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Persisting topological order via geometric frustration
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We introduce a toric code model on the dice lattice which is exactly solvable and displays topological order
at zero temperature. In the presence of a magnetic field, the flux dynamics is mapped to the highly frustrated
transverse field Ising model on the kagome lattice. This correspondence suggests an intriguing disorder by
disorder phenomenon in a topologically ordered system implying that the topological order is extremely robust
due to the geometric frustration. Furthermore, a connection between fully frustrated transverse field Ising models
and topologically ordered systems is demonstrated which opens an exciting physical playground due to the
interplay of topological quantum order and geometric frustration.
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Introduction. Topological quantum order, as introduced by
Wen in the context of high-temperature superconductivity,1,2

has become a very active research topic in recent years, since
it plays an important role for the physics of the fractional
quantum Hall effect, for frustrated magnetism, and in the field
of quantum information due to the fascinating perspective to
build a topological quantum computer which is protected from
local decoherence.3,4

One of the standard models displaying all essential features
of topological quantum order at zero temperature, e.g., a
ground-state degeneracy depending on the genus and ele-
mentary excitations with fractional statistics, is Kitaev’s toric
code3 which is an exactly solvable two-dimensional quantum
spin model. The toric code therefore represents a perfect
starting point to study fundamental properties of topologically
ordered quantum systems, e.g., several works have studied the
robustness and the associated topological phase transitions of
the toric code on the square lattice in the presence of a magnetic
field.5–11

Although the full phase diagram of the toric code in a
magnetic field is very rich,10 one finds generically a quantum
phase transition in the 3d Ising universality class between
the topologically ordered phase and a conventional polarized
phase where spins are aligned along the field direction. This
behavior is best understood for a single parallel field where the
well-known duality between Z2 gauge theories and unfrus-
trated transverse field Ising models (TFIMs) applies.5,6,12–14

Physically, the parallel magnetic field induces kinetic energy
into the system and the quantum phase transition out of the
topological phase corresponds to a condensation of elementary
charge or flux excitations of the topological phase which live
on the dual lattice.14,15

Hence, one might wonder whether also duality mappings
between toric code models in a field and frustrated Ising
models exist. This would imply that the elementary excitations
in the topological phase gain less kinetic energy by the
magnetic field due to the frustrated geometry and, as a
consequence, the topological order is expected to be very
robust, i.e., the topological phase is stable up to larger values
of the magnetic field. Let us note that, in a similar spirit, it has
been found that disorder-induced frustration also strengthens
topological order.16 Furthermore, the very rich physics of fully
frustrated TFIMs should be also present in systems displaying

topological quantum order, e.g., topological phase transitions
in different universality classes are expected.17,18

The TFIM on the kagome lattice realizes a disorder
by disorder scenario,17–19 i.e., the ground state is quantum
disordered for any value of the field. Assuming a mapping of
the kagome TFIM to a toric code in a magnetic field implies
an ultimately robust topological quantum order for any value
of the field due to the strong geometric frustration. In other
words, quantum fluctuations induced by the toric code on the
extensively many classical ground states select a topologically
ordered spin liquid ground state, a scenario first suggested by
Anderson and Fazekas.20,21

In this paper, we present such a disorder-by-disorder
scenario for the toric code on the dice lattice. Furthermore,
we demonstrate a general connection between perturbed toric
codes and fully frustrated TFIMs.

Model. The Hamiltonian of the toric code on the dice lattice
is given by

H = −J t
∑

t

Xt − J s
∑

s

Xs − Jp
∑

p

Zp, (1)

where t refers to triangles, s to stars, and p to plaquettes as
displayed in Fig. 1. The corresponding operators are defined by
Xt = ∏

i∈t σ x
i , Xs = ∏

i∈s σ x
i , and Zp = ∏

i∈p σ z
i where the

σα
i ’s with α ∈ x,y,z are the usual Pauli matrices. Plaquettes

always share an even number of sites with triangles or stars
and one finds [Zp,Xt ] = [Zp,Xs] = [Xt,Xs] = 0 for any
plaquette p, triangle t , and star s. The eigenvalues zp = ±1,
xt = ±1, and xs = ±1 of these operators are therefore
conserved quantities which allows an exact solution of Eq. (1).

Ground states. In the following we assume J α > 0 with
α ∈ t,s,p. As a consequence, ground states correspond to
states having all eigenvalues zp = xt = xs = +1. The number
of ground states depends on the genus and the system is
topologically ordered. To be explicit, the ground state is unique
for an open plane

|0〉 = 1

N
∏

t

1 + Xt

2

∏
s

1 + Xs

2

∏
p

1 + Zp

2
|⇒〉, (2)

where N is a normalization constant and |⇒〉 corresponds
to a fully polarized state where all spins point in the x

direction. In contrast, on the torus one has two conserved
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FIG. 1. (Color online) Illustration of the toric code model on the
dice lattice (thin black lines) with periodic boundary conditions on
a torus. Spin 1/2 degrees of freedom are located on the links of the
lattice and are denoted by big red dots. The links with open red
circles on the upper (right) end of the cluster have to be identified
with corresponding links on the lower (left) end. Operators Xt , Xs ,
and Zp are defined on triangles t , stars s, and plaquettes p. The
noncontractible loop operators Zμ with μ ∈ {1,2} are defined on
contours C1 (dotted line) and C2 (dashed line).

noncontractible loop operatorsZμ = ∏
i∈Cμ

σ z
i with μ ∈ {1,2}

defined on contours Cμ (see Fig. 1) and one obtains the four
ground states

|z1,z2〉 =
(
1 + z1Z1

2

) (
1 + z2Z2

2

)
|0〉, (3)

where zμ ∈ {±1} denotes the eigenvalues of the operators Zμ.
As for the conventional toric code,3 one finds a ground-state
degeneracy 4g for a system with genus g.

Excitations. Elementary excitations are states where one
eigenvalue out of xt , xs , or zp is −1. In contrast to the
conventional toric code on the square lattice, there are two
types of charges, one on triangles (xt = −1) and one on
stars (xs = −1). Additionally, there are fluxes on plaquettes
having zp = −1. All excitations are static and noninteracting
because they are protected by conservation laws. Charges and
fluxes have a mutual semionic statistics, i.e., charges and
fluxes among themselves are hard-core bosons but one gets
a nontrivial factor −1 when braiding charges around fluxes
(or vice versa).

Toric code in an x field. Let us add a magnetic field
Hx = −hx

∑
i σ

x
i to the toric code. Triangle and star operators

still commute with the full Hamiltonian and their eigenvalues
remain conserved quantities. The Hilbert space therefore
separates into sectors where each block corresponds to a fixed
configuration of charges.

The topologically ordered ground state of the bare toric
code (hx = 0) is in the charge-free sector having xt =xs = +1
on all triangles and stars. The physics in this sector at finite
fields depends only on the flux excitations. To be specific,
the action of σx

i on any eigenstate of the toric code results
in flipping the eigenvalues zp of the two plaquette operators
Zp which are attached to site i. As a consequence, the fluxes
acquire a finite dispersion due to kinetic energy induced by
the magnetic field hx . Introducing pseudospin 1/2 operators
τα
ν with α = x,y,z on the sites ν of the dual kagome lattice

of plaquettes p [see Fig. 2(a)], one obtains the kagome TFIM
which is given by

H = −Jp
∑

ν

τ z
ν − hx

∑
〈ν,ν ′〉

τ x
ν τ x

ν ′ , (4)

FIG. 2. (Color online) Illustration of the (a) dual kagome lattice
formed by the centers of plaquettes p (black circles ν) and of the
(b) dual dice lattice build by the centers of triangles and stars (black
triangles ν and stars μ). The small red circles denote in both figures
the location of the link variables on the original dice lattice displayed
in Fig. 1.

where the second sum runs over all bonds of the kagome
lattice. The presence or absence of a flux on plaquette p is
encoded in a pseudospin pointing in the +z or −z direction.
The topological phase is mapped to the polarized phase in the
dual language. Consequently, the energetic properties of fluxes
in the topological phase are identical to spin-flip excitations in
the kagome TFIM.

The physics depends strongly on the sign of hx , since
the Ising coupling in Eq. (4) is ferromagnetic for hx > 0
and antiferromagnetic for hx < 0. The ferromagnetic case
is rather conventional. Here, the model is unfrustrated, and
one expects a second-order phase transition in the 3d Ising
universality class between the topologically ordered phase and
the polarized phase as for the conventional toric code on the
square lattice. The low-energy physics is thus taking place in
the flux-free sector for the whole ferromagnetic parameter axis,
since also the polarized ground state is part of this sector. We
have calculated the one-flux gap with momentum �k = (0,0)
up to order 13 in hx/J .22 Using dlog Padé extrapolation,23 the
quantum critical point is located at a ratio hx/J = 0.3390(5)
with an exponent ν ≈ 0.644 fully consistent with a 3d Ising
transition (ν3d Ising ≈ 0.630).24

The antiferromagnetic case hx < 0 is fundamentally differ-
ent due to the strong frustration. Translating the properties
of the kagome TFIM to the perturbed toric code,19 the
flux excitation remains gapped for any value of the field.
The topological phase is therefore robust on the whole
antiferromagnetic parameter axis in the charge-free sector.
This robustness is a consequence of the frustrated kinetics
of flux excitations resulting in a strongly reduced bandwidth
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for fluxes. In fact, the lowest flux band is completely flat up to
order 7 in perturbation theory.19

It is also enlightening to interpret the physics from the limit
Jp → 0 which corresponds to the pure Ising model on the
kagome lattice in the dual language. Here, the kagome TFIM
realizes an intriguing disorder-by-disorder scenario.19 One has
infinitely many classical ground states and an infinitesimally
small Jp selects a quantum disordered polarized phase as a
unique ground state. For the toric code in the presence of
an antiferromagnetic x field, one also has extensively many
classical ground states for Jp = 0 due to the charge-free
constraint xt = +1 on all triangles. These states have exactly
one spin on each triangle pointing in the (+x) direction which
corresponds to an energy per site ecf

0 = (2hx − 2J t − J s)/6.
The duality to the kagome TFIM then implies that the quantum
fluctuations induced by the plaquette operators Zp directly
select a quantum disordered topologically ordered ground state
(a Z2 spin liquid) which persists for any value of Jp up to the
limit of the bare toric code.

Next we discuss under which conditions the low-energy
physics of the toric code in an x field is indeed contained in the
charge-free sector. This question can be answered in the limit
Jp = 0 where all eigenstates are classical states. A natural
competitor to the charge-free states is then the fully polarized
state |⇐〉 where all spins point in the (−x)-direction, since this
state minimizes the field term for hx < 0. Its energy per site is
given by e⇐

0 = (6hx + 2J t − J s)/6 because one has xt = −1
and xs = +1 for all triangles and stars. The classical charge-
free states therefore have a lower energy than the polarized
state |⇐〉 whenever |hx | < J t for Jp = 0. Consequently, it is
always possible to enlarge the topological phase by increasing
the ratio J t/|hx |.

Toric code in a z field. Now we consider the effect of a
magnetic field Hz = −hz

∑
i σ

z
i added to the toric code. In this

case the plaquette eigenvalues zp are still conserved quantities
and each flux sector can be studied separately. The remaining
degrees of freedom are then the charge excitations on triangles
and stars which live on a dual dice lattice [see Fig. 2(b)].

The low-energy physics takes place in the flux-free sector
as for the conventional toric code. Defining pseudospin 1/2
operators τα

ζ with α = x,y,z on the sites ζ of the dual dice
lattice of triangles t and stars s, one obtains a TFIM on the
dice lattice

H = −J t
∑

ν

τ z
ν − J s

∑
μ

τ z
μ − hz

∑
〈ν,μ〉

τ x
ν τ x

μ, (5)

where we distinguish between sites ν (μ) of triangles (stars)
as illustrated in Fig. 2(b). For J t = J s ≡ J , one has the
isotropic TFIM on the dice lattice which is unfrustrated and one
expects a quantum phase transition in the 3d Ising universality
class. This is confirmed by analyzing the high-order series
expansion of the one-charge gap with momentum �k = (0,0)
which we have determined up to order 8 in hz/J .22 Using dlog
Padé extrapolation,23 the quantum critical point is located at
hz/J ≈ 0.3095(2) with an exponent ν ≈ 0.649. Since the dice
lattice is bipartite, one gets the same kind of quantum critical
point for negative fields at hz/J ≈ −0.3095(2). Similarly,
one expects the same universal behavior for anisotropic
ratios J t �= J s .

Dualities to fully frustrated TFIMs. The intriguing duality
between the toric code in an x field on the dice lattice and
the antiferromagnetic kagome TFIM can be generalized to
fully frustrated TFIMs on other lattices. Fully frustrated Ising
models obey the constraint

∏
plaquette(−Jij /J ) = −1 on every

elementary plaquette of the lattice with the nearest-neighbor
exchange |Jij | = J between sites i and j , e.g., on the square
lattice one can take three ferromagnetic and one antiferro-
magnetic coupling on each plaquette. As a consequence, there
exist extensively many ground states for the pure Ising model
due to the geometric frustration. In contrast to the kagome
TFIM, a transverse magnetic field gives rise to an order by
disorder scenario on most lattices, i.e., quantum fluctuations
select an ordered (symmetry-broken) ground state from the
degenerate manifold which then breaks down by a quantum
phase transition to a polarized phase for larger values of the
field.17,18 Assuming dualities between fully frustrated TFIMs
and toric code models in a field implies the existence of
interesting quantum phase transitions between topologically
ordered quantum matter and conventionally ordered phases.

In the following we give the explicit construction of such
a duality mapping between the conventional toric code in
a field on the square lattice and the fully frustrated TFIM
on the square lattice. This construction can be generalized
to other lattices in a straightforward manner. To be specific,
we study

H = −Js

∑
s

As − Jp

∑
p

Bp − hx

∑
i

σ x
i ,

where As = ∏
i∈s σ x

i and Bp = ∏
i∈p σ z

i , and we assume
hx > 0 without loss of generality. Subscript s (p) refers to sites
(plaquettes) of a square lattice and i runs over all bonds where
spins are located (see Ref. 3 for details). Charge eigenvalues
as = ±1 of operators As are therefore conserved quantities
and the Hilbert space separates into different sectors of fixed
charged configurations.

Usually, positive couplings Js = Jp = J > 0 are con-
sidered. In this case the low-energy physics takes place
in the charge-free sector with as = +1 for all s, and the
well-known duality between the Z2 gauge theory and the
unfrustrated TFIM on the dual square lattice applies.5,6,12–14

As a consequence, a quantum phase transition in the 3d Ising
universality class between the topologically ordered phase and
the polarized phase is detected for hx/J ≈ 0.328.25

The physics is different for the choice −Js = Jp ≡ J with
J > 0. The topologically ordered ground state in the absence
of the magnetic field hx = 0 is then in the charge-full sector
as = −1 for all sites s (bp = +1 for all plaquette operators
Bp). A finite magnetic field gives then rise to mobile fluxes
which hop in the background of static charges. Performing
the same kind of duality mapping as above by introducing
pseudospin operators on the sites of the dual square lattice
(of plaquettes), one finds that the charge-full sector is dual to
the fully frustrated TFIM on the square lattice. Note that such
dualities between odd Ising gauge theories and fully frustrated
TFIMs have been already discussed in the context of quantum
dimer models.26

The fully frustrated TFIM on the square lattice realizes a
3d XY quantum phase transition18,27–29 between the polarized
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phase and a columnar ordered phase at a critical ratio hx/J ≈
0.634.29 Consequently, the extension of the topological phase
(corresponding to the polarized phase in the dual language) is
again enlarged due to the frustration. Physically, the frustration
in the TFIM is induced by the presence of the background
charge in the charge-full sector of the topological phase.

As for the perturbed toric code on the dice lattice, one
has to investigate the role of other charge sectors for the low-
energy physics. Indeed, the magnetic field term favors the fully
polarized state |⇒〉 where all spins point in the (+x) direction.
This state is in the charge-free sector and, as a consequence,
one expects a first-order phase transition at a certain ratio hx/J

when the charge-free sector contains the true ground state of
the system. For Jp = 0, the classical energies per site are given
by e⇒

0 = (J − 2hx)/2 and e
charge-full
0 = (−J − hx)/2 such that

the charge-full sector contains the ground state for J > hx/2.
Thus, it is always possible to stabilize the charge-full sector
including the 3d XY quantum phase transition by enlarging
the ratio Js/hx .

For the specific case −Js = Jp ≡ J with J > 0, we have
calculated the ground-state energy per site e

charge-full
0 of the

topological phase up to order 8 in hx/J which is equivalent
to the ground-state energy per site of the polarized phase
in the dual fully frustrated TFIM on the square lattice (up
to the constant energy Js/2 = −J/2 due to the presence of
charges).22 The energy e

charge-full
0 has to be compared to the

ground-state energy per site of the charge-free sector. The latter
sector is dual to the conventional unfrustrated TFIM on the
square lattice (up to a constant energy offset −Js/2 = +J/2
due to the absence of charges) and series expansions of e0 for
the ordered and disordered phase are available.30,31 Altogether,
by comparing both sectors, it can be clearly deduced that
the low-energy physics takes place in the charge-full sector
for hx/J well larger than the 3d XY quantum critical point
at ≈0.634.29 Interestingly, the presence of the background
charge, or equivalently the geometric frustration in the dual
picture, leads to a different universality class compared to the
charge-free (unfrustrated) case.

Conclusions. In this work we studied the impact of geo-
metric frustration on topologically ordered quantum matter. It
is found that the robustness of topological order is enhanced
if the kinetics of anyonic excitations is reduced due to the
geometric frustration. Furthermore, a plethora of fascinating
phenomena including a disorder-by-disorder scenario for the
toric code on the dice lattice are presented for topologically
ordered quantum phases and their breakdown which opens an
interesting playground for future research.
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25H. W. J. Blöte and Y. Deng, Phys. Rev. E 66, 066110 (2002).
26R. Moessner, S. L. Sondhi, and E. Fradkin, Phys. Rev. B 65, 024504

(2001).
27D. Blankschtein, M. Ma, and A. N. Berker, Phys. Rev. B 30, 1362

(1984).
28C. Xu and S. Sachdev, Phys. Rev. B 79, 064405 (2009).
29S. Wenzel, T. Coletta, S. E. Korshunov, and F. Mila, Phys. Rev.

Lett. 109, 187202 (2012).
30H.-X. He, C. J. Hamer, and J. Oitmaa, J. Phys. A 23, 1775 (1990).
31J. Oitmaa, C. J. Hamer, and Z. Weihong, J. Phys. A 24, 2863 (1991).

035118-4

http://dx.doi.org/10.1103/PhysRevB.39.11413
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1007/3-540-49208-9_31
http://dx.doi.org/10.1007/3-540-49208-9_31
http://dx.doi.org/10.1103/PhysRevLett.98.070602
http://dx.doi.org/10.1103/PhysRevLett.100.030502
http://dx.doi.org/10.1103/PhysRevLett.100.030502
http://dx.doi.org/10.1103/PhysRevB.79.033109
http://dx.doi.org/10.1103/PhysRevB.79.033109
http://dx.doi.org/10.1103/PhysRevB.80.081104
http://dx.doi.org/10.1103/PhysRevB.80.081104
http://dx.doi.org/10.1103/PhysRevB.82.085114
http://dx.doi.org/10.1103/PhysRevLett.106.107203
http://dx.doi.org/10.1103/PhysRevB.85.195104
http://dx.doi.org/10.1103/PhysRevB.85.195104
http://dx.doi.org/10.1063/1.1665530
http://dx.doi.org/10.1103/PhysRevD.19.3682
http://dx.doi.org/10.1103/RevModPhys.51.659
http://dx.doi.org/10.1103/PhysRevD.17.2637
http://dx.doi.org/10.1103/PhysRevB.83.075124
http://dx.doi.org/10.1103/PhysRevB.83.075124
http://dx.doi.org/10.1103/PhysRevLett.84.4457
http://dx.doi.org/10.1103/PhysRevLett.84.4457
http://dx.doi.org/10.1103/PhysRevB.63.224401
http://dx.doi.org/10.1103/PhysRevB.87.054404
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1080/14786439808206568
http://link.aps.org/supplemental/10.1103/PhysRevB.88.035118
http://link.aps.org/supplemental/10.1103/PhysRevB.88.035118
http://dx.doi.org/10.1088/0305-4470/28/22/007
http://dx.doi.org/10.1088/0305-4470/28/22/007
http://dx.doi.org/10.1103/PhysRevE.66.066110
http://dx.doi.org/10.1103/PhysRevB.65.024504
http://dx.doi.org/10.1103/PhysRevB.65.024504
http://dx.doi.org/10.1103/PhysRevB.30.1362
http://dx.doi.org/10.1103/PhysRevB.30.1362
http://dx.doi.org/10.1103/PhysRevB.79.064405
http://dx.doi.org/10.1103/PhysRevLett.109.187202
http://dx.doi.org/10.1103/PhysRevLett.109.187202
http://dx.doi.org/10.1088/0305-4470/23/10/018
http://dx.doi.org/10.1088/0305-4470/24/12/024



