tunnel
couplings are for simplicity assumed to be of equal strength
EM. The arguments of the cosines include single-electron
Aharonov-Bohm phase shifts between different islands,

αbg = e�0/2h̄, (A4a)

αg1 = e�1/2h̄, (A4b)

α1b = − (e�0 + e�1) /2h̄, (A4c)

α12 = (e�1 + e�2)/2h̄, (A4d)

α23 = (e�2 + e�3)/2h̄ (A4e)

α31 = − (e�1 + 2e�2 + e�3) /2h̄. (A4f)

There is a constraint between the charge contained in
each superconducting island and the parity of the Majorana
fermions belonging to that island.49 The constraint can be
eliminated via a gauge transformation50

	 = einφ/2
3∏

k=1

einkφk/2 , (A5)

n = 1
2 − 1

2 iγb1γb2, nk = 1
2 − 1

2 iγk1γk2, (A6)

where the product extends over all Majorana junctions. The
transformation has two effects on the Lagrangian:

(a) it changes the induced charges appearing in Eq. (A2),

q0 → q0 + en, qk → qk + enk, (A7)

so that the Majorana operators enter explicitly in the charging
energy, and

(b) it modifies the Majorana-Josephson potential 	†VM	

so that it becomes 2π periodic in all its arguments φ,φk .
In the following, we will work in this new gauge where

Eq. (A7) holds. The explicit form of 	†VM	 is not necessary
here, as we will need only the equality

	†VM	
∣∣
φk=φ=0 = VM|φk=φ=0 , (A8)

which is trivial since 	|φk=φ=0 = 1. Starting from the La-
grangian (A1), we will now derive the low-energy Hamiltoni-
ans used in the main text for the braiding and the readout.

1. Braiding

When we want to braid or move the Majoranas, we
maximize the energy EJ,0(�0) by setting �0 = 0 and we
require the condition

EJ,0(0),EJ,k(�k) � EM,EC,EC,k, (A9)

where EC,0 = e2/2C0 and EC,k = e2/2(CB,k + CG,k). Since
the Josephson term VJ dominates over the kinetic and Majorana
terms T and VM, the action S = ∫

L dt is then minimized for
φ = φk = 0 and φ̇ = φ̇k = 0. All the superconducting islands
are in phase. Under the additional condition

EJ,0(0)

EC,0
>

EJ,k(�k)

EC,k

, (A10)

we can neglect quantum phase slips around the minimum φ =
0, but not around the other minima φk = 0. The low-energy
Hamiltonian HM then contains only the Majorana operators:

Heff = −
3∑

k=1

iUkγk1γk2 + 	†VM	
∣∣
φk=φ=0 , (A11)

where

Uk = 16

(
EC,kE

3
J,k

2π2

)1/4

e−
√

8EJ,k/EC,k cos(qkπ/e) (A12)

is the tunneling amplitude of a phase-slip process from φk = 0
to φk = ±2π ,17 also reported in Eq. (1) of the main text.

There are still ten Majorana operators in the Hamiltonian
(A11), but we can eliminate four of them by assuming that
the tunnel couplings are stronger than the Coulomb couplings:
EM � Uk . To first order in perturbation theory in the ratio
Uk/EM, we then obtain the Hamiltonian used in the main text,

H = −i�1γBγE − i�2γEγF − i�3γEγC. (A13)

In this passage we have introduced the six Majorana operators
γA,γB,γC,γD,γE,γF , given by

γA = γb1, (A14a)

γB = cos αg1γb2 + cos α1bγg1 + cos αbgγ11√
cos2 αg1 + cos2 α1b + cos2 αbg

, (A14b)

γC = γ32, (A14c)

γD = γg2, (A14d)

γE = cos α23γ12 + cos α31γ21 + cos α12γ31√
cos2 α23 + cos2 α31 + cos2 α12

, (A14e)

γF = γ22. (A14f)
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The coupling strengths are

�1 = U1
cos αbg√

cos2 αg1 + cos2 α1b + cos2 αbg

× cos α23√
cos2 α12 + cos2 α23 + cos2 α31

, (A15a)

�2 = U2
cos α31√

cos2 α12 + cos2 α23 + cos2 α31

, (A15b)

�3 = U3
cos α12√

cos2 α12 + cos2 α23 + cos2 α31

. (A15c)

2. Readout

During the readout of the transmon qubit, we set �0 =
�max, so that the Josephson energy EJ,0 is minimized, and all
�k = 0. We require then that

EJ,k(0)

EC,k

� EJ,0(�max)

EC,0
. (A16)

In physical terms, all Majorana islands are now in phase with
the ground: φk = φ̇k = 0. Neglecting quantum fluctuations
and phase slips around these minima, we may rewrite the
Lagrangian in a form that depends only on φ:

L = h̄2

8e2
Cφ̇2 + h̄

2e
(q0 + en)φ̇

−EJ,0 (1 − cos φ) − 	†VM	
∣∣
φk=0 . (A17)

Apart from the contribution of the term VM, the whole
system can be treated as a single hybrid top transmon,21 with
Josephson energy EJ,0 and capacitance

C = C0 +
3∑

k=1

CB,k. (A18)

In the regime EJ,0 � EC = e2/2C, the energy levels of the
transmon are given by17

εn = ε̄n − (−1)nδεniγb1γb2 cos(πq/e) , (A19)

where

ε̄n � −EJ,0 + (
n + 1

2

)√
8EJ,0EC

− EC

12
(6n2 + 6n + 3) (A20)

δεn = EC
24n+4

n!

√
2

π

(
EJ,0

2EC

)n/2+3/4

e−
√

8EJ,0/EC . (A21)

Taking into account the two lowest levels of the transmon
(n = 0,1), we arrive at a low-energy Hamiltonian

Htop transmon = σz

[
1
2h̄	0 + iγb1γb2 δ+ cos(πq0/e)

]
+ iγb1γb2 δ− cos(πq0/e) + 	†VM	

∣∣
φk=φ=0

(A22)

with the definitions h̄	0 = ε̄1 − ε̄0, δ± = (δε1 ± δε0)/2. The
Pauli matrix σz acts on the qubit degree of freedom of
the transmon. For δ± � EM, the low-energy sector of this

Hamiltonian can be written in terms of γA, . . . ,γF as

H̃top transmon = σz

[
1
2h̄	0 + iγAγB �+ cos(πq0/e)

]
+ iγAγB �− cos(πq0/e), (A23)

where

�± = δ± cos αg1√
cos2 αbg + cos2 αg1 + cos2 α1b

. (A24)

When combined with the Jaynes-Cummings Hamiltonian
describing the coupling with the resonator, this Hamiltonian
reproduces Eq. (5) of the main text. The interaction with the
microwaves will be described in detail in the next Appendix B.

APPENDIX B: MEASUREMENT THROUGH PHOTON
TRANSMISSION

The Hamiltonian Hreadout of the main text describes the
coupling between the top transmon and the cavity modes in
the system through a Jaynes-Cummings interaction of strength
g. In particular the fermionic parity of the transmon P is a
conserved quantity in the Hamiltonian whose energy levels
will directly depend on the value of P .

We assume that the induced charge is fixed at q0 = 0 to
maximize the sensitivity of the readout. The Jaynes-Cummings
interaction couples the pairs of states (|n,↑,P〉,|n + 1,↓,P〉)
where n and n + 1 label the number of photons in the cavity
and |↑〉,|↓〉 denote the two lowest-energy eigenstates of the
transmon. Therefore, the eigenstates of Hreadout are in general
superpositions of the kind α|n,↑,P〉 + β|n + 1,↓,P〉 with
the exception of the uncoupled vacuum states |0,↓,P〉. Their
eigenvalues are, respectively,

εn,±,P =
(

n + 1

2

)
h̄ω0 + P�−

± 1

2

√
(h̄δω + 2P�+)2 + 4h̄2g2 (n + 1), (B1)

ε0,P = P (�− − �+) − 1
2h̄	0. (B2)

In the dispersive regime δω2 � g2(n + 1), the energies εn,±,P
can be approximated at the first order in g2/δω2 as

εn,↑,P = nh̄ω0 + P (�− + �+) + 1

2
h̄	0

+ h̄2g2 (n + 1)

h̄δω + 2P�+
, (B3)

εn+1,↓,P = (n + 1)h̄ω0 + P (�− − �+)

− 1

2
h̄	0 − h̄2g2 (n + 1)

h̄δω + 2P�+
. (B4)

The respective eigenstates are approximately |n,↑,P〉 and
|n + 1,↓,P〉 up to corrections of the order g2/δω2. From
the previous equations it is easy to obtain the effective
resonance frequency ωeff (P) and its shift ωshift, corresponding
to the different states of the topological qubit. Since we are
considering the dispersive regime with a positive detuning,
	0 > ω0, we assume in the following that the transmon
remains in the ground state |↓〉.

We also point out that in the Hamiltonian Hreadout we
are neglecting the excited states of the transmon, which
result in a renormalization of the parameters, including ωshift,
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through virtual transitions. The precise expressions for the
renormalized parameters are known,17 but are not needed here.

To perform the measurement of the topological qubit
we introduce in the cavity photons with a frequency which
is approximately ωeff(P = +1). The photon transmission
probability T+ for the state |P = 1〉 is then larger than
the probability T− corresponding to |P = −1〉. We count
the number of photons nph that passes through the cavity
during a measurement time tM. The probability distributions
for nph in each state are Poissonian, and for sufficiently
long measurement time can be approximated with normal
distributions,

P(nph,|P = ±1〉) = Pois(nph,λ±) ≈ N(nph,λ±,
√

λ±),

(B5)

where λ± ∝ T±tMκ and κ � 1–10 MHz is the cavity decay
rate. Since T+ > T−, also λ+ > λ−.

We decide that the measurement outcome is P = +1 if
nph > x = √

λ+λ− and the outcome is P = −1 if nph < x.
Therefore the error of the measurement outcome is given by
the following:

εom = 1

2

∫ x

−∞

dn√
2πλ+

exp

(−(n − λ+)2

2λ+

)

+ 1

2

∫ ∞

x

dn√
2πλ−

exp

(−(n − λ−)2

2λ−

)
. (B6)

Since λ+, λ− � 1

εom � e−x̄2

2x̄
√

π
, (B7)

where

x̄ =
√

λ+ − √
λ−√

2
. (B8)

We notice that the probability of a measurement error decreases
exponentially with κtM. On the other hand, the probability of
storage error, namely, the chance that the topological qubit
will decay during a time interval tM, increases as �mintM/h̄.
Because �min/κ can be made exponentially small in macro-
scopic control parameters, exponentially small measurement
errors can be achieved.

APPENDIX C: LOW-ENERGY HAMILTONIAN
FOR A RANDOM ACCESS MAJORANA

MEMORY ARCHITECTURE

We will now describe an effective Hamiltonian for RAMM
architecture hosting N topological qubits, such as the one
shown in Fig. 3 of the main text. Figure 7(a) shows an
equivalent setup, including only two topological qubits. By
including compensating fluxes

�comp,n = −
5∑

k=1

�n,k (C1)

after each topological qubit, the gauge-invariant phases in
each topological qubit are independent of each other. The
single-electron Aharonov-Bohm phase shifts αn,kk′ at the
tunnel junction between islands k and k′ of the nth qubit are
then given by

αn,12 = e(�0 + �n,1 + �n,2)/2h̄,

αn,25 = e(�n,2 + 2�n,3 + 2�n,4 + �n,5)/2h̄,

αn,51 = −e(�0 + �n,1 + 2�n,2 + 2�n,3

+ 2�n,4 + �n,5)/2h̄,

αn,23 = e(�n,2 + �n,3)/2h̄,
(C2)

αn,34 = e(�n,3 + �n,4)/2h̄,

αn,42 = −e(�n,2 + 2�n,3 + �n,4)/2h̄,

αn,4g = e�n,4/2h̄,

αn,g5 = e�n,5/2h̄,

αn,54 = −e(�n,4 + �n,5)/2h̄.

Here, the subscript g denotes the tunnel junctions to the ground
island.

By starting from a Lagrangian and following a similar
approach to that of Appendix A, we find that the low-energy
Hamiltonian is described by six Majorana fermions

γn,A = γn,32,

γn,B = cos αn,34γn,22 + cos αn,42γn,31 + cos αn,23γn,41√
cos2 αn,23 + cos2 αn,34 + cos2 αn,42

,

γn,C = cos αn,g5γn,42 + cos αn,54γn,g1 + cos αn,4gγn,52√
cos2 αn,4g + cos2 αn,g5 + cos2 αn,54

,

FIG. 7. (Color online) (a) Part of the RAMM circuit showing two fully controllable topological qubits. Compensating fluxes are included
between the topological qubits in order that the gauge-invariant phase differences in the different topological qubits are independent of each
other. (b) Topological qubit formed by the six Majorana fermions. The five couplings �1, . . . ,�5 [see Eq. (C5)] can all be individually
controlled by the fluxes �1, . . . ,�5. The parity of the two Majoranas coupled by �1 can be measured, as explained in Appendix C 2.
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γn,D = γn,g2,
(C3)

γn,E = cos αn,25γn,12 + cos αn,51γn,21 + cos αn,12γn,51√
cos2 αn,12 + cos2 αn,25 + cos2 αn,51

,

γn,F = γn,11

that form the triangular loop network of Fig. 7(b).

1. Low-energy Hamiltonian in braiding configuration

In the braiding configuration �0 = 0, and the low-energy
Hamiltonian is, for each qubit n,

H
(n)
qubit = −i�n,1γF γE − i�n,2γEγB − i�n,3γBγA

− i�n,4γBγC − i�n,5γEγC. (C4)

The Majorana γD is situated on the ground island and
stays decoupled from the rest of the system. The long-range
Coulomb couplings �n,k are

�n,1 = Un,1
cos αn,25√

cos2 αn,12 + cos2 αn,25 + cos2 αn,51

,

�n,2 = Un,2
cos αn,34√

cos2 αn,23 + cos2 αn,34 + cos2 αn,42

× cos αn,51√
cos2 αn,12 + cos2 αn,25 + cos2 αn,51

,

�n,3 = Un,3
cos αn,42√

cos2 αn,23 + cos2 αn,34 + cos2 αn,42

,

(C5)
�n,4 = Un,4

cos αn,23√
cos2 αn,23 + cos2 αn,34 + cos2 αn,42

× cos αn,g5√
cos2 αn,4g + cos2 αn,g5 + cos2 αn,54

,

�n,5 = Un,5
cos αn,12√

cos2 αn,12 + cos2 αn,25 + cos2 αn,51

× cos αn,4g√
cos2 αn,4g + cos2 αn,g5 + cos2 αn,54

.

For computational purposes, one should be careful that the
�n,k do not change signs during the variation of the magnetic
fluxes that takes place during a computational process. This
may happen if some of the αn,kk′ in Eq. (C2) cross the value
π/2. However, during any computation, maximally two of the
fluxes are simultaneously turned on. Therefore, it is always
possible to adapt the signs of the magnetic fluxes in such a way
that the fluxes can be tuned in a range |�n,k| = [0,�max], where
�max < h/4e. We also notice that the signs of the couplings
�n,k in Eq. (C4) depend on the signs of the microscopic tunnel
couplings EM. These signs will determine the chirality of the
braiding of the Majorana fermions in each T junction.

2. Low-energy Hamiltonian in the readout configuration

During the readout, we set �0 = �max and all other fluxes
�n,k = 0. Following the same reasoning as in Appendix A 2,
we set φn,1 = φ and φn,k �=1 = 0 for each topological qubit. The

Lagrangian for the RAMM becomes

L = h̄

8e2
Cφ̇2 + h̄

2e

(
qtot +

N∑
n=1

e
(

1
2 − 1

2 iγn,11γn,12
))

φ̇

−EJ,0(1 − cos φ) −
N∑

n=1

	†
nV

(n)
M 	n

∣∣∣
φn,k=0

, (C6)

where V
(n)

M describes the Majorana-Josephson potential for the
three T junctions in each topological qubit n,

	n =
5∏

k=1

ei(1−iγn,k1γn,k2)φk/4 , (C7)

C = C0 +
N∑

n=1

5∑
k=2

CB,k +
N∑

n=1

CG,1, (C8)

and

qtot = q0 +
N∑

n=1

qn,1. (C9)

The low-energy Hamiltonian of the system can now be derived
analogously to the derivation in Appendix A 2. By using the
equality

cos

(
πqtot/e + π

N∑
n=1

(
1
2 − 1

2 iγn,11γn,12
))

=
N∏

n=1

iγn,11γn,12 cos (πqtot/e) (C10)

we find

H̃RAMM = σz

[
1
2h̄	0 + P �+ cos(πqtot/e)

]
+P �− cos(πqtot/e), (C11)

where P is now the joint parity operator of the Majorana
fermions at the measurement islands

P =
N∏

n=1

iγn,F γn,E. (C12)

The couplings �± decrease exponentially with the number
of topological qubits involved in a single RAMM register,

�± = δ±
N∏

n=1

cos αn,25√
cos2 αn,12 + cos2 αn,25 + cos2 αn,51

. (C13)

In the design of a RAMM register, shown in Fig. 3(b) in
the main text, the frequency shift ωshift is decreased by
all topological qubits, including the ones which are not
involved in a given multiqubit measurement. This limitation
of RAMM can be relaxed in a more optimal design, where
additional tunable Josephson junctions are introduced from
the measurement island to the ground. In this case only
the topological qubits involved in the given measurement
contribute to the decrease of frequency shift. The expense one
needs to pay for introducing new Josephson junctions is that
the gauge-invariant fluxes have more complicated magnetic
flux dependence and several Josephson couplings need to be
simultaneously controlled when the Coulomb couplings are
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turned on. We point out that although we have explicitly
considered the control of the Coulomb couplings with the
help of magnetic fluxes, at least some of the macroscopic
control parameters EJ,k/EC,k of the superconducting islands
can alternatively be controlled with gates.

APPENDIX D: UNIVERSAL GATES FOR QUANTUM
COMPUTATION

The RAMM setup allows us to perform universal quantum
computation in a fault-tolerant way. To show this, it is
necessary to implement a universal basis of quantum gates
using only braiding operators and multiqubit measurements
as building blocks, thus ensuring the possibility of obtaining
arbitrary multiqubit gates with errors that are exponentially
small in the macroscopically tunable parameters. One possible
set of gates allowing for universal quantum computation are
the single-qubit Clifford gates, the CNOT gate, and the π/8
phase gate. In the following we explain how to realize these
gates in a RAMM architecture.

1. Notation

Each topological qubit n has four computational Majoranas
γn,A,γn,B,γn,C,γn,D and two ancillary Majoranas γn,E,γn,F ,
which are needed to move or braid the computational ones.
The Pauli matrices for each qubit can be chosen as

σn,z = iγn,Aγn,B, (D1a)

σn,x = iγn,Bγn,C, (D1b)

σn,y = iγn,Aγn,C. (D1c)

2. Single-qubit operations

Projective measurements on the Pauli basis and a set of
Clifford gates can be obtained by manipulating the positions
of the four computational Majorana fermions in the triangular
loop geometry. The positions of the computational Majoranas
γn,A,γn,B,γn,C can be changed using the ancillary Majoranas
γn,E,γn,F , which remain strongly coupled throughout the pro-
cess. The corresponding qubit transformation can be derived
either by a direct computation of the non-Abelian Berry phase
acquired by the ground-state wave function of the Hamiltonian
(C4), or by following the evolution of the Majorana operators
in the Heisenberg picture, as explained in detail in Refs. 31
and 51.

Exchanging the positions of γn,A,γn,B [as represented in
Fig. 8(a)] or γn,B and γn,C (Fig. 8 b) respectively yields the
braiding gates

Uz = e−i(π/4)σz , (D2)

Ux = e−i(π/4)σx . (D3)

The chirality of the braiding operations (i.e., the sign of
the exponent in Uz,Ux) is determined by the signs of the
couplings of the qubit Hamiltonian, Eq. (C4). Physically, the
sign depends on the induced charges on the Majorana islands,
the values of the fluxes, and the signs of the microscopic tunnel
couplings ±EM at the T junctions. Here, we have made a
specific choice of chiralities. Another possibility of chiralities
would not be harmful as long as they remain constant during
the computation processes.

FIG. 8. (Color online) Flux-controlled sequences of operations
that realize single-qubit Clifford gates and projective measurement
on the Pauli basis.

A combination of these two operations yields the quantum
gate corresponding to the braiding of γA and γC ,

Uy = U†
x Uz Ux = e−i(π/4)σy . (D4)

When combined with the π/8 phase gate described in
Appendix D 4, these quantum gates are sufficient to realize
any single-qubit rotation.

To realize projective measurements on σn,z (or σn,x), we
first need to bring the two Majorana fermions γn,A,γn,B (or
γn,B,γn,C) onto the island connected to the bus, the one
occupied by γn,E,γn,F in Fig. 7(a). Then we measure the
fermion parity operator (C12), where now the two Majoranas
γn,E,γn,F are replaced by the computational ones. For instance,
in the case of a measurement of σn,z, we would measure the
operator

P = iγn,Aγn,B

∏
k �=n

iγk,Eγk,F ≡ σn,z, (D5)

since the parity of the ancillary Majorana of each topological
qubit is preserved, Pk,EF = iγk,Eγk,F = +1. In the end, we
bring the two computational Majoranas back to their original
place. The whole operation, represented in Figs. 8(c) and 8(d)
for σn,z and σn,x , respectively, corresponds to the application
of the projectors

�z,n(p) = 1
2 (1 + pσn,z), (D6a)

�x,n(p) = 1
2 (1 + pσn,x) (D6b)

to the wave function of the N topological qubits. Here, p =
±1 is the outcome of the measurement. Finally, a projective
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measurement on σn,y is obtained as

�y,n(p) = 1
2 (1 + pσn,y) = U†

x �z,n(p)Ux. (D7)

Multiqubit measurements on the Pauli basis are a straight-
forward extension of these projective measurements where
Majorana modes on different topological qubits are moved
according to Fig. 8 to achieve the required basis.

3. CNOT gate

Bravyi and Kitaev have demonstrated how to realize the
CNOT gate with an algorithm that is based on the following
expansion:38,39

exp
(
i
π

4
γ0γ1γ2γ3

)
|ψ〉

= 2eiθ exp
(π

4
(1 − p1p2)γ0γ1

)
× exp

(π

4
(1 − p1p2)γ2γ3

)
exp

(
−π

4
p2γ2γ5

)
× 1

2
(1 + p2iγ2γ4)

1

2
(1 − p1γ0γ1γ3γ4)|ψ〉, (D8)

where θ is an unimportant overall phase, γi (i = 0, . . . ,5) are
Majorana operators and pi = ±1 are measurement outcomes.
The Majoranas γ4 and γ5 are used as ancillas and the wave
function is initialized in state (γ4 + iγ5)|ψ〉 = 0. Importantly,
the Bravyi-Kitaev CNOT algorithm is based only on measure-
ments and braidings of Majorana fermions. However, as one
can see from Eq. (D8), its implementation requires a pair of
ancillary Majoranas that must be coupled to two computational
Majoranas in the target qubit, but must initially be completely
independent of them. Due to the parity constraint in each
topological qubit, this is impossible in the RAMM setup unless
we extend the qubit layout shown in Fig. 3(a) in the main text.
Rather than modifying the RAMM setup to account for these
new ancillas, we propose an alternative version of the CNOT

gate, which involves three topological qubits. This alternative
version of the CNOT gate can be implemented with the quantum
circuit shown in Fig. 4(a) in the main text.

In this circuit the role of the first measurement, with result
p1, and of the gate R1 is to initialize the third ancillary qubit
in the state |0〉a . After that, a CNOT gate with q1 as a control
and q2 as a target gate is obtained as

1

2
ei(π/4)p2p3σ1,z ei(π/4)p2p3σ2,x e−i(π/4)p3σa,x (1 + p3σa,y)(1 + p2σ1,zσ2,xσa,x)|q1,q2,0〉 = eiθ |q1,q1 ⊕ q2,0〉. (D9)

In terms of Majorana operators, this way of representing the CNOT gate relies on the following equality:

exp
(π

4
γ1Aγ1Bγ2Bγ2Cγ3Aγ3B

)
|ψ〉12|0〉a = 2eiθ exp

(
−π

4
(1 + p2p3)γ1Aγ1B

)
exp

(
−π

4
(1 + p2p3)γ2Bγ2C

)
exp

(π

4
p3γ3Bγ3C

)
× 1

2
(1 + ip3γ3Aγ3C)

1

2
(1 − ip2γ1Aγ1Bγ2Bγ2Cγ3Bγ3C)|ψ〉12|0〉a, (D10)

which can be considered an extension of the Kitaev and Bravyi
result. In this case the applied projections are all on products of
parity operators from different qubits, which can be reduced
to the form (C12) as explained above (see Fig. 8); all the
other operators are braiding operators within single topological
qubits.

4. π/8 Phase Gate

To complete the set of universal single-qubit gates we must
implement the π/8 phase gate

T =
(

1 0
0 eiπ/4

)
, (D11)

with an accuracy comparable to that of the other gates. For
this purpose the best techniques are based on distillation
protocols.40 The basic idea of the distillation procedure is
the use of several noisy qubits to prepare one qubit in a
particular state |A〉 = (|0〉 + eiπ/4 |1〉)/√2. A single ancilla
qubit prepared in the state |A〉 is enough to implement the π/8
gate using the circuit shown in Fig. 4(b) in the main text.

The distillation protocol of Ref. 40 for the state |A〉 assumes
that it is possible to prepare several noisy copies of |A〉 with
an average initial error εi < 0.14. In the RAMM setup this

can be achieved by coupling the Majorana fermions to break
the ground-state degeneracy.21 A single distillation step is
performed starting from 15 noisy qubits. Neglecting the errors
in all the Clifford gates and measurements of the distillation
process, the error of the final state after one iteration is
approximately

εdist ≈ 35ε3
i (D12)

in the limit of small εi .
Since 14 stabilizer multiqubit measurements and 15 CNOT

gates are involved in the distillation-decoding procedure,
the error in the π/8 gate is approximately an order of
magnitude larger than the errors occurring in braiding or
in a single multiqubit measurement. Moreover, assuming an
achievable initial error εi = 0.01,21 only a single distillation
step involving 15 noisy ancillas is needed to achieve a final
error of the same order as the measurement and gate errors,
estimated as �min/�max ∼ 10−5. If the initial errors are larger
or the gate errors are smaller, more distillation steps and a
larger number of ancillas are preferable. Given the number
of qubits required, it is realistic to imagine that the distillation
procedure will take place in one (or several) dedicated RAMM
registers, so that it can happen in parallel with all other
computation processes. In this way, whenever a π/8 phase
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gate is needed in the computation, it will be necessary only to
teleport the distilled state |A〉 from the distillation register to
the computational one.

We also note that alternatively to the π/8 gate, universality
can also be obtained with the help of a π/12 gate. This gate
can be distilled with fewer noisy copies of the relevant state,
and a single distillation step also requires fewer multiqubit
measurements.40 Moreover, the distillation can be improved by
exploiting more efficient error correction codes: for example
in Ref. 52 a different procedure is proposed that enables one
to obtain two distilled states |A〉 out of 10 noisy ancillas,
providing a better scaling and threshold for the initial errors.
Finally we must mention that the distillation techniques in
Ref. 40 require not only multiqubit measurements and braiding
gates, but also a nonunitary dephasing process. However, it was
shown in Ref. 53 that the dephasing process is not necessarily
needed for the convergence of the noisy states to a high-fidelity
final state.

APPENDIX E: COMPUTATION OF THE
ERROR THRESHOLDS

Multiqubit measurements give significant advantages in
quantum error correction, as compared to the usual schemes
where only single- and two-qubit operations are available.
The advantages obtained are twofold. First, multiqubit mea-
surements allow error thresholds to be significantly increased.
Second, the overhead in computational resources can be
substantially decreased.

Quantum error correction schemes are generally based
on measurements of multiqubit operators, usually referred
to as stabilizer generators gi .37 Their outcomes give error
syndromes βi , which uniquely characterize the errors and
the qubits where they have occurred. Depending on the
error correction scheme, a different number of errors can be
corrected.

For simplicity, we consider the Steane seven-qubit quantum
code,46 which encodes a logical qubit into seven physical
qubits and can recover an arbitrary error occurring in any of the
physical qubits. Its stabilizer generators are g1 = X1X5X6X7,
g2 = X2X4X6X7, g3 = X3X4X5X6, g4 = Z1Z3Z4Z7, g5 =
Z2Z3Z5Z7, and g6 = Z1Z2Z3Z6. An error detected on the
ith qubit can be corrected by implementing an Xi , Zi , or XiZj

gate, depending on the type of the error.
In order to quantitatively compare the advantages obtained

with the help of multiqubit measurements to conventional
schemes, we calculate the error threshold for a quantum
memory. The error correction circuit consists of periodic
syndrome measurements and recoveries, interrupted by a time
interval of N time steps. Time steps are defined so that a
single gate (or measurement) can be performed within one
time step. Our error model consists of storage errors, gate
errors, data errors during the measurement, and errors in the
measurement outcomes. The corresponding error probabilities
are εst, εg, εdm, and εom, respectively. All the errors are
considered independent. In order to obtain the error threshold,
we need to calculate the probability of failure happening during
a single period of the error correction circuit, assuming that no
failure has happened before that point. To keep the calculation
tractable, we assume that two errors in different qubits always

result in failure (independently of the type of error), and that
this happens also when one of the errors occurs during the
syndrome-recovery part of the circuit and the other error has
happened earlier in the circuit. Moreover, we assume that the
errors occurring during the syndrome-recovery part of the
circuit never get corrected by the same syndrome-recovery
part of the circuit. In this way we obtain that the probability of
failure during a single period of the circuit is

P(failure,N )

≈ Pom(2) + Pom(1)
∑

i

(2Pi,sr + Pi,N)

+
∑
i<j

[(2Pi,sr + Pi,N)(2Pj,sr + Pj,N) − Pi,srPj,sr]. (E1)

Here Pom(m) is the probability of having m errors in the
measurement outcomes, Pi,sr is the probability of obtaining
a single error in qubit i during syndrome measurement and
recovery, and Pi,N = Nεst is the probability of obtaining a
single error in qubit i during the N time steps between the
successive error detections and recoveries.

To estimate the error threshold we minimize the probability
of failure per time step

pf = min
N>0

{P(failure,N )/(N + N0)}, (E2)

where N0 is the number of time steps required to perform the
syndrome measurements and the recovery. The quantum error
correction threshold is obtained by demanding that pf = εst.
Because pf ∝ ε2

st, this equation determines a threshold value
εth

st . If εst < εth
st , the errors can be corrected by successively

applying the scheme described above. For this kind of
concatenated code, the failure probability scales with the
number of levels of encoding k as

pf,k = εth
st

(
εst/ε

th
st

)2k

, (E3)

whereas the number of physical qubits needed to construct the
logical qubits scales as 7k . In addition to the physical qubits
needed for construction of the logical qubits, a large number
of ancillas are typically needed to perform the syndrome
measurements. These ancillas constitute the overhead in the
required computational resources.

1. Realization of the Steane code with the RAMM

In the case of the RAMM, the syndromes can be directly
measured. For simplicity, we assume that one single-qubit gate
is always performed during the recovery part of the circuit.
Considering that each qubit is on average involved in 24/7
measurements, the total number of time steps required to
perform the syndrome measurements is six, and the circuit
contains six measurements (see Fig. 9), we obtain

Pom(1) = 6 εom, (E4a)

Pom(2) = 1
2 × 6 × 5 ε2

om = 15ε2
om, (E4b)

Psr = 24
7 εdm + 24

7 εst + 1
7εg. (E4c)

These values allow explicit computation ofP(failure,N ) for
the RAMM via Eq. (E1).
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FIG. 9. Measurement of the six generators of the Steane code.
This circuit can be realized directly in a RAMM architecture.

2. Steane’s code without multiqubit measurements

We want to compare the error threshold in RAMM with
a reference system, where multiqubit measurements are not
available. The syndrome measurements are then performed
with the help of ancillas. In particular, the fault-tolerant
realization of the six syndrome measurements requires a total
of 24 ancillas, each quadruplet being used for measuring one
of the syndromes45 (see Fig. 10).

Each syndrome is measured by first initializing the ancilla
quadruplet in a Shor state, which guarantees that measuring the

FIG. 10. Quantum circuit to measure the generators of the Steane
code in a traditional architecture that allows only for single- and
two-qubit gates, and single-qubit measurements. Each of the six
generator measurements is realized using four CNOT gates with an
ancilla, which is in turn encoded using four physical qubits to avoid
error propagation. This is the circuit we used to compare the error
threshold with and without multiqubit measurements.

four ancillas will not destroy the state encoded in the logical
qubit. The second step consists of encoding the syndrome
into the quadruplet, which requires performing a total of four
CNOT gates between different ancillas and physical qubits.
Since these involve independent qubit pairs, we assume that
these four gates are performed simultaneously. Additionally,
we assume that the syndrome is measured immediately after
the CNOT gates and the initialization of the ancilla quadruplet
takes place already before the syndrome measurements.
Because errors occurring in the ancillas essentially have the
same effect as the errors in the measurement outcomes, we
include all possible ancilla errors in Pom(m).

The initialization of the ancillas to a Shor state is explained
in Ref. 45. It involves seven time steps with five CNOT and
five Hadamard gates. Moreover, a measurement is required
to confirm that the Shor state was successfully encoded,
otherwise the initialization process is repeated. We consider
only gate and storage errors occurring in the initialization of
the four ancillas. Each of the ancillas is acted on with 13/4
gates on average.

The syndrome measurements involve nine time steps and
each of the seven physical qubits is acted upon with 38/7
gates on average, while the recovery part involves only one
single-qubit gate. Finally, we need to take into account the
errors occurring in any of the 24 ancillas during the syndrome
block, which contribute to Pom. In this way we obtain

Pom(1) = 24 (Pinit + Psyndrome), (E5a)

Pom(2) = 24×23
2 (Pinit + Psyndrome)2, (E5b)

Psr = 38
7 εg + 25

7 εst + 1
7εg + 6

7εst, (E5c)

with

Pinit = εom + εdm, (E6a)

Psyndrome = 13
4 εg + 15

4 εst + εg + εom + 72
24εst. (E6b)

These values allow computation of P(failure,N ) in the
absence of multiqubit measurements.

3. Comparison of the error thresholds for the
quantum memory

We minimize the probability of failure per time step with
respect to N for both implementations of the error correction
scheme. We characterize the relative probabilities of errors
by fixing the ratios εg/εst, εdm/εst, and εom/εst, and calculate
the error threshold for εst. The results are shown in Fig. 11.
We find that for εg = εdm = εom = εst the error threshold of
the RAMM is approximately an order of magnitude larger
than the error threshold of a reference architecture that can
perform only single- and two-qubit operations. The ratio of the
error thresholds for the different architectures becomes smaller
with increasing measurement errors (larger ratios εdm/εst and
εom/εst), because it becomes favorable to increase the waiting
time between the consequent error correction steps; but even
for εg = εdm = εom = 10εst we still find that the RAMM has
an error threshold five times larger than that of the reference
architecture.
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FIG. 11. Ratio of the Steane code error thresholds with and
without multiqubit measurements as a function of the ratio between
gate and storage errors, εg/εst. The solid, dashed, dotted, and dash-
dotted curves correspond to ratios εom/εst = εdm/εst = 1,2,5, and 10,
respectively.

4. Comparison of the error threshold in
quantum computation

To estimate the error threshold in quantum computation,
we consider an algorithm where each qubit participates in
a two-qubit gate with a randomly chosen other qubit after
every M > N0 time steps. We assume that the syndrome and
recovery steps are performed once after each two-qubit gate.
To estimate the error threshold we calculate the probability
of failure in any one of the logical qubits during the M-step
period. To keep the calculation tractable, we consider that all
the errors appearing in a logical qubit during the syndrome
and recovery steps just before the two-qubit gate propagate to
the other qubit. Notice that due to the special construction of
the Steane code, the error occurring in the ith physical qubit
in one of the logical qubits will affect only the ith physical
qubit in the other logical qubit. As before, we assume that two
errors in a single logical qubit always result in failure. In this
way, we find

P(failure,M) ≈ Pom(2) + Pom(1)
∑

i

(3Pi,sr + εg + Pi,M−N0−1)

+
∑
i<j

[
(3Pi,sr + εg + Pi,M−N0−1)(3Pj,sr + εg + Pj,M−N0−1) − 2Pi,srPj,sr

]
, (E7)

which we compute for both architectures using Eqs. (E4) and
(E5). The probability of failure per time step is then

pf = P(failure,M)/M, (E8)

and the threshold for quantum error correction can be
determined by comparing this probability to the probability
of failure without error correction. The results are shown in
Fig. 12. As in the case of quantum memory, we find that the
error threshold for performing the quantum computation can
be an order of magnitude larger for the RAMM.

FIG. 12. Ratio of the computational error thresholds with and
without multiqubit measurements as a function of M . Here ε = εom =
εdm = εg, with ε/εst = 1 (solid), 5 (dashed), and 10 (dotted). The
range of M starts from 11, because of the condition M − N0 − 1 � 0.

APPENDIX F: CHARACTERISTIC ENERGY SCALES
OF THE PROBLEM

We need to satisfy the following inequalities:

EJ,k,h̄	k,�g > EJ,0,h̄	0,h̄ω0 � EM,�max

� kBT ,�min, (F1)

where h̄	k ≈ √
8EJ,kEC,k is the plasma frequency of the

small islands and �g ∼ 100 GHz is the induced gap in
the nanowire. The condition EM,�max � kBT is required to
guarantee a relaxation to the ground state. In the earlier sections
we assumed that EM � Uk in order to make our analytical
calculations more transparent, but in view of the topological
nature of the braiding our results must remain valid also when
EM and �max are comparable to each other. This is easy to
understand, since independently of the ratio of Uk and EM,
as long as the ground-state manifold remains isolated from
the excited states the adiabatic time-evolution operator for
the braiding cycle takes the form of Eq. (5), because of the
topological nature of the operation.

Additionally, during the measurement we need to satisfy
the inequalities

EM � �+ (F2)

and

ωshift > κ, (F3)

where κ ∼ 1–10 MHz describes the characteristic cavity
and qubit decay rates. The typical coupling between the
microwaves and transmon is given by g/2π ∼ 100 MHz.
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FIG. 13. (Color online) The dependence of the Coulomb coupling
Uk on the ratio EJ,k/EC,k . The solid black line shows the exact solution
obtained using Mathieu functions (Ref. 17), and the dashed red line
shows the approximation [Eq. (1)], which is valid in the asymptotic
limit EJ,k/EC,k � 1.

The first set of inequalities can be satisfied with transmon
parameters EJ,0,h̄	0,h̄ω0 ∼ 100 GHz, EM,�max ∼ 10 GHz,
and kBT ∼ 1 GHz. The condition �max ∼ 10 GHz can be
satisfied by having very large plasma frequency 	k or
alternatively by tuning the EJ,k(�max)/EC,k ratio to be smaller
than 10, so that the superconducting islands do not stay in the
transmon regime. As shown in Fig. 13, much larger Coulomb

couplings can be achieved in this way, although the asymptotic
expression given by Eq. (1) is no longer valid.

Importantly, the insensitivity of the couplings �k to noise
is needed only when the couplings are turned off. Since the
topological protection of the braiding result allows errors
only of order �min/�max, the exponential smallness of �min

guarantees that the result of the braiding cycle is not sensitive to
low-frequency charge noise, which affects only the couplings
that are turned on.

By assuming that EJ,0/EC,0 = 10 during the measurement,
we obtain, from Eq. (A21), �+ ∼ 10−2EJ,0, which is consis-
tent with the chain of inequalities. The inequality (F3) can be
satisfied by tuning δω and does not contradict the requirement
that we are working in the dispersive limit.

As we have just remarked, the errors in the braiding are
on the order of �min/�max, which can be made exponentially
small. The braiding and measurement should be performed fast
in comparison to h̄/�min and the characteristic quasiparticle
tunneling time, which is on the order of milliseconds.54,55 In
order that �min is limited by the charging energy, we need
�g exp(−L/ξ ) < �min, where L is the length of the wire and
ξ is the Majorana decay length in the wire. Assuming that
�g ∼ EJ,k , this means that L ≈ 20ξ , so that L should be at
least several microns.
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