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Perovskite iridium oxides Srn+1IrnO3n+1 exhibit fascinating phenomena due to the combined effects of spin-
orbit coupling (SOC) and electronic interactions. It was suggested that electronic correlation amplified via
the strong SOC leads to a spin-orbit Mott insulator for n = 1 and 2, while three-dimensional (3D) SrIrO3

remains metallic because of the large bandwidth from the 3D structure. However, this bandwidth-controlled
metal-insulator transition (MIT) is only valid when SOC is large enough to split Jeff = 1/2 and 3/2 bands, while
the mixing of 1/2 and 3/2 bands is conspicuous among the occupied bands. Here, we investigate the MIT as a
function of n using weak-coupling theory. In this approach, the magnetic instability is determined by the states
near the Fermi level rather than the entire band structure. Starting from t2g tight-binding models for n = 1, 2, and
∞, the states near the Fermi level are found to be predominantly Jeff = 1/2 allowing an effective single-band
model. Supplementing this effective Jeff = 1/2 model with Hubbard-type interactions, transitions from a metal
to magnetically ordered states are obtained. Strong-coupling spin models are derived to compare the magnetic
ordering patterns obtained in the weak- and strong-coupling limits. We find that they are identical, indicating that
these iridates are likely in an intermediate-coupling regime.
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I. INTRODUCTION

Spin-orbit coupling (SOC) is often either ignored or treated
perturbatively in correlated electronic materials where 3d or
4d orbitals are active. However, in materials with heavier
atoms, SOC plays an important role in determining the
ground state and often helps stabilize novel phases such
as topological insulators1,2 and spin liquids.3 In particular,
the interplay between SOC and electronic interactions needs
to be understood when these energy scales are comparable.
Iridium oxides (iridates) with 5d orbitals offer a playground
to investigate their combined effects.4–11

In the Ruddlesden-Popper series of iridium oxides,
Srn+1IrnO3n+1, an octahedral crystal field due to oxygen atoms
separates the eg and t2g states, leaving five electrons on the
t2g levels. When SOC is large, these t2g states are split into
Jeff = 1/2 and 3/2, and the system can be viewed as half-filled,
Jeff = 1/2. Since the bandwidth of Jeff = 1/2, Wj , is narrower
than the original bandwidth Wt2g

of all the t2g states without
SOC, the Hubbard interaction U on the half-filled Jeff = 1/2
state is effectively enhanced, as the ratio U/Wj is larger than
U/Wt2g

. Thus the effect of Hubbard interaction in iridates is
amplified due to strong SOC via a narrowing of the bandwidth,
leading to an insulating state in some layered perovskite12–19

and pyrochlore6,7 iridates. This state, dubbed a spin-orbit
Mott insulator, was first reported in single-layered perovskite
Sr2IrO4 (Sr-214).16,17,19

This idea of narrowing the bandwidth was applied to
explain the insulator-metal transition in Srn+1IrnO3n+1 series
as a function of n. While single-layer Sr2IrO4 (Sr-214) with
n = 1 and bilayer Sr3Ir2O7 (Sr-327) with n = 2 are insulators,
three-dimensional SrIrO3 (Sr-113) with n = ∞ is metallic.17

Since the Jeff = 1/2 state made of an equal mixture of dxy ,
dxz, and dyz orbitals is almost isotropic, Sr-113 has a larger
bandwidth than the layered compounds Sr-214 and Sr-327.
U/Wj is smaller in Sr-113, which then leads to a metallic
state in Sr-113. Sr-327, via analogous reasoning, is closer

to a transition from a metal to an insulator with a smaller
charge gap than Sr-214. This mechanism was referred to as a
dimensionality-controlled metal-insulator transition (MIT).17

The above proposal, however, is only valid when SOC is
large enough to split Jeff = 1/2 and 3/2 bands. Once these two
bands are well separated, Wj increases as n increases, and one
can compare it with the Hubbard interaction U . In the opposite
limit, without SOC, the original t2g bandwidth Wt2g

is not very
sensitive to the dimensionality. Therefore, the dimensionality-
controlled MIT scenario strongly depends on the strength of
SOC. With this in mind, it is important to notice recent experi-
mental and theoretical developments. Multiple angle-resolved
photoemission spectroscopy (ARPES) measurements,16,20,21

ab initio calculations,22,23 and a tight-binding theory of Sr-214
and Sr-327 (Ref. 24) report that these two bands are not well
separated, and the mixing between Jeff = 1/2 and 3/2 is not
negligible among the occupied bands.

When SOC is intermediate, close to the values deduced
from ab initio calculations and ARPES, Wj is not well-defined,
and the occupied bands are a mixture of Jeff = 1/2 and 3/2.
As the dimensionality n is increased, the mixing between
1/2 and 3/2 among the occupied bands increases. The actual
bandwidth W in the case of intermediate SOC is larger than
Wt2g

due to the effect of spin-orbit coupling. The estimated
Hubbard U is smaller than this bandwidth W , and a strong-
coupling Mott insulator scheme is questionable. It was pointed
out by Arita et al.23 that Sr-214 is a Slater rather than a Mott
insulator. Given that the magnetic structure does not break
any further translational symmetry, unlike a typical Slater
insulator, the Slater behavior is not immediately apparent.
Thus an understanding of the MIT and how it is associated
with the magnetic ordering in the family of iridates within the
Slater scheme is a pertinent question.

In this paper, we study the MIT as a function of the number
of layers in a unit cell within the Slater picture. If the Slater
picture is appropriate, this approach should reveal a MIT in
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the layered iridates. To proceed, the states near the Fermi level
rather than all the occupied states need to be identified, since
the magnetic instability is determined by states near the Fermi
level within the weak-coupling approach. While the mixing
between Jeff = 1/2 and 3/2 is large for the occupied states,
the states near the Fermi level are mainly Jeff = 1/2 for the
case of intermediate SOC. Thus, we carry out a mean-field
study of a Hubbard model for the Jeff = 1/2 bands near EF .
The density of states (DOS) near the Fermi level is inherited
from the point-group symmetry of the crystal structure, and not
simply determined by the dimensionality of crystal structure.
Our results imply that the combination of SOC and the crystal
structure plays an important role in determining the different
magnetic ordering patterns for this series of iridates. In turn,
we suggest that the pattern of magnetic ordering and the size of
the magnetic moment in the insulating phase can be sensitive
to changes in crystal structure. While the magnetic ordering
itself is a consequence of electronic correlations and should
not be sensitive to the details, this does not guarantee a Mott
insulator, as will be discussed below.

The paper is organized as follows. In Sec. II, we introduce
a tight-binding model with SOC using t2g orbitals for the
different layered iridates. From this model, we identify the
states near the Fermi level as being comprised of mostly
Jeff = 1/2 orbitals. Then, in Sec. III we discuss an effective
tight-binding model using Jeff = 1/2 orbitals that reproduces
the band structure near the Fermi level. We then study the
effect of interactions at a mean-field level using an effective
Hubbard model for these orbitals. The magnetic states obtained
using a self-consistent method are then explained in Sec. IV. A
collinear antiferromagnetic (AF) state with moments oriented
along the crystal c axis is found in Sr-327, while a coplanar
canted AF is realized in Sr-214. The full unit-cell structure in
Sr-214 breaks spin-rotation symmetry and favors the canted
AF state, while the bilayer structure determines the collinear
AF state in Sr-327. Sr-113, although close to a magnetic
transition, remains metallic because interactions in the real
material are smaller than the critical interaction strength
required for this magnetic transition. The results found at the
mean-field level are compared with spin models derived in
the strong-coupling limit in Sec. V. Finally, we discuss the
implications of our results and conclude in Sec. VI.

II. TIGHT-BINDING MODEL WITH t2g ORBITALS

In the layered Ruddelsden-Popper series of iridates, the ox-
idation state of iridium is Ir4+ with an electronic configuration
of [Xe]5d5. The octahedral crystal field from the oxygen atoms
further splits the 5d levels into triply degenerate t2g and doubly
degenerate eg levels with t2g lying lower in energy. There are
then five d electrons in the t2g levels. Iridium, being a heavy
atom, has significant spin-orbit coupling. Within the low-lying
t2g subspace, the orbital angular momentum behaves like an
effective angular momentum l = 1 with a negative spin-orbit
coupling constant λ.25 With this picture of the atomic levels
in iridium, tight-binding models incorporating SOC within the
t2g orbitals dyz, dxz, and dxy are discussed for the different
layered iridates.

(b)(a)

FIG. 1. (Color online) Theoretical magnetic ordering in Sr-214
(a) and Sr-327 (b) in the insulating phase. Each layer has two different
iridium atoms because of the staggered rotation of the octahedra,
which we label blue and red. (a) The coplanar canted AF state is shown
with the spin configuration for each layer. The black arrow represents
the direction of the net ferromagnetic moment within each plane,
showing the up-up-down-down structure. (b) The favored collinear
AF state with moments pointing along the c axis is shown; the second
bilayer has its spins flipped from the first set.

A. Tight-binding model for Sr-214

Sr-214 is a layered compound with a unit cell that contains
four layers. Within each layer, the oxygen octahedra rotate
about the c axis in a staggered fashion contributing two Ir
atoms [which we label blue (B) and red (R)] to the unit cell, as
shown in Fig. 1(a). For the sake of clarity, although the actual
unit cell has eight Ir atoms, we focus on a single IrO2 layer
with two Ir atoms in this section. The hoppings between the
various layers will be discussed later in Sec. III.

Let d
†,γ,α

k,σ denote the creation operator for an electron with
spin σ = ↑,↓ and orbital α = yz,xz,xy in sublattice γ = blue
(B), red (R). Using the spinor ψk = [dB,yz

k,↓ ,d
B,xz
k,↓ ,d

B,xy

k,↑ ,B ↔
R, ↑↔↓]T , we can write the tight-binding Hamiltonian as∑

k ψ
†
kHψk . Considering both nearest-neighbor (NN) and

next-nearest-neighbor (NNN) hoppings, the matrix H in this
basis is given by

H =
(

Hso + HBB HBR

H
†
BR Hso + HRR

)
+ [↑↔↓], (1)

where Hso, the atomic spin-orbit coupling λLi · Si , is

Hso =

⎛
⎜⎝

0 iλ/2 −λ/2

−iλ/2 0 iλ/2

−λ/2 −iλ/2 0

⎞
⎟⎠. (2)
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HBR and HBB/RR represent the NN and NNN hopping matrices, respectively, and are given by

HBR =

⎛
⎜⎝

ε
yz
n εrot 0

−εrot εxz
n 0

0 0 ε
xy
n

⎞
⎟⎠, HBB/RR =

⎛
⎜⎝

ε
yz

d ε1d 0

ε1d εxz
d 0

0 0 ε
xy

d

⎞
⎟⎠, (3)

where the dispersions ε
yz
n , εxz

n , εrot, ε
xy
n , ε

yz

d , εxz
d , ε1d , and ε

xy

d

are listed in Appendix A.

B. Tight-binding model for Sr-327

Sr-327, like Sr-214, has a layered structure with a unit cell
that spans four layers. Unlike Sr-214, Sr-327 has a bilayer
structure with two bilayers as shown in Fig. 1(b) in the unit
cell.27 Each layer resembles Sr-214 with its staggered oxygen
octahedra rotation, and the stacking is such that octahedra

neighboring each other in adjacent layers of a bilayer rotate
in opposite directions. A single bilayer with four Ir atoms is
considered for the t2g tight-binding model. The middle panel in
Fig. 2(e) was used to study the magnetic ordering mechanism
for Sr-327.24 Starting from a three-band t2g model, it was found
that the magnetic ordering occurs mainly in the Jeff = 1/2 band
near the Fermi level.

Following previously employed notation, a spinor ψk,l =
[dl,B,yz

k,↓ ,d
l,B,xz
k,↓ ,d

l,B,xy

k,↑ ,B ↔ R, ↑↔↓]T , where the additional
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FIG. 2. (Color online) Tight-binding band structure using t2g orbitals for Sr-214 (first row), Sr-327 (second row), and Sr-113 (third row) as
a function of SOC strength λ. Red is used to indicate the weight of Jeff = 1/2 orbitals in each band, and the blue horizontal line denotes the
Fermi level. For intermediate λ (second column), the Jeff = 1/2 bands are not separated from the Jeff = 3/2 bands. In Sr-113, the tilting of the
oxygen octahedra in addition to rotation leads to four Ir atoms in a unit cell.26 Here, to enable comparison, the Brillouin zone is folded with a
wave vector Q = (0,0,π ), but the effect of tilting of the oxygen octahedra on the band degeneracy is not included for simplicity.
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index l = 1,2 denotes the two different layers in the bi-
layer, is employed to write the tight-binding Hamiltonian as∑

k ψ
†
k,lH

ll′ψk,l′ . Including up to NNN hoppings, the matrix
H is given by

Hll′ =
(

Hsoδll′ + Hll′
BB H ll′

BR

H
†ll′
BR Hsoδll′ + Hll′

BB

)
+ [↑↔↓], (4)

with l = l′ reproducing the Hamiltonian for Sr-214 discussed
in the previous section. l �= l′ is the hopping between the layers
and consists of two parts,

H 12
BR =

⎛
⎝ tz t ′z 0

−t ′z tz 0
0 0 t δz

⎞
⎠, H 12

BB =
⎛
⎝ ε

yz

b 0 0
0 εxz

b 0
0 0 0

⎞
⎠, (5)

where the first part H 12
BR includes hopping from a blue atom

to a red atom immediately on top of it and the second part
H 12

BB denotes hopping from a blue atom to the four nearest
blue atoms on the adjacent layer. In the first part, tz, t ′z, and t δz
represent the intraorbital hopping for dyz (xz) orbitals, hopping
from a dyz orbital to a dxz orbital, and hopping between dxy

orbitals, respectively. The dispersions ε
yz

b ,εxz
b , in H 12

BB are
described in Appendix A 2.

C. Tight-binding model for Sr-113

Sr-113 is a three-dimensional compound which crystallizes
in an orthorhombic perovskite structure under pressure.28,29

The oxygen octahedra surrounding the Ir atoms are rotated
about the z axis and tilted about the [110] direction in such a
way that there are four different Ir atoms in the unit cell. Here,
for the sake of simplicity,41 we will not include the tilting of
the octahedra along the [110] direction. In the same spinor
basis used for Sr-214, the tight-binding Hamiltonian is

H =
(

Hso + HBB + Hz HBR

H
†
BR Hso + HRR + Hz

)
+ [↑↔↓],

(6)

with HBB and HRR identical to Sr-214 and the additional
matrix Hz denoting c-axis dispersions given by

Hz =
⎛
⎝ εz 0 0

0 εz 0
0 0 εδ

z

⎞
⎠. (7)

Here, εz and εδ
z denote intraorbital hopping along the c axis for

dyz/xz and dxy orbitals, respectively, as shown in Appendix A 3.
The band structures for Sr-214, Sr-327, and Sr-113 are

plotted in Fig. 2. The three rows in the figure represent Sr-214,
Sr-327, and Sr-113, respectively. The three columns represent
no SOC, intermediate SOC, and large SOC, respectively. The
Jeff = 1/2 bands in columns 2 and 3 have been colored red.
When SOC is absent (column 1), increasing the dimensionality
does not have a significant effect on the bandwidth of the
t2g orbitals, as mentioned in the Introduction. For spin-orbit
coupling large enough to separate the Jeff = 1/2 orbitals
from the Jeff = 3/2 orbitals (column 3), the bandwidth does
increase with dimensionality. With intermediate SOC (column
2), the occupied states are a mixture of Jeff = 1/2 and 3/2,
and the Jeff = 1/2 bandwidth Wj is not well-defined for
this case. From the colors, we can infer that while there is

significant mixing between Jeff = 1/2 and 3/2, the bands
near the Fermi level are mostly comprised of Jeff = 1/2
orbitals. Note that SOC in combination with the bilayer
hopping makes Sr-327 almost insulating with a direct gap
at every k point. This intermediate-coupling band structure is
also consistent with those seen in LDA + SOC calculations.
Within the weak-coupling approach, the magnetic instability
is mainly determined by the states proximate to the Fermi
level. Having identified these bands to be mostly composed
of Jeff = 1/2 orbitals, an effective tight-binding model for the
three compounds is derived below.

III. TIGHT-BINDING MODEL IN THE Jeff = 1
2 BASIS

Within weak-coupling theory, bands near the Fermi level
rather than all bands are relevant, and the states near the Fermi-
level are made up of mostly Jeff = 1/2 orbitals, as shown
in the previous section. Thus an effective Hamiltonian for
the Jeff = 1/2 orbitals is obtained by changing to the angular
momentum J basis and projecting out states not belonging to
Jeff = 1/2. The Jeff = 1/2 states are given by∣∣∣∣Jz = ±1

2

〉
= 1√

3
(|dyz, ∓ s〉 ± i|dxz, ∓ s〉 ± |dxy, ± s〉),

(8)

where s = ± denotes the spin of the electron.
In the Jeff = 1/2 basis, a time-reversal invariant hopping

Hamiltonian for a bond is of the form

tσ0 + i
∑

α=x,y,z

tασ α, (9)

where the σ Pauli matrices represent the pseudospin degree of
freedom. To a first approximation, the parameters t and tα can
be derived from the t2g hoppings, as done in Appendix B.

As previously mentioned, the unit cell of Sr-214 is
comprised of four distinct layers with two sublattices in each
layer. Here, we include all the layers and use a spinor basis
φl

k = (clB
k+,clB

k−,clR
k+,clR

k−)T to represent our Hamiltonian, where
l = 1,2,3,4 denotes the layer, B,R are the two sublattices in
each layer, and +,− represent the pseudospin states Jz = 1/2
and −1/2, respectively.

Restricting ourselves to hoppings within a layer and
between adjacent layers, the Hamiltonian can be written as
H0 = ∑

k φ
†l
k H ll′

k φl′
k , where

Hll′
k =

⎛
⎜⎜⎜⎜⎝

Ak Bk 0 eikzcC
†
k

B
†
k Ak Ck 0

0 C
†
k Ak Bk

e−ikzcCk 0 B
†
k Ak

⎞
⎟⎟⎟⎟⎠. (10)

Here c is the c-axis lattice constant, and Ak , Bk , and Ck are
each 4 × 4 matrices with Ak having all the intralayer hoppings,
Bk containing interlayer hoppings between layers 1 and 2 (3
and 4), and Ck containing hoppings between layers 2 and 3 (4
and 1). A single-layer model would only have Ak .

Using Pauli matrices τ to represent the sublattice degree
of freedom and σ to represent the pseudospin, the different
hopping matrices are given by

Ak = εa
k + εad

k τx + ε′ad
k τyσz, (11)
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FIG. 3. (Color online) Band structure for the Jeff = 1/2 tight-
binding model for (a) Sr-214 and (b) Sr-327. At the Fermi level,
this is consistent with the LDA calculation and the t2g tight-binding
model, shown in the third column of Fig. 2. In contrast to Fig. 2, the
full unit cell including the four layers for Sr-214 and the two bilayers
for Sr-327 is considered here.

Bk = εb
k + εbd

k τx + εbz
k τyσz + ε

by

k τyσy + εbx
k τyσx, (12)

Ck = εc
k + εcd

k τx + εcz
k τyσz + ε

cy

k τyσy + εcx
k τyσx, (13)

where the various dispersions making up Ak , Bk , and Ck are
given in Appendix B 1a.

The noninteracting Hamiltonian in the Jeff = 1/2 for Sr-327
is similar to that for Sr-214 in Eq. (10), with identical matrices
Ak and Ck . The bilayer nature of this material makes Bk very
different. Instead of weak interlayer hopping terms, there are
large bilayer hoppings of the form Bk = tcτx + t ′cτyσx , where
tc represents the hopping from a blue (red) atom to a red (blue)
atom with the same Jz, and t ′c is the hopping from an orbital
on a blue (red) atom to an orbital on a red (blue) atom with
different Jz. The underlying band structure for this compound
is shown in Fig. 3(b) and the parameters used are given in
Appendix B 1b. The important difference between Sr-327 and
Sr-214 is that, for any set of parameters, Sr-327 has a direct
gap at each wave vector. The difference in the nature of the
magnetic transition for the Hubbard model can be traced back
to this feature of the band structure.

The Jeff = 1/2 model for the three-dimensional compound
Sr-113 has been described in Ref. 26. The Jeff = 1/2 band
structure shown in Ref. 26 includes tilting about [110] leading
to a gap opening at some of the band crossing points in Fig. 2(i).

IV. MAGNETISM: MEAN-FIELD THEORY

The quasi-2D members of the Ruddelsden-Popper series
of strontium iridates display novel Jeff = 1/2 magnetism. To
understand and to account for the differences between the
magnetic ordering at low temperatures between the different
compounds within a consistent picture, we study the effect of
electronic interactions by supplementing our Jeff = 1/2 tight-
binding model with a Hubbard term of the form

Hint = Ũ
∑

i

ni+ni−, (14)

where ni± is the number operator for pseudospin Jz = ±1/2
at site i. The interaction strength Ũ in the Jeff = 1/2 basis can
be obtained from a multiorbital Hubbard model as Ũ = U

3 +
2U ′

3 − 2 J
3 , where U , U ′, and J are, respectively, the intraorbital

repulsion, the interorbital repulsion, and Hund’s coupling for

0

0.05

0.1
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0.2

0.25

0.3

0.5 1 1.5 2 2.5

m

Ũ /t

tn = 0.15tp; tnn = −0.1tp
tn = 0.1tp; tnn = −0.1tp

tn = 0.01tp; tnn = −0.1tp
tn = 0; tnn = 0

(M odel) tn ∼ 0.12tp; tnn ∼ −0.06tp

FIG. 4. Magnitude of order parameter as a function of Ũ/t for
Sr-214. Various cases of tn and tnn, while keeping other parameters
listed in Appendix B1, are presented. For tnn = tn = 0, the transition
occurs at 0.7t and is second order. On the other hand, when they are
finite, the critical interaction strength is larger and the transition is
first-order.

t2g orbitals. The Kanamori form30 with J = U−U ′
2 and23 U ′ =

0.8U was used in the rest of the paper.
Rewriting Hint = − 2Ũ

3 (S2
ix + S2

iy + S2
iz) + Ũ

2

∑
i(ni+ +

ni+), where Six , Siy , and Siz are the components of the
pseudospin operator, it is clear that a mean-field decoupling
in a magnetic channel such as S2

iα = 2miαSiα − m2
iα with

α = x,y,z can be employed. A self-consistent iteration to
compute the mean-field parameters miα is carried out.

A. Magnetism in Sr-214

On increasing Ũ , we find a first-order phase transition from
a metallic state to a magnetically ordered insulating state as
depicted in Fig. 4. The ordering pattern, shown in Fig. 1(a), has
the order parameters �m1

B = (−mx,my,0) for the blue sublattice
in the first layer and �m1

R = (my,−mx,0) for the red sublattice
in the first layer. The ordering in the second layer is identical
to the first, while the order parameters for the respective
sublattices in the third and fourth layer are opposite in sign
from those in the first and second layer.

Within the plane, the canting is such that the net ferromag-
netic moment points in the [110] direction. Along the c axis,
the net ferromagnetic moment shows an “up-up-down-down”
pattern which is consistent with resonant x-ray scattering
experiments31 and remains unchanged upon taking the large-Ũ
limit of our calculation.

For the set of parameters mentioned in Appendix B 1a, the
critical interaction strength at which the magnetic transition
occurs is Ũc ≈ 1.91t , where t is the magnitude of the Slater-
Koster32 hopping tddπ . This critical interaction strength is quite
sensitive to the strength of the next-nearest- and next-next-
nearest-neighbor hopping, which control the dispersion along
the high-symmetry direction M-X. In the limit where these
hoppings are absent, the transition is second order. The critical
interaction strength also decreases in this limit because of the
large Fermi-surface nesting. By varying the strength of the
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FIG. 5. (Color online) Band structure including Hubbard interac-
tion in the Jeff = 1/2 basis for Sr-327 and Sr-214. In this figure, a Ũ

value of 2.3t was used.

next-nearest-neighbor hopping strength between 0 and 0.17,
the critical interaction strength can be tuned from Ũc ≈ 0.7t

and Ũc ≈ 2.2t as shown in Fig. 4. Regardless of when the
transition occurs, the size of the order parameters for a given
Ũ > Ũc (for fixed λ) is the same, implying that while the
exact critical interaction Ũc hinges on the details of the band
structure, the size of the order parameter only depends on
Ũ within the Jeff = 1/2 model. It was shown that SOC and
Hubbard U change the order parameter size in the t2g model.24

The mean-field band structure for Ũ = 2.3t is shown in
Fig. 5(a). The charge gap in this model is approximately
0.2t . We see that ordering opens a gap for moderately large
Ũ , which in the weak-coupling mean-field treatment hints
at Slater insulating behavior. A Slater transition is usually
accompanied by translation symmetry breaking, but for this
compound the staggered rotation of the oxygen octahedra has
already broken this symmetry.

B. Magnetism in Sr-327

Sr-327, because of its structural similarity to Sr-214, was
also expected to have a canted AF ground state. However,
the net ferromagnetic moment in Sr-327 was found to be
smaller than that of Sr-214,15,33 although other studies suggest
a different moment size.34 We show here that the difference in
the c-axis stacking, with octahedra in adjacent layers having
opposite rotation, makes the c-axis collinear AF state lower in
energy than the noncollinear state.

On increasing Ũ , there is a second-order phase transition
from a near spin-orbit insulator or metallic state to a mag-
netically ordered insulator as shown in Fig. 6. Unlike the
single-layer case, the transition depends more on whether
the underlying band structure is gapped or not than on the
dispersion in the M-X direction. The ordering pattern, shown
in Fig. 1(b), has the order parameters �m1

B = (0,0,m) for the
blue sublattice in the first layer, and �m1

R = (0,0, − m) for the
red sublattice in the first layer. The ordering in the second
layer is identical to the first, and the order parameters for
the respective sublattices in the second bilayer are identical
and opposite in sign to those in the first bilayer. The ordering
pattern can be understood from the terms in the spin model
that we describe in Sec. V.

The unit cell contains two bilayers and there are two
different almost degenerate collinear AF configurations pos-
sible for the ground state. We show one (slightly lower in
energy) in Fig. 1(b); the other configuration has the same spin

m

Ũ /t

tn = 0 tnn = 0 tc = 0.84tp
tn = 0.235tp tnn = −0.06tp tc = 0.84tp

tn = 0.12tp; nn = −0.06tp tc = 1.05tp
tn = 0.12tp tnn = −0.06tp tc = 0.84tp

FIG. 6. Magnitude of order parameter as a function of Ũ/t for
Sr-327. Results for different values of tn, tnn, and tc, while keeping the
other parameters listed in Appendix B1, are presented. The critical Ũc

depends on mostly tn and tc, but the size of the moment is insensitive
to the tight-binding parameters, once order has set in.

configuration for both bilayers. These two configurations were
observed in the experiments of Ref. 35.

For the parameters used here, the critical interaction
strength Ũc ≈ 1.90t . This critical interaction strength depends
on the actual value of the next-nearest- and next-next-nearest-
neighbor hoppings, similar to the single-layer case, but to a
much lesser degree as shown in Fig. 6. Magnetic ordering
does not change the dispersion but increases the direct gap.

C. Magnetism in Sr-113

Rotation and tilting of the octahedral environment around
the Ir atom contributes more spin-dependent hopping terms in
the Jeff = 1/2 basis in Sr-113 in comparison to its quasi-2D
counterparts. These terms hint at a canted antiferromagnetic
ground state with both in-plane and out-of-plane canting.
The magnetic transition occurring at an interaction strength
Ũc = 2.35t takes the system from a semimetal to a magnetic
semimetal and then to a magnetic insulator with the magnetic
pattern �mB = (mx,my,mz) for the blue sublattice, �mR =
(−my,−mx,mz) for the red sublattice, �mY = (−mx,−my,mz)
for the yellow sublattice, and �mG = (my,mx,mz) for the green
sublattice. The canting within each plane is equal and opposite
for the different layers resulting in zero net in-plane moment,
but there is a finite magnetic moment in the z direction.

The progression of the critical interaction strength Ũc

required for a magnetic transition in the Ruddelsden-Popper
series explains the experimentally observed MIT, as the num-
ber of layers is increased. In the current mean-field study, the
magnetic ordering pattern does not change upon increasing Ũ .
To understand how our weak-coupling results above are related
to the strong-coupling approach, spin models in the large-Ũ
limit for Sr2IrO4 and Sr3Ir2O7 are derived in the next section.

V. MAGNETISM: SPIN MODEL

For a general time-reversal invariant hopping between
two sites given by (tll′ + i

∑
α = x,y,z σ αtαll′)c

†
i,l,σ cj,l′σ ′ , the
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exchange Hamiltonian within second-order perturbation
theory is

H =
∑
〈ij〉
ll′

(
J ll′

ij
�Sl
i · �Sl′

j + �Dl,l′
ij · �Sl

i × �Sl′
j + �Sl

i · �
l,l′
ij · �Sl′

j

)
, (15)

with Heisenberg coupling J
l,l′
ij = 4

Ũ
(t2

l,l′ − v2
l,l′ ),

Dzyaloshinskii-Moriya (DM) coupling �Dl,l′
ij = 4

Ũ
(2tl,l′ �vl,l′ ),

and anisotropic exchange coupling �
l,l′
ij,αβ = 4

Ũ
(2vα

l,l′v
β

l,l′ ).
Here α,β are spin components and l,l′ are layer indices.

For Sr-214, the nearest-neighbor exchange couplings within

a layer are J ll
p = 4

Ũ
(t2

p − t ′2p ), �Dll
p = 8εi tpt ′p

Ũ
ẑ, and �ll

p,zz = 8
Ũ

t ′2p
for l = 1, . . . ,4, where εi in �Dll

p represents a change of sign
between two adjacent bonds. Ignoring interlayer couplings,
there is a canting angle at which the canted AF state is
degenerate to the collinear AF state. This degeneracy arises
because it is possible to turn the spin model into an isotropic
Heisenberg model by an appropriate gauge transformation for
the spin operators, as has been pointed out by others.18,36

We now add the interlayer couplings as a perturbation
on the two degenerate states. Since each Ir atom has four
neighbors in each adjacent layer, we separate the exchange
terms into two types, between atoms of the same color
(i.e., B to B) and between atoms of different colors (R to
B). There are two hoppings of each kind, which we add
together. For Sr-214, between layers 1 and 2, the exchange
terms are J 12

BB = 4
Ũ

t2
i , J 12

BR = 4
Ũ

(t2
id − t2

iz − t2
iy − t2

ix), �D12
BR =

8
Ũ

(±tid tix, ± tid tiy,tid tiz), and

�12
BR = 8

Ũ

⎛
⎝ t2

ix tix tiy ±tix tiz

tix tiy t2
iy ±tiy tiz

±tix tiz ±tiy tiz t2
iz

⎞
⎠.

Here, ti is the interlayer hopping between B and B (or R

and R), tid between B and R, and pseudospin σa (a = x,y,z)
dependent hopping between B and R is given by tia . The σx and
σy dependent hopping between B (R) in layer 1 and the two
R (B) in layer 2 have different signs, which we denote by ±.
This sign change means that these terms do not contribute
to the energy if the magnetic unit cell is the same as the
lattice unit cell. For layers 2 and 3, the exchange couplings
are identical except a change in sign for the y component
of the DM coupling (D23,y

BR = −D
12,y

BR ) and the xy and yz

components of the anisotropic exchange (�23,xy

BR = −�
12,xy

BR

and �
23,yz

BR = −�
12,yz

BR ).
The lattice structure with four neighbors on the adjacent

layer for each atom frustrates the DM and isotropic couplings.
The canted AF state in an up-up-down-down fashion is favored
by the anisotropic exchange, and this gets picked as the ground
state, because the other terms are frustrated by the lattice.

In Sr-327, the bilayer couplings are much larger than the
interbilayer couplings, hence only one bilayer is considered.
The in-plane exchange couplings are identical to those of the
single layer and the out-of-plane couplings are given by Jc =
4
Ũ

(t2
z − t ′2z ), �Dc = εi

8
Ũ

tzt
′
zẑ, and �zz

c = 8
Ũ

t ′2z , where tz, and t ′z
are, respectively, the pseudo-spin-independent and pseudo-
spin-dependent bilayer hoppings described in Appendix B 1b.

Unless t ′z
tz

= t ′p
tp

, the in-plane and out-of-plane DM couplings
are frustrated, i.e., there is no spin configuration such that
optimal canting is achieved for both of them. Thus, the relative
strength of the bilayer hopping to the in-plane hopping decides
the competition between canted AF and collinear AF. From the

Slater-Koster method,32 we estimate that t ′z
tz

≈ 3
t ′p
tp

, picking out
the c-axis collinear AF state as the ground state, which has
been recently confirmed in experiments.35,37–39

The interlayer couplings favor an antiferromagnetic pattern
between the same atoms of layers 2 and 3, as shown in
Fig. 1, but this is close in energy to the ferromagnetic pattern,
leading to the two possible arrangements discussed previously.
It should be noted that the same conclusions for the magnetic
ordering patterns were reached in other studies.18,37,38 In the
current study, the spin model was derived for the full unit cell,
including four layers so that interlayer coupling is important,
while those previous studies include Hund’s coupling, which
leads to the magnetic ordering pattern. Despite this difference,
both approaches yield the same ordering pattern for both
Sr-214 and Sr-327, and thus adding Hund’s coupling would
further stabilize the magnetic ordering pattern.

VI. DISCUSSION AND SUMMARY

We build a tight-binding model using t2g orbitals for the
different layered perovskite iridates in Sec. II to identify
the states near the Fermi level to be made up of mostly
Jeff = 1/2. We then construct a Jeff = 1/2 tight-binding model
in Sec. III, and we study the magnetic order and MIT by
taking into account Hubbard interactions within a mean-field
approximation in Sec. IV. We find that our approach captures
a rich phase diagram as Ũ increases: a first-order transition
from a metal to a magnetic insulator for Sr-214, a transition
from nearly a band insulator to a magnetic insulator for
Sr-327, and a semimetal to magnetic insulator via a magnetic
semimetal for Sr-113. The phase diagram for the different
layered cases, sketched in Fig. 7, shows that the different
members of the Ruddelsden-Popper series exhibit a different
critical interaction Uc for a magnetic transition.

The magnetic ordering pattern in the ground state is
intimately connected to the lattice structure. While the study
in Ref. 24 does show the magnetic transition for Sr-214 and
Sr-327 in an itinerant model, the current study with the full
unit cell containing all the different layers in the Jeff = 1/2
model was performed to find the proper magnetic ordering
pattern. In Sr-214, the interlayer isotropic Heisenberg and DM
interactions are frustrated because Ir atoms in adjacent layers
create a zero effective field due to their positions. Combined
with the anisotropic exchange, this frustration selects the “up-
up-down-down” pattern for the net ferromagnetic moment.
Although these interlayer exchanges are small compared to
the intralayer exchanges, they are significant because in their
absence the coplanar CAF and collinear AF are degenerate
within our Jeff = 1/2 model. In Sr-327, in contrast to Sr-214,
the collinear AF state along the c axis is preferred because
the bilayer nature of the lattice frustrates the DM interaction
of each Ir atom with its five neighbours. However, this
configuration is proximate in energy to the canted AF state,
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ũ/t

Sr-214 Paramagnetic Metal �
Uc

Canted AF Insulator

Sr-327 Barely spin-orbit band insulator �Collinear AF Insulator

Uc

Sr-113 Paramagnetic semimetal �

Uc

M
M N-CAF Insulator

FIG. 7. (Color online) Phase diagram for the magnetic phases of
the single-layer, bilayer, and three-dimensional compounds with the
accompanying MIT. The critical value of Ũ at which the magnetic
transition occurs for each compound is Ũc/t = 1.90, 1.91, and 2.35,
respectively. For Sr-214, due to the first-order nature of the transition,
the system goes directly from metallic to insulating. For Sr-327,
the magnetic ordering does not change the Fermi surface topology,
but further increases the existing direct band gap. For Sr-113, the
transition turns the metal into a magnetic metal (MM) before it
develops a gap as the ordering increases. Sr-113 shows noncoplanar
canted antiferromagnet (N-CAF) order, with the ferromagnetic
moment pointing along the crystal c axis. In a scenario in which the
Hubbard interaction is 2.3t ∼ 0.46 eV (setting t ∼ 200 meV), the
stars indicate where each compound should be on the phase diagram.

and spin dynamics as a function of temperature and magnetic
field offer interesting subjects for future study.

For the iridates studied here, magnetic ordering patterns
are identical to those given by the large Ũ limit spin model,
implying that their Mott character cannot be corroborated by
the ordering pattern. The proximity of the magnetic state to a
metallic state points to Slater insulating behavior. The Slater
mechanism is not obvious in Sr-214 because magnetic ordering
does not spontaneously break translational symmetry, as the
symmetry is already broken by the lattice structure. However,
note that the unit cell doubling in Sr-214 does not open a full
gap in the band structure, leaving degenerate bands along the
line joining M-X in the Brillouin zone, which are then gapped
out by the onset of magnetic order. Sr-327, on the other hand, is
either a small-band-gap insulator or a metal with small Fermi
surfaces at Ũ ≈ 0.46 eV, suggesting that the magnetic ordering
is not due to Mott physics.

To summarize, we have studied the MIT in the layered
iridates using mean-field theory. Our results suggest that mag-
netic ordering in the Ruddelsden-Popper series of strontium
iridates is explained within weak-coupling theory. Magnetic
ordering patterns obtained in the weak-coupling approach are
continuously connected to the ordering patterns obtained in the
large-Ũ spin model, suggesting that the iridates might be in the
intermediate regime, which makes both approaches viable. In
a similar context, it is interesting to note that iridium d orbitals
look rather localized in resonant inelastic x-ray scattering,31

but in a momentum space probe such as ARPES,16,20,21, the
d orbital bands are quite dispersive. While it is true that the
effects of the Hubbard interactions are amplified due to the
SOC, the magnetic ordering pattern itself is not sufficient
to justify Mott physics in this series of iridates. Thus, one
should look for a full charge gap above the magnetic ordering
temperature to validate a strong Mott insulating picture.
ARPES studies above and below the transition temperature

might be one way to shed some light on the relation between
charge gap and magnetic ordering and to pin down the strong
correlation effect in these iridates.
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APPENDIX A: DISPERSIONS AND TIGHT-BINDING
PARAMETERS IN THE t2g BASIS

The hopping parameters and dispersions for the t2g tight-
binding model for Sr-214, Sr-327, and Sr-113 mentioned in
Sec. II are elaborated upon here.

1. Sr-214

The nearest-neighbor dispersions contained in HBB are

εxy
n = 2t[cos(kx) + cos(ky)], (A1)

εyz
n = 2[t1 cos(ky) + t δ cos(kx)], (A2)

εxz
n = 2[t1 cos(kx) + t δ cos(ky)], (A3)

εrot = 2t ′[cos(kx) + cos(ky)], (A4)

where the superscripts xy, xz, and yz denote the orbitals and
t is the direct Slater-Koster overlap tddπ between the iridium
d orbitals. t1 and t δ denote hopping integrals of dxz (dyz) to
dxz (dyz) along the x (y) and y (x) axis, respectively. εrot arises
from the nearest-neighbor overlap t ′ between dyz and dxz due
to the rotation of oxygen octahedra. The next-nearest-neighbor
dispersions making up HBB/RR are

ε
xy

d = 4tn cos(kx) cos(ky), (A5)

ε
yz

d = εxz = 4tnd cos(kx) cos(ky), (A6)

ε1d = 4t1d sin(kx) sin(ky), (A7)

where tn and tnd represent intraorbital hopping between dxy

and dxz/yz, respectively. ε1d is hopping between dyz (dxz)
and dxz (dyz) orbitals parametrized by an overlap t1d . All
the hopping parameters are obtained from Slater-Koster
theory using the overlaps for the d orbitals (tddπ ,tddσ ,tddδ) =
(−1.0,1.5,0.25), a rotation angle of 12◦ for the IrO6 octahedra,
and a suppression factor of 0.2 for next-nearest-neighbor over-
laps compared to nearest-neighbor overlaps. The parameter
set obtained from the Slater-Koster method for the single
layer model is then (t,t1,t ′,tn,t1d ,t

δ,tnd ) = (−1.0, − 0.94, −
0.15,0.16,0.11,0.27,0.0).

2. Sr-327

For Sr-327, within each layer, the dispersions and the tight-
binding parameters are identical to those described for Sr-214
in Appendix A 1. The nearest neighbor overlaps between a blue
(B)/red (R) atom and a red (R)/blue (B) atom in Eq. (5) were
parametrized by (tz,t ′z,t

δ
z ) = (−0.80,0.36, − 0.15). Here tz is

the intraorbital overlap between dxz (yz) orbitals, t δz is between
dxy orbitals, and t ′z is the overlap between a dyz (xz) orbital on
one atom and a dxz (yz) orbital on the Ir atom in the next layer.
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The next-nearest-neighbor bilayer dispersions making up H 12
BB

in Eq. (5) are ε
yz

b = 2 tzn cos(ky) and εxz
b = 2 tzn cos(kx), which

are orbital diagonal with the parameter tzn = 0.2.

3. Sr-113

Since the tilting of the octahedra along the [110] direction
was ignored, Sr-113 differs from Sr-214 only in its c-axis
dispersions. These intraorbital hoppings are εz = 2 tz cos(kz)
for dyz (xz) orbitals and εδ

z = 2 t δz cos(kz) for the dxy orbital with
tz = −0.80 and t δz = 0.15.

APPENDIX B: DERIVING Jeff = 1/2 BASIS HOPPINGS
FROM t2g HOPPINGS

Consider a single bond with t2g orbitals on each site with
the overlaps between the various orbital combinations (these
are diagonal in spin space) given by tyz, txz, and txy for the in-
traorbital hoppings and tyz−xz, txz−yz, tyz−xy , txy−yz, txz−xy , and
txy−xz for the interorbital hoppings. The Jeff = 1/2 orbitals are
given by |Jz = ± 1

2 〉 = 1√
3
(|dyz, ∓ s〉 ± i|dxz, ∓ s〉 ± |dxy, ±

s〉), and the time-reversal invariant hopping Hamiltonian for
a bond is of the form tσ 0 + i

∑
α=x,y,z tασ α . From the t2g

overlaps, the parameters can be obtained as

t = 1
3 (tyz + txz + txy), (B1)

t z = 1
3 (tyz−xz − txz−yz), (B2)

ty = 1
3 (txy−yz − tyz−xy), (B3)

tx = 1
3 (txz−xy − txy−xz). (B4)

1. Dispersions in the Jeff = 1/2 basis

a. Sr-214

For Sr-214, in Sec. III, we defined a Hamiltonian in Eq. (10)
matrices Ak , Bk , and Ck . Ak describing hoppings within a
layer was written as εa

k + εad
k τ x + ε′ad

k τ yσ z with τ and σ

representing the sublattice and pseudospin degrees of freedom,
respectively. The dispersions in Ak are

εa
k = 4tn cos(kx) cos(ky) + 2tnn[cos(2kx) + cos(2ky)],

εad
k = 2tp[cos(kx) + cos(ky)],

ε′ad
k = 2t ′p[cos(kx) + cos(ky)].

In the above, εa
k and εad

k are pseudospin-preserving hopping
between the same sublattice (next-nearest and next-next-
nearest) and different sublattices, respectively. tn and tnn are

next-nearest and next-next-nearest neighbor overlap orbitals
and tp is the nearest-neighbor overlap. ε′ad

k is the pseudospin
σ z dependent hopping between different sublattices with
overlap t ′p. The parameter set used was (tp,t ′p,tn,tnn) =
(−0.57,0.10, − 0.067,0.033).

The interlayer hoppings between layers 1 and 2 (also 3 and
4) were denoted by Bk = εb

k + εbd
k τx + εbz

k τyσz + ε
by

k τyσy +
εbx
k τyσx , with the dispersions given by

εb
k = 2ti cos[(kx + ky)/2], (B5)

εbd
k = 2tid cos[(kx − ky)/2], (B6)

εbz
k = 2t zi cos[(kx − ky)/2], (B7)

ε
by

k = i2t
y

i sin[(kx − ky)/2], (B8)

εbx
k = i2txi sin[(kx − ky)/2]. (B9)

Here, ti is the hopping between the same sublattice and the
same Jz while tid is the hopping between a different sublattice
with the same Jz. The superscript x in txi , for example,
represents a pseudospin σx dependent hopping between two
orbitals on different sublattices. The remaining interlayer
hoppings between the second and third layers (also the
fourth and first layers) were captured by Ck = εc

k + εcd
k τx +

εcz
k τyσz + ε

cy

k τyσy + εcx
k τyσx with the dispersions given by

εc
k = 2ti cos[(kx − ky)/2], (B10)

εcd
k = 2tid cos[(kx + ky)/2], (B11)

εcz
k = 2t zi cos[(kx + ky)/2], (B12)

ε
cy

k = −i2t
y

i sin[(kx + ky)/2], (B13)

εcx
k = i2txi sin[(kx + ky)/2]. (B14)

These interlayer overlap parameters were obtained by a
fit to the splitting of the bands seen in LDA calculations
of Ref. 40. The parameters used were (ti ,tid ,tiz,tiy,tix) =
(−0.029, − 0.0275, − 0.0135, − 0.0095,0.0095).

b. Sr-327

For Sr-327, the matrices Ak and Ck are the same as those
for Sr-214, but Bk differs because of the bilayer nature. Bk has
the form tcτx + t ′cτyσx as described in Sec. III. These bilayer
hoppings are given by (tc,t ′c) = (−0.48,0.24) in units of t .
These parameters can be obtained from overlaps in the t2g basis
described in Appendix A 2 as tc = 1

3 (2tz + t δz ) and t ′c = 2
3 t ′z.
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