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Interaction-driven transition between topological states in a Kondo insulator
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Heavy fermion materials naturally combine strong spin-orbit interactions and electronic correlations. When
there is precisely one conduction electron per impurity spin, the coherent heavy fermion state is insulating. This
Kondo insulating state has recently been argued to belong to the class of quantum spin Hall states. Motivated by
this conjecture and a very recent experimental realization of this state, we investigate a model for Kondo insulators
with spin-orbit coupling. Using dynamical mean-field theory we observe an interaction-driven transition between
two distinct topological states, indicated by a closing of the bulk gap and a simultaneous change of topological
invariants as obtained in a classification which takes into account lattice symmetries. At large interaction strength
we find a topological heavy fermion state, characterized by strongly renormalized heavy bulk bands, hosting a
pair of zero-energy edge modes. The model allows a detailed understanding of the temperature dependence of
the single particle spectral function and in particular the energy scales at which one observes the appearance of
edge states within the bulk gap.
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I. INTRODUCTION

Following the theoretical discovery of the quantum spin
Hall (QSH) effect1–3 and its experimental realization in HgTe
quantum well systems4,5 the field of topological insulators
has attracted a lot of research interest. Most intriguing is
the fact that this state cannot be connected adiabatically6

to a conventional insulating state. As a consequence, on
the boundary between a topological insulator and a trivial
insulator a pair of helical edge modes, which are robust against
disorder and interaction effects, emerges.8,9 The interplay of
correlation effects and topology has become a very active field
of research.10 Recently a study of the so-called Kane-Mele-
Hubbard model by means of quantum Monte Carlo revealed
that the topological insulator phase exists up to rather large
values of U before undergoing a continuous phase transition
to an antiferromagnetically ordered state, thereby breaking
TRS.11,12 In the disordered phase the interplay of the collective
spin mode and topology of the band structure leads to novel
effects and model systems.13,14

Hubbard-like correlations have equally been included
within dynamical mean-field theory (DMFT) for a variety of
models including the BHZ model15 of the QSH effect in HgTe
quantum wells.16–19 At the DMFT level, collective modes are
absent and correlation-driven transitions can be understood
in terms of a renormalization of the band structure due to a
constant real part of the self-energy or due to dynamical effects,
which can lead to the divergence of the effective mass.

DMFT is the method of choice to understand the salient
temperature dependent features of heavy fermion physics,20

in particular the coherent heavy fermion state.21,22 Below
the coherence temperature, the individual Kondo screening
clouds of the magnetic impurities overlap coherently to form
the heavy fermion liquid. This state of matter is adiabatically
connected to the non-interacting system and is hence a Fermi
liquid. The ultimate signature of coherence in models of
heavy fermions is the Kondo insulating state, where there
is precisely one conduction electron paired with an impurity
spin.23 Prototypical Kondo insulators are YbB12, CeNiSn,
Ce3Bi4Pt3, and SmB6.24 As proposed in Refs. 25 and 26 a

state with a nontrivial band topology may be realized in Kondo
insulating systems due to the strong spin-orbit coupling present
in these materials, even in the presence of strong electron-
electron correlations. In other words, under certain conditions
the Kondo insulating state is adiabatically connected to a
noninteracting insulator with a nontrivial band topology. This
results from the odd-parity wave function of the f electrons,26

which leads to a nontrivial, momentum-dependent hybridiza-
tion between f electrons and conduction electrons. Very
recently, the Kondo insulator SmB6 was investigated using
an experimental setup suited to identify nonlocal transport
effects.27 A topological Kondo insulating state was indeed
found to exist,27–29 explaining very naturally both the residual
conductivity as T → 0 and the existence of in-gap states found
in ARPES measurements.30 Follow-up investigations using a
similar method may very well find topologically nontrivial
states in other Kondo insulating materials, which are up to
now not very well understood.27

The aim of this paper is to investigate models of heavy
fermions within the DMFT framework which have a topo-
logical Kondo insulating ground state. One of our central
interests is to assess if this state of matter can occur in
the strong coupling local moment regime. In Sec. II we
describe our model for topological Kondo insulators. Next
we briefly introduce the concept of the topological invariant
and explain its evaluation for an interacting system, using
the so-called topological Hamiltonian. After describing our
method in Sec. IV, we determine the topological properties of
the model. In Secs. V and VI we present our main findings,
before concluding in Sec. VII.

II. TOPOLOGICAL KONDO INSULATOR

We will devise a model appropriate for Ce-based com-
pounds in two dimensions (2D).31 Our starting point is the Ce
ion’s J = 5/2 multiplet, which originates from the 4f orbitals
in the presence of spin-orbit coupling. In the solid state, the
multiplet is split further by the crystal electric field, with the
splitting depending on the lattice symmetry.26 We assume that
the ground state of the magnetic ion is a Kramer’s doublet,
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which we call f states. In the simplest case, they hybridize with
a single conduction band (d states). With these ingredients we
build a model quite similar to the periodic Anderson model
(PAM) on a 2D square lattice. The resulting Hamiltonian is

H = H0 + HU ,

H0 =
∑
k∈BZ

(
d
†
k

f
†
k

)T (
Ed(k) V ∗�†(k)
V �(k) Ef (k)

)(
dk

fk

)
, (1)

HU = U
∑

i

n
(f )
i↑ n

(f )
i↓ ,

where �(k),Ed (k), and Ef (k) are 2 × 2 submatrices, and
encode all the information on the geometry and the effect
of spin-orbit coupling. We use (d†

k f
†
k ) as a short hand notation

for (d†
k↑ d

†
k↓ f

†
k↑ f

†
k↓), creating an electron in the conduction

band and the almost localized band, respectively. Here ↑ and
↓ denote the pseudospin quantum number.

Due to spin-orbit coupling the f states are eigenstates
of the total angular momentum J , and hence hybridize with
conduction band states with the same symmetry. This gives rise
to the momentum dependence and nontrivial orbital structure
of the form-factor �(k).26 Following the derivation in Ref. 32,
we obtain

Ed (k) = −2t[cos(kx) + cos(ky)]1,

Ef (k) = {εf − 2tf [cos(kx) + cos(ky)]}1,

�(k) = �d(k) ◦ �σ ,

where

�d(k) = [2 sin(kx),2 sin(ky),0],

formulated in the basis of the Pauli matrices �σ and the 2 × 2
unit matrix 1. The fact that Ed,f (k) [ �d(k)] is even (odd)
under the transformation k → −k guarantees time reversal
symmetry. The interaction term HU acts only on the almost
localized f states. The delocalized conduction electrons are
only weakly affected by correlation effects, therefore we
neglect interactions on the d orbitals. We let the hybridization
amplitude take a moderate value of V = 0.4 t , and allow for
a small, holelike hopping amplitude between f orbitals, i.e.,
tf = −0.2 t . Both will be renormalized to a smaller value in
the presence of the interaction.

The noninteracting part of our model can be related to the
BHZ model15,17 for HgTe quantum wells exhibiting the QSH
effect. It is given by

H(k) =
(
HBHZ(k) 0

0 H∗
BHZ(−k)

)
,

HBHZ(k) = [m − cos(kx) − cos(ky)]σ z + λ[sin(kx)σ x

+ sin(ky)σ y], (2)

which can be obtained from (1) in the mixed-valence limit
tf = − t . The parameters are related by λ = V and m =
−εf /4. Thus we expect some similarities especially in the
weak coupling limit. Our primary interest however is the
correlation-dominated Kondo insulating state.

III. TOPOLOGICAL INVARIANT

The topological insulator does not connect adiabatically to
the trivial band insulator.8 Both states cannot be characterized
by a local order parameter and one has to resort to the concept
of a global Z2 topological invariant ν = 0,1 to distinguish
them.1 Provided that the protecting time reversal symmetry
is not broken, states characterized by different values of ν

cannot be adiabatically connected without closing the single
particle gap. A formulation of the topological invariant in terms
of the single-particle Green function33,34 quite naturally
extends the concept to interacting systems adiabatically
connected to the noninteracting case.35 It turns out that
the zero-frequency value of the Green function suffices to
characterize the state in terms of the topological invariant,36

which leads to the idea of defining a so-called topological
Hamiltonian37

htopo(k) = −G−1(k,iω = 0) = h0(k) + �(k,iω = 0). (3)

The topological invariant of the interacting system is given by
the topological invariant corresponding to the noninteracting
system governed by the topological Hamiltonian htopo. It char-
acterizes correctly the system in terms of the topological in-
variant, but it does not provide realistic quasiparticle spectra.37

In the presence of inversion symmetry, the calculation of the
topological invariant of (3) is even further simplified.38 One
simply has to calculate the quantity

δi =
∏
m

ξ2m(	i), (4)

where m is the band index and 	i are the four time reversal
invariant momenta in 2D, namely 	, M and the equivalent X

and Y . ξ2m is the corresponding parity eigenvalue at 	i of the
2mth band. The Z2 topological invariant is then obtained via

(−1)ν =
∏

i

δi . (5)

As already noted in Ref. 38, the presence of inversion sym-
metry generates new topological invariants since each of the
δi acquires a gauge independent meaning. This idea has been
pushed further to include the space-group thereby providing an
even finer symmetry classification of topological insulators.39

As the parities are conserved, the corresponding phases are
separated by a quantum phase transition where the bulk band
gap closes. In particular, the BHZ model on the square lattice
exhibits two distinct, topologically nontrivial phases. The
	 phase with the parities δi = (−1,1,1,1) is characterized
by a skyrmion structure of the Berry phase centered at
zero momentum, while the M phase with δi = (1, − 1,1,1)
exhibits a Berry phase skyrmion at finite momentum, and
was therefore termed a “translationally active” topological
insulator in Ref. 40. It has different physical properties since
only in this phase dislocations can act as a π flux, binding
zero-energy modes. In addition, the model may exhibit an
insulating phase associated with the equivalent X and Y points
with a trivial band topology, which is in fact realized by
introducing a long-range hopping.39
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FIG. 1. (Color online) Phase diagram of the topological
Hamiltonian (7) for tf = −0.2 t . On the lines where the right-hand
side of Eq. (8) evaluates to zero, the topological invariant is not
defined, and the system is in a gapless, semimetallic state. The
colored, thick lines represent the simulation runs for different εf

and U and the analytical results at U = 0 were �0 = 0. The line
color corresponds to the band gap size �g . The actual gap closings
coincide very well with the predicted transition lines. In a certain part
of phase space, instead of the M phase, a possible nontopological
Mott phase was found. There the colored lines end. NI denotes the
trivial insulator.

IV. METHOD

We employ the DMFT to make our model system (1)
accessible to numerical methods.41 The central approximation
of the DMFT is the assumption of a momentum-independent
self-energy

�(k,iω) ∼ �(iω). (6)

This approach neglects nonlocal correlations. In addition, as
we are interested in the properties of the paramagnetic phase,
we do not allow for magnetically ordered states, which would
break TRS. This translates to a simplification of the topological
Hamiltonian (3), which is now the original Hamiltonian
renormalized by a constant

htopo(k) = h0(k) + �(iω = 0) = h0(k) + �0. (7)

We can now find an explicit formula for the Z2 topological
invariant (5) in terms of our model’s bare parameters and the
renormalization constant �0:

(−1)ν = sign(εf + �0)2 sign(4t − 4tf − �0 − εf )

× sign(4tf − 4t − �0 − εf ). (8)

The resulting phase diagram in terms of εf and �0 is shown
in Fig. 1. It represents a road map, which simplifies the
characterization of the system’s state once �0 = �0(U ) is
known. The simplification (6) allows for a mapping of the
lattice problem (1) to an auxiliary single-impurity problem,
which describes a fully correlated impurity Himp coupled to
a noninteracting bath. It can be formulated in terms of an
effective action

Seff =
∫

dτdτ ′f †(τ )�(τ − τ ′)f (τ ′) +
∫

dτ Himp(τ ). (9)
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FIG. 2. Band dispersion for the noninteracting case with open
boundaries in the y direction: (a) crossing at 	 and (b) crossing at X.
The position of the crossing depends on the gauge used.

The bath parameters �(τ ) have to be obtained in a self-
consistent manner. Once convergence is reached, the impurity
self-energy is equivalent to the local self-energy �(iω) of the
original system.

We use the numerically exact CT-HYB quantum Monte
Carlo algorithm42,43 as the impurity solver at low but finite
temperature, which yields the self-energy in imaginary fre-
quency. The inverse temperature was chosen as βt = 100 in
most cases, while close to the transitions it was increased up
to βt = 300.

In the Fermi liquid regime Im[�(iω)] ∼ iω, while the
real part can be extrapolated reliably to a finite value, i.e.,
Re[�(iω → 0)] = �0. From the local one-particle Green’s
function in imaginary time Gloc(τ ) � exp(τε±) we infer the
position of the upper and lower band edges ε±. This method
fails when the band gap size becomes comparable to or smaller
than the finite simulation temperature.

V. TRANSITION BETWEEN DISTINCT TOPOLOGICAL
STATES

In Fig. 1 the phase diagram of the topological Hamilto-
nian is shown, superimposed with numerical results for the
evolution of the band gap size �g as a function of �0(U )
for different values of εf . Positioning the bare f level at
εf = −2.0 t puts the system in a topological insulating state
at U = 0, with a bulk band gap �g ≈ 0.88 t . On a geometry
with open boundaries or with an interface to a conventional
insulator, this leads to the formation of a pair of zero-energy
edge modes inside the bulk gap, as depicted in Fig. 2.

This state is equivalent to the 	 phase of the BHZ model.
As we slowly increase U , the system stays in this phase as
long as the bulk gap remains open and TRS is not broken
spontaneously. The results for the bulk band gap size �g are
shown in Fig. 3. While increasing U , we adapt the position of
the chemical potential μ to always stay approximately in the
center of the band gap. This way we also ensure that the system
is precisely half-filled. Approaching U = 4.0 t , the size of the
band gap smoothly decreases, and the gap eventually closes.
In this parameter range the band gap is too small to be reliably
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FIG. 3. (Color online) Evolution of the bulk band gap with
increasing U for different values of εf . The solid curves are guides
to the eye.

calculated with the above method. As a result, the values for
the band gap size around U = 4.0 t were not included in Fig. 3.

Right at U = 4.0 t the system is in a semimetallic state
where the topological invariant is not defined, and can therefore
change discontinuously while crossing this point in phase
space. In the phase diagram of Fig. 1 this point is exactly on
the black, singular line given by �0 = −εf . Increasing U even
further leads to a reopening of the band gap. The calculation of
the topological invariant using the topological Hamiltonian (7)
reveals that for U > 4.0 t the system is still in a topological
insulating state. Not surprisingly, it is distinct from the state at
U = 0. Due to the band gap closing at U = 4.0 t , an adiabatic
connection to the 	 phase is not possible. Instead this state
is connected to a different topological state, namely the one
present for εf > 0. This state is in fact equivalent to the
M phase of the BHZ model. The adiabatic connection can
indeed be established by smoothly changing εf and U in a
way, such that the system stays in this phase. This is done
in a simulation run starting at εf = −2.0 t, U = 6.0 t , which
corresponds to �0 ≈ 2.3 t , and evolving the parameters to
εf = +1.0 t and U = 0, while staying well away from the
singular line �0 = −εf . Along this path we find no gap
closing, as the uppermost colored, somewhat wiggly line in
Fig. 1 clearly shows. We explicitly calculated the parities δi

and found agreement with the combination of parities of the
	 phase and the M phase, respectively. This signifies that at
U = 4.0 t we observe a transition between these two distinct
topological states, which is driven by the interaction.

VI. HEAVY BAND TOPOLOGICAL INSULATOR

One can think of other paths in the phase diagram of
the topological Hamiltonian. For the choice εf = −6.0 t the
noninteracting system is an insulator with a trivial band
topology. The weakly dispersing f band is separated from the
d band by a band gap �g ≈ 1.2 t . Smoothly increasing U leads
to a phase transition to the 	 phase once the transition line in
Fig. 1, defined by �0 = 4tf − 4t − εf , is reached, which is the
case at U ≈ 1.25 t . Indeed, this transition is the one observed
in Refs. 17 and 44 in the BHZ-Hubbard model for m > 2 at
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FIG. 4. (Color online) Evolution of the renormalization constant
�0 and the effective mass mf with increasing U for εf = −6.0 t . The
horizontal lines indicate the predicted transition lines to the 	 phase
at �0 = 1.2 t and the M phase at �0 = 6.0 t obtained from (8). The
solid curves are guides to the eye.

weak coupling strengths. Beyond the semimetallic transition
point, as the system is driven deeper into the topological
insulator phase, the band gap size increases. It starts to decrease
again beyond U = 3.0 t . For values of U > 8.0 t the bulk
band gap size becomes very small, signaling the proximity
to the next transition line, which separates the two distinct
topological insulator states of 	 phase and M phase. Figure 4
reveals that the renormalization constant �0(U ) depends on
U in a nonlinear way. As we increase U beyond the value
of U = 8.0 t , the evolution of �0 becomes very flat. While
it approaches the value of �0 = 6.0 t , where the transition
should happen, the effective mass, as defined by

mf = 1 − d Im �(ω)

dω

∣∣∣
ω→0

≈ 1 − Im �(iω0)

ω0
(10)

increases rapidly, and apparently diverges at U ≈ 8.9 t . As
a consequence, Im[�(iω)] remains finite in the limit ω →
0, indicating a possible orbital-selective Mott transition of
the heavy band due to local dynamical fluctuations,45 or
a transition to an antiferromagnetic state, which cannot be
captured in our approach. The possibility of a TRS breaking
transition is supported by the fact that the f band is exactly
half-filled at this point, while the double occupancy is strongly
suppressed. The nature of the transition and the phase lying
beyond the transition cannot be investigated with our current
method. Most probably, due to the approximation of DMFT,
in our simulations the size of the band gap becomes so small
that it cannot be resolved, but it never closes.17,46

To quantify the importance of correlations, and especially
to pin down the local moment regime, it is interesting to
investigate the quantity

� = 1 − 〈n(f )
↑ n

(f )
↓ 〉

〈n(f )
↑ 〉〈n(f )

↓ 〉
, (11)

where � = 0 without correlations. For a local moment, where
the double occupancy is completely suppressed, � = 1. Thus
we can use this quantity as a measure for the impact of
correlations on the system. The evolution of � as a function of
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FIG. 5. (Color online) f -level occupancy, double occupancy, and
the measure of correlation � for εf = −6.0 t as a function of U .

U is plotted in Fig. 5. With increasing U , the occupancy
of the f states decreases. The double occupancy drops
even faster, resulting in an increase of �. In the range of
the transition to the 	 phase at U ≈ 1.25 t , the effect of
correlations is still negligible, i.e., the transition can also be
predicted using a mean-field decoupling of the interaction
Hamiltonian HU .17 As the f orbitals approach half-filling,
correlation effects become very pronounced, as is indicated
by the measure of correlation � taking values close to 1.
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FIG. 6. (Color online) Low energy part of the spectral function for
εf = −6.0 t , with an artificial broadening δ = 0.01. The interaction
strength is (a) U = 5.0 t , which results in band gap of size �g ≈
0.63 t and (b) U = 8.2 t with �g ≈ 0.14 t . Clearly visible is the
formation of the heavy, almost flat bands in the strongly correlated
case.

Thus we have a regime of well-defined localized moments
on the f orbitals for parameters U > 8.0 t , and a small band
gap �g � t separating the weakly dispersing heavy bands.
This becomes manifest also in the spectral function A(k,ω) =
−π−1 Im Tr G(k,ω + iδ). In the small frequency limit we can
expand the self-energy �(ω) ≈ �(ω = 0) + ωd�(ω)

dω
|ω=0. This

way we obtain the low-energy spectrum, as shown in Fig. 6(a)
for the 	 phase with weak correlations, and in Fig. 6(b) with
the strongly renormalized, almost flat bands of the Kondo
insulating state, separated by a small gap �g ∼ Tcoh.

VII. DISCUSSION AND CONCLUSIONS

We have described and studied within the DMFT ap-
proximation a model relevant for the understanding of topo-
logical Kondo insulators. The concept of the topological
Hamiltonian (3) provides a phase diagram which serves as a
road map for the interpretation of the numerical results, as long
as an adiabatic connection to a noninteracting state exists. The
low-temperature phase diagram was found to be very rich. In
particular, it is possible to study a transition via an intermediate
semimetallic state between two distinct topological states, the
	 phase and the M phase, which is driven by the interaction,
and which was not observed previously. With open boundaries,
the two states exhibit zero-energy edge modes crossing at kx =
0 and kx = ±π , respectively. The different nature of the two
topological states was evidenced by establishing the adiabatic
connection to the respective noninteracting states, and by
directly calculating the parities corresponding to the time-
reversal invariant momenta. Starting from a trivial insulating
state at U = 0, we can equally observe an interaction-driven
transition to the 	 phase. This aspect is similar to investigations
of the BHZ-Hubbard model. There the same correlation-driven
transition from a trivial to topological insulator was found.17,44

All observed zero-temperature phases adiabatically connect
to noninteracting states. It is however important to note that
the topological state survives well into the local moment
regime. This regime is characterized by strongly renormalized
bands and a small band gap characteristic of Kondo insulators.
The realization of this state of matter in a simple toy model
allows the detailed study of the temperature evolution of the
single particle spectral function on various topologies with
and without edges. In particular, such studies will provide
a detailed understanding of the emergence of edge states as
the temperature crosses the relevant energy scales of Kondo
physics. This will become of increasing importance once a
Kondo insulating state is realized in Ce-based surface systems
or thin films.31 Our study is not limited to the two-dimensional
case, and can likewise provide insight into three-dimensional
topological Kondo insulators. Again of particular interest is the
temperature dependence of the single particle spectral function
as well as the nature, weak or strong, of the topological state.
Studies along these lines are presently under progress.
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