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By means of density functional theory (DFT) calculations [with and without inclusion of spin-orbit (SO)
coupling] we present a detailed study of the electronic structure and corresponding microscopic Hamiltonian
parameters of Na2IrO3. In particular, we address the following aspects: (i) We investigate the role of the various
structural distortions and show that the electronic structure of Na2IrO3 is exceptionally sensitive to structural
details. (ii) We discuss both limiting descriptions for Na2IrO3—quasimolecular orbitals (small SO limit, itinerant)
versus relativistic orbitals (large SO limit, localized)—and show that the description of Na2IrO3 lies in an
intermediate regime. (iii) We investigate whether the nearest neighbor Kitaev-Heisenberg model is sufficient to
describe the electronic structure and magnetism in Na2IrO3. In particular, we verify the recent suggestion of an
antiferromagnetic Kitaev interaction and show that it is not consistent with actual or even plausible electronic
parameters. Finally, (iv) we discuss correlation effects in Na2IrO3. We conclude that while the Kitaev-Heisenberg
Hamiltonian is the most general expression of the quadratic spin-spin interaction in the presence of spin-orbit
coupling (neglecting single-site anisotropy), the itinerant character of the electrons in Na2IrO3 makes other terms
beyond this model (including, but not limited to, 2nd and 3rd neighbor interactions) essential.
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I. INTRODUCTION

The electronic and magnetic behavior of layered 5d transi-
tion metal oxides1 has been a subject of intensive discussion in
the last years. Particularly exciting has been the suggestion by
the authors of Ref. 2 that hexagonal iridates such as Na2IrO3

are a realization of the nearest neighbor Kitaev-Heisenberg
(nnKH) model:

H
(γ )
ij = 2KS

γ

i S
γ

j + JSi · Sj . (1)

This proposal is based on the premise that spin-orbit (SO)
coupling is the most important energy scale for the description
of these systems so that Ir 5d t2g orbitals are written in
terms of jeff = 1/2 and jeff = 3/2 relativistic orbitals, with
the Kramers doublet jeff = 1/2 represented by the operator
S = 1/2. The combination of Kitaev and Heisenberg terms
leads to a complex phase diagram with various magnetic and
spin-liquid phases.2–4 Obviously, some of these properties can
only manifest themselves when the Kitaev term dominates
or is at least comparable to the Heisenberg term. Also,
other possible contributions, such as magnetic anisotropy,
ring exchange, or biquadratic exchange, to mention a few,
may alter the phase diagram and the properties of the model
considerably. Most importantly, while the Kitaev-Heisenberg
expression is the most general fully symmetric expression for
anisotropic pairwise magnetic interactions in the second order
in spin in the presence of SO coupling (just as the Heisenberg
exchange represents the same in the isotropic nonrelativistic
case), it is not necessarily short ranged in the presence of
considerable itinerancy.

So far, essentially all analyses of the nnKH model for
Na2IrO3 have been performed in the localized limit, where
an assembly of weakly interacting relativistic atomic orbitals
is assumed to be a good starting approximation. On the other
hand, first-principles calculations suggest considerable delo-
calization of electrons over individual Ir hexagons building

quasimolecular orbitals (QMOs).5 The associated “itinerant”
energy scale (the bandwidth) is ≈1.5 eV, to be compared
to the single-site spin-orbit splitting scale6 (3/2)λ ≈ 0.7 eV
and the Hubbard and Hund’s rule correlation energy scale
of U − JH ≈ 0.5–1 eV. This makes the entire premise of
the nnKH model questionable. At the same time, it has also
been pointed out7,8 that the nnKH model with the addition
of the 2nd and 3rd neighbors Heisenberg interaction is easier
to reconcile with the experimental data. Such relatively long-
range exchange interaction is another hallmark of considerable
itinerancy (here and below, when we speak of itinerancy, we
imply mostly delocalization over Ir6 rings, but not necessarily
over the entire crystal).

In the present work we revisit and discuss the validity
of both limiting descriptions for Na2IrO3: itinerant (QMO
picture) versus localized (jeff = 1/2 Kramers doublet). To
this end, we perform a thorough analysis of the electronic
properties of Na2IrO3 within nonrelativistic and relativistic
density functional theory (DFT) and derive, using projection
on Wannier functions, the relevant hopping parameters and
show that QMOs are naturally obtained as linear combinations
of Ir t2g Wannier functions. We discuss the relation between
the quasimolecular orbital and the relativistic orbital, jeff,
representations and show that the behavior of Na2IrO3 lies
in between a fully localized and fully itinerant description.
Finally, the parametrization of the electronic band structure
allows us to provide realistic estimates for the model parame-
ters in the localized nnKH model. We thus investigate whether
we are close to a regime where the Kitaev interaction plays a
decisive role or not.

Quite unexpectedly, we find that Na2IrO3 is an example
of a material where minor details of the crystal structure
can dramatically affect the electronic structure, and simple
guessing of the band structure parameters, or estimating them
from simplified crystallographic models (so far all model
calculations for this compound were utilizing one or the other

035107-11098-0121/2013/88(3)/035107(16) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.035107


KATERYNA FOYEVTSOVA et al. PHYSICAL REVIEW B 88, 035107 (2013)

approach), can be exceptionally misleading. In fact some of
the models energetically discussed in the community, while of
undeniable theoretical appeal, are not even qualitatively close
to the actual parameter range in Na2IrO3.

While this particular compound is very intriguing and
has been enjoying extraordinary popularity lately, we want
to emphasize that this strong dependence of the electronic
properties on details of the crystal structure is an important
result, whose relevance goes beyond specifically Na2IrO3 and
is likely true for many other materials based on honeycomb
transition-metal layers.

The paper is organized as follows. In Sec. II we review
the crystal structure and magnetic properties of Na2IrO3. In
Sec. III we provide details of the DFT calculations and the
projector method. In Sec. IV we present the results of the
electronic structure analysis without inclusion of spin-orbit
coupling and analyze the role of the structural distortions
in Na2IrO3. In Sec. V we investigate the role of spin-orbit
coupling and discuss the relation between the QMOs and the
relativistic orbitals (jeff). In this context, we discuss whether
the existing experimental situation can distinguish between the
DFT description (with the resulting itinerancy) and localized
(jeff = 1/2) models. We proceed with an analysis of the
single-site magnetic anisotropy in Na2IrO3 and find it to be
relevant (pure jeff = 1/2 states do not have any single-site
anisotropy). In Sec. VI we provide ab initio–derived estimates
for the parameters appearing in the Kitaev and Heisenberg
terms in Na2IrO3 and discuss the validity of the nnKH model
by considering the experimentally observed magnetic order
and attempts to explain it from a local point of view. Finally
in Sec. VII we present our conclusions.

II. CRYSTAL STRUCTURE AND MAGNETIC
PROPERTIES OF Na2IrO3

Na2IrO3 crystallizes in the monoclinic space group C 2/m

(No. 12)8 (see Fig. 1) and consists of Ir honeycomb layers
[Fig. 1(b)] stacked along the monoclinic c axis [Fig. 1(a)]
with an in-plane offset along a. Na ions occupy both the
interlayer positions and 1/3 of the in-plane positions at the
centers of Ir hexagons. This structure can be visualized as
proceeding from NaIrO2 with a CdI2 structure with triangular
IrO2 layers. In these layers 1/3 of the in-plane iridium atoms
are substituted by extra Na, i.e., its formula can be written as
Na(Na1/3Ir2/3)O2, which, multiplied by 3/2, gives the usual
formula of Na2IrO3.9

An idealized crystal structure of this kind corresponds to
having all nearest neighbor (NN) Ir-Ir and NN Ir-O distances
equal and Ir-O-Ir angles of 90 degrees. The experimental
structure of Na2IrO3 departs from the idealized case and shows
a few distortions: (i) orthorhombic distortion that introduces
inequality among NN Ir-Ir distances and among NN Ir-O dis-
tances, (ii) IrO6 octahedra rotations that place O atoms on the
faces of a cube containing an Ir hexagon (see Fig. 2 of Ref. 5),
and (iii) trigonal distortion which is a compression of the IrO6

octahedra in the c direction that induces a departure from 90
degrees of the Ir-O-Ir angles. In Sec. IV we will discuss the ef-
fect of these distortions on the electronic structure of Na2IrO3.

As shown by transport, optical, and high-energy spec-
troscopy studies,10,11 Na2IrO3 is an insulator with an energy

FIG. 1. (Color online) Crystal structure of Na2IrO3. (a) Projection
on the ac plane and (b) projection on the ab plane.

gap Eg of 340 meV. Magnetic susceptibility measurements
indicate a Curie-Weiss behavior at high temperatures with a
Curie-Weiss temperature �CW = −116 K and an effective Ir
moment μeff = 1.82μB. Na2IrO3 orders antiferromagnetically
below TN = 15 K with an ordered magnetic moment μord ∼
0.2μB. The fact that TN is much smaller than �CW may be
a signature of frustration, but it may be also caused by the
itinerancy of Ir 5d electrons5 as will be discussed in Sec. VI.

The magnetic pattern observed experimentally8 corre-
sponds to a zigzag ordering, in contrast to the prediction of

(c) Neel(a) zigzag (b) stripy ´

FIG. 2. (Color online) Possible antiferromagnetic patterns in a
honeycomb lattice.
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a stripe order by the nnKH model2 (see Fig. 2). Recently,
Chaloupka et al.4 argued that such a zigzag ordering can be
also obtained by the nnKH model, when one correctly includes
all the terms contributing to NN Ir-Ir exchange. In Sec. V, we
will discuss this proposition in more detail.

III. METHOD

In this work we perform DFT calculations using the linear-
ized augmented plane wave (LAPW) method as implemented
in the full-potential code WIEN2k.12 We employ the Perdew-
Burke-Ernzerhof generalized gradient approximation13 to the
DFT exchange-correlation functional and set the basis-size
controlling parameter RKmax

14 to 7. We consider a mesh of
500 k points in the first Brillouin zone. Relativistic effects are
treated within the second variational approach. Convergence
with respect to relevant parameters (the k-point mesh, the
RKmax and the second variational energy cutoff, etc.) has been
carefully checked.

A. Calculation of hopping integrals

In order to be able to discuss various Ir-Ir 5d processes, we
parametrize our nonrelativistic DFT results in terms of a tight-
binding (TB) model where the TB Ir 5d hopping parameters are
obtained through the Wannier function projection formalism
proposed in Ref. 15 and generalized to molecular Wannier
functions in Ref. 16. We first construct Wannier function
projectors P α

mν(k) for the three t2g Ir 5d orbitals and calculate
the TB Hamiltonian H TB(k) (in matrix form) via

H TB(k) = P (k)D(k)P †(k), (2)

where D(k) is a diagonal matrix of Ir 5d t2g Bloch eigenvalues
and the matrix P (k) is formed by the projectors P α

mν(k). Here,
indices α, m, and ν run over equivalent Ir atoms in the unit
cell, Ir t2g orbitals, and Bloch bands, respectively. Na2IrO3 has
two Ir per unit cell and only the six Ir t2g bands near the Fermi
level EF are considered in the construction of projectors.

We calculate the hopping integral tmm′
α−R,α′−R′ between orbital

m on Ir atom α in the unit cell at a distance R from a reference
unit cell and orbital m′ on Ir atom α′ in the unit cell at a distance
R′ from a reference unit cell by integrating H TB(k) over Nk k
vectors in the first Brillouin zone:

tmm′
α−R,α′−R′ = 1

Nk

∑
k

H TB
αm,α′m′(k)e−ik(R−R′), (3)

where H TB
αm,α′m′(k) are the matrix elements of H TB(k). Corre-

spondingly, the diagonal matrix elements tmm
αα give the on-site

energies.

B. Construction of quasimolecular projectors

As was argued in Ref. 5, the most natural description of the
electronic structure of Na2IrO3 is in terms of quasimolecular
(QMO) orbitals localized on a hexagon. The strongest Ir-Ir
hopping is between 5d t2g orbitals of neighboring iridium ions
via common oxygens. In this case, an electron on a given Ir t2g

orbital propagates around an Ir6 hexagon with the peculiarity
than only a certain t2g orbital at each Ir participates in
the hopping,17 e.g., Ir1(xy)-Ir2(xz)-Ir3(yz)-Ir4(xy)-Ir5(xz)-
Ir6(yz) (see Fig. 2 of Ref. 5). These QMOs are analogous to the

molecular orbitals of the benzene molecule C6H6 except for
the fact that in benzene the same p orbital on each carbon ion
participates in the formation of the molecular orbital while in
Na2IrO3, as described above, different t2g orbitals are involved
in one QMO and the three t2g orbitals on one Ir ion contribute
to three different neighboring QMOs. We elaborate the details
of the construction of the QMOs in what follows.

QMO projectors PMν(k) are obtained as linear combina-
tions of Ir t2g projectors PMν(k):

PMν(k) =
∑
M

UM,MTM (k)PMν(k), (4)

where in the Ir t2g projectors PMν(k), the index M combines
now the atomic index α and orbital index m; i.e., M runs over
all t2g orbitals of all equivalent Ir atoms. With QMOs ordered as
M = A1g,E2u,E1g,B1u,E1g,E2u, and Ir t2g orbitals ordered
as M = xy1,xz1,yz1,xy2,xz2,yz2 (the upper index labels Ir
atoms), U is given by [ω = exp(iπ/3)]

U =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 ω4 ω2 −1 ω ω5

1 ω2 ω4 1 ω2 ω4

1 1 1 −1 −1 −1
1 ω4 ω2 1 ω4 ω2

1 ω2 ω4 −1 ω5 ω

⎞
⎟⎟⎟⎟⎟⎠, (5)

and TM (k) are the Bloch factors, accounting for the fact that
the 6 sites forming a QMO belong to several different unit
cells. Actual values for these factors depend on the manner in
which a particular band structure code selects the unit cell (see
the Appendix for the WIEN2k settings).

IV. NONRELATIVISTIC ELECTRONIC STRUCTURE

In this section we analyze and discuss the Ir-Ir 5d t2g

tight-binding parameters for Na2IrO3 up to second nearest
neighbors. As mentioned in Sec. II, three structural distortions
are present in Na2IrO3: orthorhombic distortion, IrO6 octahe-
dra rotation, and trigonal distortion. Besides, the stacking of
the honeycomb planes inherently violates the rhombohedral
symmetry even if each plane is ideal. The formation of
QMOs relies on the dominance of intrahexagon hopping5

and therefore is sensitive to structural details. Therefore it
is important to understand the role of structural distortions
in establishing electron hopping paths. This motivates us to
study electronic properties of a number of artificially idealized
Na2IrO3 unit cells where structural distortions of different
types are systematically eliminated.20 Such a procedure has
proven very useful21 in understanding the behavior of Sr2IrO4.

We consider four different crystal structures: (i) the exper-
imental crystal structure,8 Sexp, (ii) an artificially idealized
Na2IrO3 unit cell, S1, where the orthorhombic distortion
has been removed from the experimental crystal structure,
(iii) an artificially idealized Na2IrO3 unit cell, S2, where the
IrO6 octahedra rotations have been removed from S1, and
(iv) an artificially idealized Na2IrO3 unit cell, S3, where the
trigonal distortion has been removed from S2. Table I shows
a comparison of total (nonmagnetic) DFT energies for the
various structures. As is to be expected, the experimental
structure is the energetically most stable case. Tight-binding
hopping parameters between Ir t2g orbitals up to second nearest
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TABLE I. Nonrelativistic total energies obtained within DFT
for the experimental, ESexp , and the three idealized, Si (i = 1,2,3),
Na2IrO3 crystal structures. Energy is given per unit cell containing
two formula units.

Structure Sexp S1 S2 S3

ESi
− ESexp (mRyd) 0 0.95 78.90 180.01

neighbors calculated for the four structures are given in Table II
and schematically represented in Fig. 3. We consider the
following rationale for labeling of the hopping parameters
Eq. (3). In the experimental structure of Na2IrO3 there are two
first NN Ir-Ir distances and two second NN Ir-Ir distances due
to the fact that the Ir6 hexagons are not perfect. We denote the
corresponding Ir t2g - Ir t2g hopping parameters as t1 and t1̄
for the first NN and, respectively, t2 and t2̄ for the second NN
hoppings. Further, we have various possible hoppings between
equal and different t2g orbitals. Regarding first NN, we denote
t1 O and t1̄ O the hoppings between unlike t2g orbitals via O p

states [Fig. 3(a)]. t1σ and t1̄σ denote NN direct hoppings of

σ type. t1‖ and t1̄‖ denote NN hoppings between like orbitals
lying in parallel planes. In the ideal structure such hoppings
consist of linear combinations with equal weight of ddπ and
ddδ bonds. t1⊥ and t1̄⊥ denote NN hoppings between unlike
orbitals lying in perpendicular planes [see Figs. 3(b) and 3(c)].

Regarding the second NN hopping parameters, t2 O and
t2̄ O denote hoppings between unlike orbitals via O p and Na
s states [Fig. 3(e)]. t2a and t2b (t2̄a and t2̄b) denote hoppings
between like orbitals as shown in Fig. 3(d) and t2c, t2d , and
t2e (t2̄c, t2̄d , and t2̄e) denote hoppings between unlike orbitals
[Fig. 3(e)].

A. Experimental crystal structure

Previous electronic structure calculations5 have identified
the dominant hopping integrals for Na2IrO3 to be t1 O and t2 O

[as well as t1̄ O and t2̄ O; further on, if not explicitly stated
otherwise, we refer to both equivalent t1 (t2) and t1̄ (t2̄) when
writing t1 (t2)]. In Table II column Sexp we present the complete
list of hopping parameters up to the second nearest neighbors.
A TB model based only on these hopping integrals provides

TABLE II. Nearest neighbor (NN) and second NN hopping integrals in meV between Ir t2g orbitals for the experimental structure and three
idealized structures S1, S2, S3 of Na2IrO3 (see text and Appendix for a description of the structures and parameter labeling). The NN = 0 data
are Ir t2g on-site energies and interorbital hoppings; the NN = 1 and NN = 1̄ (NN = 2 and NN = 2̄) data are hoppings over nonequivalent
(due to orthorhombic distortion) NN (second NN) Ir bonds.

NN Sexp S1 S2 S3

0 xy → xy −448.8 −422.9 −422.8 −601.1
xz → xz −421.5 −421.8 −421.2 −601.1
yz → yz −421.5 −421.8 −421.2 −601.1

xy → xz, xy → yz −27.8 −26.4 −21.2 −13.5
xz → yz −23.1 −25.2 −18.8 −14.7

1 xy → xy (t1‖) 47.7 34.1 27.8 120.8
xy → xz, xy → yz (t1 O) 269.6 268.5 231.7 209.7
xy → xz, xy → yz (t1⊥) −25.6 −16.6 43.7 −5.3
xz → xz, yz → yz (t1‖) 30.0 33.2 17.2 118.9
xz → xz, yz → yz (t1σ ) −20.7 3.5 −66.5 −381.6

xz → yz (t1⊥) −21.4 −16.4 41.7 −4.9

1̄ xy → xy (t1̄σ ) 25.4 0.2 −65.5 −382.8
xy → xz, xy → yz (t1̄⊥) −11.9 −17.6 46.9 −5.3
xz → xz, yz → yz (t1̄‖) 33.1 33.9 21.2 120.5

xz → yz (t1̄ O) 264.4 264.8 228.7 211.7

2 xy → xy (t2a) −3.5 −2.6 −18.9 2.0
xy → xz, xy → yz (t2 O) −75.8 −77.4 −94.7 −82.1
xy → xz, xy → yz (t2c) −36.5 −35.3 −52.1 −38.5
xy → xz, xy → yz(t2d ) 12.5 10.1 1.7 6.9
xy → xz, xy → yz (t2e) −21.4 −19.2 −7.3 1.9
xz → xz, yz → yz(t2a) −0.6 −3.1 −16.6 1.4
xz → xz, yz → yz (t2b) −1.5 −1.6 −1.0 5.7

xz → yz (t2e) −18.6 −19.0 −7.1 2.4
xz → yz (t2d ) 10.2 10.2 2.4 6.6

2̄ xy → xy (t2̄b) −1.4 −1.4 −1.2 5.7
xy → xz, xy → yz (t2̄e) −19.0 −19.2 −8.4 2.1
xy → xz, xy → yz (t2̄d ) 9.3 10.2 0.7 7.5
xz → xz, yz → yz (t2̄a) −1.4 −3.0 −17.7 1.5

xz → yz (t2̄ O) −77.0 −78.0 −95.2 −81.9
xz → yz (t2̄c) −30.4 −35.1 −51.6 −38.9
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FIG. 3. (Color online) Schematic representation of Ir-Ir t2g hopping paths up to second nearest neighbor in Na2IrO3.

already a reasonable description of Na2IrO3 Ir t2g states near
the Fermi level EF [Fig. 4(a)].

We first note a very good agreement between the t1 O

(∼270 meV) and t2 O (∼−75 meV) values obtained with our
WIEN2k-based projection method and with the FPLO code18

as was used in Ref. 5. These leading Ir t2g hoppings strongly
tend to confine the electron’s motion to a single Ir hexagon
and, as a result, the electronic structure of Na2IrO3 near the
Fermi level is dominated by the formation of well separated
and relatively weakly dispersive QMOs.5 On an Ir hexagon,
as shown above, each Ir atom participates with one of its
t2g orbitals (see Fig. 2 of Ref. 5). These orbitals combine
to form six QMOs according to the unitary transformation
Eq. (5). In support of this picture, Fig. 5(a) shows the density
of states of Na2IrO3 projected onto the six QMOs (singlets
A1g and B1u and doublets E2u and E1g), where states with
certain predominant QMO character are clearly separated in
energy from one another. The near degeneracy of A1g and
E2u states around EF is rather accidental resulting from the
t1 O/t2 O ∼ −3.6 ratio (see Table II and Ref. 5). The real-space
representations of the QMO Wannier functions onto which the
Na2IrO3 DOS is being projected are shown in Fig. 6. The QMO
Wannier functions were constructed as described in Sec. II by
explicitly accounting for the location of each Ir t2g orbital in
the crystal.19

Other NN and second NN hopping processes involving
intraorbital and interorbital hoppings (see Table II) allow an
electron to jump from one QMO to another and hence are
responsible for the band dispersion. Many of those hoppings
are of the same order of magnitude (although mostly by at least
an order of magnitude smaller) than t2 O, such as t1‖ and t1̄‖. For
the “z” bond such hoppings will be between xz and xz or yz and
yz orbitals [see Fig. 3(b)]. These hoppings are equal to 47.7,
30.0, and 33.1 meV, depending on the NN bond (see Table II).
In fact, such appreciable variations in magnitude, which violate
the D6h symmetry of an ideal Ir hexagon, are ubiquitous among
the hoppings that connect neighboring QMOs. Some of them
even change sign, such as t1σ and t1̄σ . This feature results from
the orthorhombic stacking, distortions within the Ir2Na planes,
and rotations of IrO6 octahedra.

B. Structure S1 obtained by removing
the orthorhombic distortion

We now consider an idealized Na2IrO3 structure without
the orthorhombic distortion of Ir hexagons; this structure,
which we call S1, as well as other structures in this section, is
tabulated in the Appendix. In the structure S1, (i) all intralayer
Ir-Ir bonds are of the same length, i.e., the D6h symmetry
of an Ir hexagon is restored, (ii) all NN Ir-O bonds are of
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FIG. 4. (Color online) Na2IrO3 band structures near the Fermi
level EF = 0 calculated using DFT (black solid lines) and a TB
model that considers only up to NNN hopping processes between
Ir t2g orbitals (dashed lines). The data are obtained with (a) exper-
imental crystal structure and idealized structures (b) S1, (c) S2, and
(d) S3.
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FIG. 5. (Color online) Na2IrO3 DOS projected onto QMOs for
(a) experimental crystal structure and idealized structures (b) S1,
(c) S2, and (d) S3. The Fermi level is set to zero.

the same length, (iii) all Ir-O-Ir bond angles are equal to
98.7◦, and (iv) the oxygens lie on the faces of a cube drawn
around an Ir hexagon (see Fig. 2 of Ref. 5). The 3D crystal
structure, though, remains orthorhombic in this approximation,
due to the presence of multiple Ir layers. This explains small
residual variations among the nominally equivalent TB model
parameters (Table II, column S1)—for example, comparing
parameters labeled with and without an overbar; also, on-site
energies like the xy on-site energy are slightly lower than the
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FIG. 6. (Color online) Real-space representation of the QMOs in
Na2IrO3 obtained by the Wannier projector method.

xz/yz on-site energy. However, these variations of t2g orbital
on-site energies, as well as of equivalent hopping integrals,
are now noticeably smaller than in the experimental Na2IrO3

structure.
We conclude that removal of the orthorhombic distortion

restores (to a certain degree) the degeneracy of the Ir t2g

orbitals, but does not change the hierarchy of hopping integrals.
In the structure S1, the t1 O and t2 O values are close to the
respective values in the experimental Na2IrO3 structure and,
as a consequence, the overall structure of the t2g bands is only
slightly changed [Figs. 4(b) and 5(b)].

C. Structure S2 obtained by removing
the IrO6 octahedra rotations

In the structure S1 that we designed in the previous section,
two types of distortions are still present: (i) trigonal squeezing
of IrO6 octahedra along the (111) direction perpendicular to
Ir hexagon planes and (ii) IrO6 octahedra rotations that place

O atoms on the cube’s faces. We now consider structure S2,
where the IrO6 octahedra rotations are removed from S1. In
this structure, the Na-O and Ir-O bond lengths are the same (in
the experimental structure, the former is considerably longer).
This feature enhances the second NN hopping processes
through Na s states, such as t2 O, t2a , t2c (and the equivalent
overbar hoppings) as shown in Table II, column S2. At the
same time, the NN O-assisted hopping t1 O gets reduced
and the t1 O/t2 O ratio decreases to ∼−2.4, resulting in a
larger separation of the lowest (B1u) band from the rest of
t2g bands [Fig. 4(c)]. Formation of QMOs still takes place
in structure S2 [Fig. 5(c)], but the QMO bands are more
dispersive compared to the experimental or S1 structures, due
to increased interhexagon NN hopping integrals t1σ , t1⊥ (and
equivalent t1̄σ , t1̄⊥); thus, one observes broadening of the
A1g band and redistribution of weight away from the E2u

doublet.

D. Structure S3 obtained by removing the trigonal distortion

We finally consider a most idealized Na2IrO3 structure
S3 without the trigonal distortion, i.e., with 90◦ Ir-O-Ir bond
angles. Importantly, one can only remove this distortion, while
keeping the Ir-O bond length the same, if the Ir-Ir bonds are
shortened. Because of that, the hierarchy of hopping integrals
changes drastically (Table II, column S3). The dominant
hopping is now the direct NN hopping between like orbitals
t1σ (and the equivalent t1̄σ ) reaching ∼−380 meV, while the
O-assisted hopping t1 O (t1̄ O) has been reduced to ∼210 meV.
Accordingly, the large interhexagon interaction destroys the
QMO picture, as illustrated by the strongly dispersive t2g

manifold in Fig. 4(d) and the delocalization of individual QMO
characters over the whole DOS range in Fig. 5(d). We also
observe that the main reason for the trigonal squeeze is the
geometrical effect of optimizing simultaneously the Ir-Ir and
Ir-O bonds. As a result, even though the on-site t2g orbitals
split into an a1g singlet and an eg doublet, this is not a strong
effect and not the driving force for the squeeze, as is often
assumed in the spirit of localized limit and the Jahn-Teller
effect.

Summarizing these results, in the S3 structure, the NN
direct hopping increases by an order of magnitude compared
to the experimental Na2IrO3 structure and the NN O-assisted
hoppings get suppressed. Therefore we conclude that structural
distortions of all types in Na2IrO3 act constructively to enhance
the intrahexagon effective hopping parameters (such as t1 O and
t2 O) and suppress the interhexagon ones (such as NN direct
hopping) favoring the formation of QMOs.

V. SPIN-ORBIT COUPLING

We proceed now with the analysis of the electronic structure
of Na2IrO3 in the presence of spin-orbit (SO) coupling.
Previous relativistic DFT calculations22 showed that Na2IrO3

states near the Fermi level experience strong relativistic
splitting with pronounced concentration of jeff = 1

2 character
in the upper two bands. However, the Na2IrO3 relativistic states
seem to preserve their QMO identity as well [see Fig. S6(b)
of Ref. 5]. In order to understand such duality, we set up a
TB model for the Ir t2g orbitals that includes also local SO
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interaction terms. With this TB + SO model, we are able not
only to confirm the relativistic DFT results by calculating DOS
but also to access the composition of individual states and trace
their evolution as a function of the spin-orbit coupling λ.

A. TB + SO model

We start with a TB model that perfectly describes the
nonrelativistic DFT Ir t2g bands of Na2IrO3. It includes 321
hopping integrals between up to 50 nearest neighbors. We
then double the dimension of the TB Hamiltonian matrix to
introduce spin dependence and add local SO coupling terms
〈λL · S〉 that mix spin-↑ and spin-↓ subspaces:

xy↑ xz↑ yz↑ xy↓ xz↓ yz↓
xy↑ 0 0 0 0 λ

2 − iλ
2

xz↑ 0 0 iλ
2 − λ

2 0 0

yz↑ 0 − iλ
2 0 iλ

2 0 0

xy↓ 0 − λ
2 − iλ

2 0 0 0

xz↓ λ
2 0 0 0 0 − iλ

2

yz↓ iλ
2 0 0 0 iλ

2 0

(6)

Importantly, even though SO coupling is a local on-site
interaction, it couples neighboring quasimolecular orbitals and
therefore is k-vector dependent in the QMO basis.

Having thus set up the TB model, we vary the SO coupling
strength λ until the best matching with the DFT relativistic
bands is achieved, which is found to correspond to λ = 0.44 eV
(Fig. 7).

Since our purpose is to reconcile the QMO and relativistic
orbital (RO) pictures, we analyze the λL · S matrix elements
between spin-↑ and spin-↓ QMOs to see how SO coupling
mixes QMO characters. They can be easily obtained by
applying the unitary transformation UT (k) [Eq. (5)] to the
λL · S matrix in the t2g basis:

H SO
QMO(k) = UT (k)H SO

t2g
T H (k)UH . (7)

This equation explicitly illustrates how k-vector dependence
enters the SO matrix elements in the QMO basis. Concise
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FIG. 7. (Color online) WIEN2k relativistic band structure (black
solid lines) versus TB + SO model relativistic band structure (red
dashed lines) of Na2IrO3 as described in the text. In model
calculations, λ = 0.44 eV was used.

expressions can be derived if one notes that QMOs can be
represented by their “winding number” n which defines a
phase change �φ = nπ

3 of t2g orbitals around a hexagon. In
this notation, QMOs A1g,E2u,E1g,B1u,E1g,E2u correspond
to, respectively, n = 0,1,2,3,4,5 winding numbers. The λL · S
matrix elements in the QMO basis are given then by

H SO
n↑n′↑ = λ

2
i exp

(n′ − n)πi

2
cos

(n′ − n)π

2
cos(kx + ky)

×
(

exp
2(2n′ − n)πi

3
− exp

[
−2(2n − n′)πi

3

])

+ λ

2
i exp

(n′ − n)πi

2
sin

(n′ − n)π

2
sin(kx + ky)

×
(

exp
2(2n′ − n)πi

3
+ exp

[
−2(2n − n′)πi

3

])

(8)

and

H SO
n↑n′↓ = 2 exp

(n′ − n)πi

2

×
[

exp
4n′πi

3
cos

(
− (n′ − n)π

2
+ ky

)

− exp

(
−4nπi

3

)
cos

(
− (n′ − n)π

2
− ky

)

+ i exp
2n′πi

3
cos

(
− (n′ − n)π

2
− kx

)

− i exp

(
−2nπi

3

)
cos

(
− (n′ − n)π

2
+ kx

)]
.

(9)

We list numerical values of the matrix elements for two
representative k vectors: k = (0,0,0) (point 
) (first two
tables) and k = (π

2 ,0,0) (last two tables):

n = 5 n = 0 n = 1 n = 2 n = 3 n = 4
E2u↑ A1g↑ E2u↑ E1g↑ B1u↑ E1g↑

E2u↑ C1 0 0 0 −C1 0
A1g↑ 0 0 0 −C1 0 C1

E2u↑ 0 0 −C1 0 C1 0
E1g↑ 0 −C1 0 C1 0 0
B1u↑ −C1 0 C1 0 0 0
E1g↑ 0 C1 0 0 0 −C1

(10)

n = 5 n = 0 n = 1 n = 2 n = 3 n = 4
E2u↓ A1g↓ E2u↓ E1g↓ B1u↓ E1g↓

E2u↑ C2 0 0 0 C4 0
A1g↑ 0 0 0 −C3 0 −C4

E2u↑ 0 0 −C2 0 C3 0
E1g↑ 0 C4 0 C2 0 0
B1u↑ −C3 0 −C4 0 0 0
E1g↑ 0 C3 0 0 0 −C2

(11)
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n = 5 n = 0 n = 1 n = 2 n = 3 n = 4
E2u↑ A1g↑ E2u↑ E1g↑ B1u↑ E1g↑

E2u↑ λ
6 0 λ

6 0 − λ
3 0

A1g↑ 0 λ
6 0 − λ

3 0 λ
6

E2u↑ λ
6 0 − λ

3 0 λ
6 0

E1g↑ 0 − λ
3 0 λ

6 0 λ
6

B1u↑ − λ
3 0 λ

6 0 λ
6 0

E1g↑ 0 λ
6 0 λ

6 0 − λ
3

(12)

n = 5 n = 0 n = 1 n = 2 n = 3 n = 4
E2u↓ A1g↓ E2u↓ E1g↓ B1u↓ E1g↓

E2u↑ C1i C5 0 − λ
6 C6 C7

A1g↑ C∗
5 0 C5 −C∗

6
λ
3 −C6

E2u↑ 0 C∗
5 −C1i C∗

7 C∗
6 − λ

6

E1g↑ − λ
6 C6 C7 C1i C5 0

B1u↑ −C∗
6

λ
3 −C6 C∗

5 0 C5

E1g↑ C∗
7 C∗

6 − λ
6 0 C∗

5 −C1i

(13)

with C1 = λ√
12

, C2 = λ√
12

(1 + i), C3 = 0.105663λ(1 + i),

C4 = 0.394337λ(1 + i), C5 = λ
12 + λ

2
√

12
i, C6 = λ

4 + λ

2
√

12
i,

C7 = − λ
6 + λ√

12
i.

Several comments are in place here. First, spin-orbit
coupling mixes QMOs at all k vectors. Even at the 
 point,
i.e., on the same hexagon, the three upper QMOs (A1g and
two E2u) are SO coupled to the three lower QMOs (B1u

and two E1g), which explains sizable shifts of the relativistic
bands compared to the nonrelativistic ones at this k vector.
Additionally, SO coupling induces splitting of the degenerate
E2u and E1g states at all k vectors. Another striking feature of
the calculated λL · S matrix is that its A1g , E2u (upper triplet)
and B1u, E1g (lower triplet) blocks are identical. This means
that if not for the accidental near degeneracy of the A1g and
E2u states (which magnifies the SO-induced energy shifts) the
upper and the lower triplets would have been equally affected
by the SO coupling.

B. Quasimolecular orbital basis versus relativistic basis

The main difficulty in describing the Na2IrO3 band structure
is that it interpolates between eigenstates of two Hamiltonians:
the itinerant TB Hamiltonian of (primarily) intrahexagon
electron hopping that preserves the sz spin subspace and
the local spin-orbit (SO) interaction λL · S Hamiltonian that
couples different spin subspaces. The eigenstates of the
TB Hamiltonian are quasimolecular orbitals (QMOs), while
the eigenstates of the SO interaction (in the t2g subspace)
are relativistic orbitals (ROs) |jeff,j

z
eff〉 characterized by an

effective total angular momentum jeff and its z projection jz
eff:∣∣∣∣1

2
,
1

2

〉
= 1√

3
|xy↑〉 + i√

3
|xz↓〉 + 1√

3
|yz↓〉,

∣∣∣∣1

2
,−1

2

〉
= i√

3
|xz↑〉 − 1√

3
|yz↑〉 + 1√

3
|xy↓〉,

∣∣∣∣3

2
,
3

2

〉
= i√

2
|xz↑〉 + 1√

2
|yz↑〉,

∣∣∣∣3

2
,
1

2

〉
= −

√
2

3
|xy↑〉 + i√

6
|xz↓〉 + 1√

6
|yz↓〉,

(14)∣∣∣∣3

2
,−1

2

〉
= i√

6
|xz↑〉 − 1√

6
|yz↑〉 −

√
2

3
|xy↓〉,

∣∣∣∣3

2
,−3

2

〉
= − i√

2
|xz↓〉 + 1√

2
|yz↓〉.

This basis23 can be explained as follows: Three t2g orbitals
(total degeneracy, including spins, is 6) are split into a lower
lying quartet jeff = 3/2 and an upper lying jeff = 1/2 doublet,
and the 5d electrons of Ir4+ fully occupy the lower quartet
leaving the upper jeff = 1/2 doublet half filled. This makes this
situation similar to a nondegenerate Hubbard model (S = 1/2
doublet on a site), with the important difference that in the
Hubbard model the hopping matrix elements preserve the sz

spin subspace, while here the states of the jeff = 1/2 doublet
are spin-orbit mixed states, leading to a strong anisotropy of
hoppings and their dependence on spin (or rather total moment)
direction. This may bring about anisotropic exchange, e.g., the
Kitaev exchange on a honeycomb lattice.2

By gradually increasing an effective spin-orbit coupling
strength λeff,

λeff = λ2

(t1 O)2 + λ2
, t1 O = 0.270 eV, (15)

from 0 to 1, one can trace a smooth evolution of the TB + SO
model eigenvalues from, respectively, the nonrelativistic
(QMO) limit to the fully relativistic (RO) limit [see Fig. 8(a)
for the data at the 
 point]. An SO coupling parameter of
λ = 0.44 eV for Na2IrO3 corresponds to λeff = 0.73, which is
marked by a vertical dotted line in Fig. 8.

The RO basis is an attractive starting point to describe
the low-energy physics of Na2IrO3 as it allows us to truncate
the Hamiltonian to only jeff = 1

2 states that dominate near the
Fermi energy and map Na2IrO3 onto the Kitaev-Heisenberg
model. Although this approach might seem reasonable given
the noticeable separation of the jeff = 1

2 and jeff = 3
2 characters

in the DOS of Na2IrO3 [cf. Fig. 2(b) of Ref. 22], we argue that
the itinerant terms are too strong to be neglected (which should
not be surprising since λ = 0.44 eV < W ≈ 4t1 O = 1 eV) and
that, consequently, the QMO basis is as well (or as poorly)
justified to work with as the RO basis.

To support this statement, let us concentrate on the TB + SO
model states at the 
 point. Figure 8(a) shows the evolution
of the model eigenvalues as a function of λeff [Eq. (15)]. In
the nonrelativistic limit (λeff = 0), the states are almost purely
(with slight deviation due to orthorhombic distortion) QMOs,
ordered as B1u,E1g,A1g,E2u with increasing energy.24 At the
same time, at each state the jeff = 1

2 contribution is 1/3 and the
jeff = 3

2 contribution is, correspondingly, 2/3 (for one of the
two Ir atoms). Note that since the model distinguishes spin-↑
and spin-↓ states, each level is doubly degenerate.

With the QMO splitting obviously prevailing for zero
SO coupling, we now want to quantify the QMO character
rectification upon increasing λeff by calculating the QMO and
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FIG. 8. (Color online) Properties of the TB + SO model of
Na2IrO3 at the 
 point as a function of effective SO coupling λeff

defined in Eq. (15). The vertical dotted line marks the realistic
λeff = 0.73 value for Na2IrO3. (a) The eigenvalues of the TB + SO
model at 
. Eigenenergies have been scaled by

√
1 − λeff to keep

them within the [−1.5,0.2] eV range. (b) The jeff = 3
2 (solid line)

and B1u (dashed line) weights on the lowest state. (c) The jeff = 1
2

(solid line) and total E2u (dashed line) weights on the uppermost state.
Inset shows individual contributions from the two E2u QMOs.

RO weights on two selected states: the lowest (B1u) and the
uppermost (E2u). The B1u state [Fig. 8(b)] is a simpler case as
it is nondegenerate (apart from spin) and quite well separated
from the rest of the QMOs so that the SO effects here should be
less important. Changing λeff from 0 to 0.73 (Na2IrO3 value),
the jeff = 3

2 weight on this state increases from 0.6667 to
0.8320, whereas the B1u weight is only slightly reduced from
0.9932 to 0.9567. This indicates that the lowest relativistic
state at the 
 point in Na2IrO3 is better described by a QMO
B1u than by one of the jeff = 3

2 ROs. In fact, this turns out to
hold for the whole lowest relativistic band [cf. the jeff- and
QMO-projected Na2IrO3 DOS in, respectively, Fig. 2(b) of
Ref. 22 and Fig. S6(b) of Ref. 5].

The uppermost state is one of the E2u doublet states. It is
near degenerate with A1g and the other E2u and, therefore, the
SO effects are here particularly strong. At the 
 point, though,
it can only couple to itself or to the other E2u [see Eqs. (10)
and (11)], depending on which linear combination of these
degenerate states is considered. Upon switching λeff on, the
jeff = 1

2 weight on this upper states rapidly grows from 0.3333
to ∼0.6 in the range 0 < λeff < 0.05, and then gradually
increases to 0.8295 at λeff = 0.73 [Fig. 8(c)]. At the same time,
the weight of one of the E2u states (we may call it E′

2u) is re-
duced from 1.0 to 0.53730 [see inset of Fig. 8(c)]. However, the
total weight of two E2u states is barely changed: At λeff = 0.73
it equals 0.9617. This means that the uppermost relativistic
state at the 
 point in Na2IrO3 is very well described by a
linear combination of two E2u states (which is also a QMO)
with, in general, λeff-dependent individual contributions.

The B1u and E2u states (at λ = 0) seem to simultaneously
bear both RO and QMO features up to very strong SO coupling,
with the QMO character dominating for λeff < 0.9. This can
also be illustrated by inspecting the composition of, e.g., the
lowest energy band state as shown in Table III. At zero SO
coupling, the doubly degenerate lowest state corresponds to
(almost) pure B1u↑ and B1u↓ QMOs.25 At λeff = 0.73, the
structure of this state is strikingly similar to the B1u states, with
only slight admixtures of the xz and yz orbitals of opposite
spin. Even at some very high λeff, when the RO jeff = 3

2 weight
is close to 1, the states retain the B1u↑ and B1u↓ QMO features.

The features shown in this section, not unexpectedly, char-
acterize Na2IrO3 as intermediate between the nonrelativistic
(pure quasimolecular orbital) and fully relativistic (pure RO)
cases.

Moreover, these results show that in the RO representation,
the upper band states are not pure jeff = 1/2 states but there
is some significant mixing of jeff = 3/2 states. In fact, for
the upper band states, the projections onto jeff = 1/2 and
jeff = 3/2 are, respectively, 0.64 and 0.21 with 2(0.642 + 2 ×
0.212) = 1, while in the nonrelativistic case these projections
are both equal to

√
1/6 = 0.41. Note that looking at the

weights may be misleading. Indeed this state appears to be
2 × 0.642 = 82% pure jeff = 1/2 state [Fig. 8 (bottom)], but
its projection on the jeff = 3/2 state is only twice smaller
than in the nonrelativistic case. In other words, the hopping
between the upper Kramers doublets, initially not considered
in Ref. 2, is only reduced by about a factor of two compared
to the nonrelativistic case. One but possibly not the only
consequence of this fact is that the contribution of the Kitaev
term in the analysis below may be overestimated, probably by
as much as a factor of two.

C. Comparison with experiment: Branching ratio

An argument frequently used to justify the assumption of
pure ROs in Na2IrO3 is that it is experimentally supported.
However, the experimental evidence is inconclusive. It is first
assumed that the electronic states are pure ROs and then it is
shown that this assumption does not contradict the experiment,
yet the experiments, upon a closer look, do not falsify the
DFT picture, either. A typical and, by far, the most often
used quantity to discuss the nature of the states in iridates
is the branching ratio (BR) extracted from x-ray absorption
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TABLE III. Expansion coefficients of the lowest doubly degenerate energy states of the TB + SO model in the t2g basis (the upper index of
the t2g orbitals labels Ir atoms in the unit cell). The coefficients are given for three λ (λeff ) values. The B1u and jeff = 3

2 weights of the various
states are given at the bottom of the table.

λ = 0 (λeff = 0) λ = 0.44 eV (λeff = 0.73) λ = 2.66 eV (λeff = 0.99)

xy1↑ −0.454 0.0 −0.453 0.0 −0.444 0.0
xz1↑ −0.383 0.0 −0.363 + 0.056i −0.053 − 0.100i −0.263 + 0.150i −0.142 − 0.200i

yz1↑ −0.383 0.0 −0.363 − 0.056i −0.100 − 0.053i −0.263 − 0.150i −0.200 − 0.142i

xy2↑ 0.454 0.0 0.453 0.0 0.444 0.0
xz2↑ 0.383 0.0 0.363 − 0.056i 0.053 + 0.100i 0.263 − 0.150i 0.142 + 0.200i

yz2↑ 0.383 0.0 0.363 + 0.056i 0.100 + 0.053i 0.263 + 0.150i 0.200 + 0.142i

xy1↓ 0.0 −0.454 0.0 −0.453 0.0 −0.444
xz1↓ 0.0 −0.383 0.053 − 0.100i −0.363 − 0.056i 0.142 − 0.200i −0.263 − 0.150i

yz1↓ 0.0 −0.383 0.100 − 0.053i −0.363 + 0.056i 0.200 − 0.142i −0.263 + 0.150i

xy2↓ 0.0 0.454 0.0 0.453 0.0 0.444
xz2↓ 0.0 0.383 −0.053 + 0.100i 0.363 + 0.056i −0.142 + 0.200i 0.263 + 0.150i

yz2↓ 0.0 0.383 −0.100 + 0.053i 0.363 − 0.056i −0.200 + 0.142i 0.263 − 0.150i

jeff = 3
2 weight 0.6667 0.8320 0.9816

B1u weight 0.9932 0.9567 0.7824

spectroscopy (XAS) experiments. In XAS, essentially, 〈L · S〉
is measured. This expectation value is of course zero without
spin-orbit coupling. A detailed and very insightful analysis
can be found, for instance, in Refs. 26–29. In particular, it is
shown that, for a related iridate, the main contribution to 〈L · S〉
(1.4 out of 2.1) does not come from the t2g orbitals, which
define the jeff = 1/2 states, but from the admixture of the eg

orbitals. In our calculations—shown below—we observe the
same behavior.

We apply our TB + SO model to calculate 〈L · S〉 for
Na2IrO3 where L and S are, respectively, the total orbital and
spin angular momenta of Ir 5d electrons. 〈L · S〉 is related to
the experimentally accessible branching ratio as

BR = (2 − r)

(1 + r)
, r = 〈L · S〉

nh
, (16)

with nh = 5 being the average number of 5d Ir holes.30,31

In recent XAS measurements,32 BR = 5.5–5.7, translating to
〈L · S〉 = −2.7h̄2, was obtained for Na2IrO3 and interpreted
as a sign of strong spin-orbit coupling.

When applying the TB + SO model that we constructed
for Na2IrO3 in Sec. V A the calculated 〈L · S〉 = −0.73h̄2 (as
compared to −1h̄2 in the limit λeff = 1). This value is several
times smaller than the experimental value. This is, however,
not unexpected given the significant contribution of the Ir eg

empty states to 〈L · S〉 (cf. Ref. 26), which are not considered
in the TB + SO model discussed in the previous section. In
order to make a meaningful comparison with experiment, we
extend our TB + SO model to include (in the same spirit)
also the Ir eg states. 〈L · S〉 within such a model is −1.91h̄2.
This is about 30% less than the experimental value reported
by Clancy et al.32 This result is indeed in good agreement
with experiment, given the large fluctuations in experimental
values. For instance, Ref. 32 reported 〈L · S〉 = −3.1h̄2 for
Sr2IrO4 while Ref. 26 reported −2.1h̄2 (about 30% difference)
for the same compound. This example gives a sense of possible
fluctuations between results of different experimental groups,
and therefore our theoretical 〈L · S〉 value for Na2IrO3 might
be even closer to the true result.

The main conclusion from these calculations is that with
the TB + SO model based on all five Ir 5d orbitals we are able
to reasonably reproduce the large experimentally measured
〈L · S〉 value in Na2IrO3, which validates our approach. As our
analysis shows, the large 〈L · S〉 does not necessarily mean an
ideal separation of jeff = 3

2 and jeff = 1
2 RO states, but rather

the effect of eg states also contributing in the process. Due
to the peculiar electron hopping hierarchy in Na2IrO3, QMOs
might be a better basis.

In conclusion, the XAS experiments only tell us that the
upper Kramers doublet has a considerable contribution coming
from jeff = 1/2, but not that it is a pure RO state.

D. Comparison with experiment: RIXS

Another experiment sometimes quoted as supporting the
fully relativistic jeff = 1

2 picture is resonant inelastic x-ray
scattering (RIXS).33 In this experiment a joint density of
electronic states (JDOS) is probed, somewhat similar to that in
the infrared absorption but with different matrix elements. The
authors of Ref. 33 observed several peaks in JDOS, of which
the lowest peak at ∼0.42 eV was interpreted as transitions
across the Mott-Hubbard gap, consistent with a 30% smaller
optical absorption threshold. The next two peaks are close to
each other at 0.72 and 0.83 eV and were ascribed to transitions
from the jeff = 3/2 quartet into the upper jeff = 1/2 doublet.
The splitting of 110 meV was ascribed to the trigonal splitting.
Altogether, this interpretation suggests an SO coupling λ ∼
2
3 ( 0.72+0.83

2 − 0.42
2 ) eV ≈ 0.39 eV, a very reasonable number, if

slightly too small.
This analysis, even though it looks reasonable on the first

glance, has serious shortcomings. First, the deduced trigonal
splitting is nearly twice as large as the actual trigonal splitting.
In fact, the trigonal splitting is decided by the electrostatic
field of the ligands, and in addition one-electron hoppings;
both are very well accounted for by the DFT calculations,
which give �T = 75 meV. Second, even a �T = 110 meV
cannot produce well separated peaks in JDOS, given that the
Ir-Ir hopping is t1 O = 270 meV. Third, even if one completely
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neglects the Ir-Ir hoppings,33 in order to extract λ and �T one
has to diagonalize the full Hamiltonian including both factors
and then fit the resulting eigenvalues to the observed peaks.
After doing that, one gets λ = 0.5 eV and �T = 180 meV.
Although the previous numbers are a rough estimate since
they depend on the direction of the Ir spins as well as on U

(here we considered U = 0), the latter number is more than
twice the actual trigonal splitting. This argument shows that
an interpretation of RIXS in terms of infinitely narrow bands
split by the trigonal field may not be completely correct.

We find, on the other hand, that this experiment is consistent
with DFT band structure. To demonstrate that, we have
performed DFT calculations for the magnetic zigzag phase.
We note that the results do not depend qualitatively on the
choice of the pattern and the magnetization direction. In order
to account for the missing correlation effects and adjust the
direct gap to be consistent with infrared measurements,11 we
applied a rigid shift of 200 meV between the occupied and
empty bands (“scissor operator”). This exercise gives a JDOS
which has a broad feature, consisting of (i) a peak at 0.42 and
a shoulder 0.48 eV (compared to 0.42 eV in the experiment)
corresponding to the transition between the top QMOs and (ii)
a peak at 0.77 eV and a shoulder at 0.81 eV corresponding to
transitions from the lower QMOs. While the experiment finds
two peaks at 0.72 and 0.83 eV, one should keep in mind that the
matrix elements, omitted in our calculation, can easily suppress
or enhance a shoulder, making it disappear (at 0.48 eV) or
become a separate peak (at 0.81 eV). Therefore we conclude
that the agreement between experiment and our calculations,
simplified as they are, is reasonably good.

VI. MAGNETISM

We proceed now with the discussion of the magnetic
behavior of Na2IrO3. Neutron diffraction experiments reported
long-range antiferromagnetic order at low temperatures in a
zigzag pattern.8 This ordering was confirmed by relativistic
spin-polarized DFT calculations5 where we showed that it is
the itinerancy of the system that stabilizes the zigzag config-
uration. Such a pattern was also predicted from the localized
nnKH model2,4 [Eq. (1)]. In the following we will provide
ab initio–derived estimates for the Kitaev and Heisenberg
terms and will show that in the physically reasonable parameter
range this model unfortunately fails to reproduce the experi-
mentally observed magnetic order.

A. Nearest neighbor Kitaev-Heisenberg model

One term neglected in the conventional Kitaev-Heisenberg
model treatment is the single-site magnetocrystalline
anisotropy. Localized electrons with the spin 1/2 do not
have any anisotropy, no matter how strong the spin-orbit
coupling is. However, if hopping is considered, electrons can
have a preferred spin direction, which in the language of
the nnKH Hamiltonian would be reflected in a single-site
term proportional, in the lowest order, to (A · S)2 where A
is a vector. Such terms are usually neglected when dealing
with the nnKH model. Our calculations5 without including
U show a magnetic anisotropy as large as 3 meV per Ir
(in order to address the single-site anisotropy, we compared

ferromagnetic calculations). This energy should be compared
to the total magnetic stabilization energy (i.e., the energy
difference between magnetic and nonmagnetic solutions) of
maximally 5 meV. When the DFT calculations are performed
including a U = 2 eV, the magnetic anisotropy is as large
as 8 meV out of a total energy of 28 meV. This substantial
anisotropy suggests that a single-site term should be added
to the Kitaev-Heisenberg Hamiltonian, probably resulting in a
rather different phase diagram.

With all these caveats, it is still instructive to analyze where
Na2IrO3 is to be found in the parametric space of the nnKH
model. We make the following assumptions: (i) that the atomic
orbitals are fully localized and the appropriate basis is given
by pure jeff = 1/2 orbitals; (ii) that the only hoppings relevant
for magnetic interactions are pd hoppings, so that the only
oxygen-assisted Ir-Ir hoppings are specific t2g-t2g hoppings
between unlike orbitals, as outlined in Refs. 2,5, and the t2g-eg

hoppings given in Ref. 4; and (iii) that the only processes
contributing to magnetic interactions are those listed in Ref. 4.

Indeed, the fact that the experimentally observed magnetic
order is zigzag suggests that either the Heisenberg terms
are exceptionally long ranged (the 3rd neighbor exchange
is comparable to the 1st one)7,8 or that the Kitaev term is
strong and antiferromagnetic.4,34 The former suggestion is
seemingly in contradiction with the fact that the calculated
3rd neighbor hoppings are substantially smaller than the 1st
neighbor ones. This makes it impossible to explain the large
3rd neighbor exchange integral in terms of superexchange.
However, there is a possibility, suggested in Ref. 5, that the Ir
electrons are itinerant over individual hexagons, which makes
magnetic interactions naturally long ranged, and not directly
related to the hopping integrals.

The second suggestion, which is the one we will focus on
in what follows, was proposed in Ref. 4, namely that of an
antiferromagnetic Kitaev term. If strong enough, this could
explain the observed magnetic order. Below we consider the
expressions presented in Ref. 4 and substitute the unknown
variables with ab initio–derived parameters.

Chaloupka et al.4 discuss four relevant processes contribut-
ing to the exchange interactions in Na2IrO3: (1) Direct hopping
t1σ between nearest neighbor Ir t2g orbitals contributing with
a term I1 = ( 2

3 t1σ )2/U to the Heisenberg term, where U is the
Coulomb repulsion between t2g electrons.

(2) Interorbital nearest neighbor Ir t2g-eg hopping via
intermediate oxygens t̃1, with t̃1 = tpdσ tpdπ/�, where � is
the charge transfer energy (the difference between the O p and

Ir d levels) contributing with a term I2 = 4
9

t̃2
1

Ũ

J̃H

Ũ
both to the

Kitaev and Heisenberg terms, but with the opposite signs. Here
Ũ is the excitation energy associated with the t2g-eg hopping;
i.e., it also includes crystal field splitting, Ũ = U + 10Dq. J̃H

is the Hund’s rule coupling between t2g and eg electrons.
(3) Oxygen-assisted hopping between two nearest neighbor

Ir t2g orbitals t1 O contributing with a term I3 = 8
3

t2
1 O
U

JH
U

to the
Kitaev term, where JH is the Hund’s rule coupling between t2g

electrons, and, we recall, t1 O = t2
pdπ/�.

(4) Oxygen-2p – iridium-5d charge transfer con-

tributing with a term I4 = 8t2
1 O
9 [ 1

2�+Up−3Jp
+ 1

3(2�+Up−Jp) +
2

3(2�+Up+2Jp) − 1
�

], where Up and Jp are, respectively, the
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Hubbard repulsion and the Hund’s rule parameter for oxygen.
This expression was derived by G. Khaliullin35 and is worth
some additional discussion. The first three terms correspond
to processes where two holes of the same or of opposite spins
meet at an oxygen atom. Neglecting Jp, one gets simply
8t2

1 O
9

1
�+Up/2 , which reflects the fact that if the Ir atoms have op-

posite spins one can create an intermediate state with two holes
on the same oxygen orbital, which lowers the total energy. The
last term appears due to ring exchange, with an intermediate
state where two holes are located on different oxygens. This
process is only allowed when the ground state is FM, and
only if the ground state hole is in an a1g or jeff = 1/2 state,
but not for pure t2g orbitals. However, contrary to a common
misconception, Jp is large, between 1.2 and 1.6 eV. We have
estimated Up and Jp, using the technique described in Ref. 37,
and obtained Up = 2.7 and Jp = 1.6 eV, consistent with ear-
lier DFT estimates.36 For nonrelativistic orbitals it is compara-
tively straightforward to account for the Hund’s rule coupling
on O, but for relativistic orbitals it becomes more tedious.

If we expand I4 in both Up and Jp, then I4 ≈ 8t2
1 O
9

Up−Jp

2�2 .

This expression shows that Up alone contributes ferromagnet-
ically to the Heisenberg term and antiferromagnetically to the
Kitaev term and may shift the various phases in the nnKH
model. Together with Jp though, for the values suggested
above the effect of Up and Jp largely cancels and I4 appears
to be unimportant (note though that if Jp is entirely neglected,
as in Ref. 4, this proposition becomes more questionable).

Summarizing the above terms into a single expression,
Eq. (1) can be written as

H
(γ )
ij = (2I2 − I3 + 2I4)︸ ︷︷ ︸

2K

S
γ

i S
γ

j + (I1 − I2 − I4)︸ ︷︷ ︸
J

Si · Sj . (17)

This model has a zigzag magnetic ground state4 if the Kitaev
term is antiferromagnetic (AFM) and the Heisenberg term is
ferromagnetic (FM), with K > 0, J < 0, and −26 � K/J �
−0.3.

In Table IV we provide the parameter values relevant for
Na2IrO3, as obtained from our DFT results. Note that the t̃1
parameter was assumed to be 2t1 O in Ref. 4, while in the
calculations (DFT calculations are usually very reliable in this
respect) t̃1/t1 O is 1.4. However, using the ratio of 2 hardly
changes any conclusions.

TABLE IV. DFT-calculated values of transfer integrals and charge
transfer energy between the O p and Ir d levels for Na2IrO3 and
estimates of Hund’s rule coupling strength as described in the text.
The values marked with ∗ were obtained from t̃1, t1O and �.

Parameter Value (eV) Meaning

t1σ 0.03 direct Ir-Ir hopping
t1 O 0.27 O-assisted Ir-Ir hopping
t̃1 0.38 Ir t2g-eg hopping
tpdπ 0.57∗ Ir-O π hopping
tpdσ 1.6∗ Ir-O σ hopping
� 2.4 charge transfer energy between

the O p and Ir d levels
JH 0.5 Ir t2g Hund’s rule coupling
J̃H 0.5 Ir t2g-eg Hund’s rule coupling

We present our results in Figs. 9 and 10. In Fig. 9 we
show the calculated values of K and J as a function of two
variables: the x axis is the Hubbard U associated with the upper
Kramers doublet, and the y axis is the energy Ũ , associated
with exciting an individual electron from the upper t2g to an
average eg state. The Hubbard U for 5d electrons is, generally
speaking, 1.5 to 2 eV. However, in this case it is additionally
screened by the eg electrons, and also reduced by hybridization
(cf. NaxCoO2

38 and Fe pnictides39). Experimental estimates of
the Hubbard U defined as the energy cost for exciting electrons
across the insulating gap (which is the definition relevant to
superexchange) yield 0.3–0.5 eV.11,33 Additionally, LDA + U
calculations with U ∼ 2 eV yield an excitation gap of the same
order. We conclude that the realistic range of this parameter is
0.5–2 eV, with the smaller values more likely.

For the second parameter, Ũ , DFT calculations give
∼2.5 eV. This should be considered as a lower bound since
DFT tends to slightly overestimate the orbital overlap and
crystal fields, and misses the effects of the t2g-eg Hubbard
interaction. One can thus limit the physically admissible range
in the region 2.5 eV � Ũ � 3 eV.

In Fig. 10 we show the phase diagram in the space of the
two parameters above. Several observations are in place: (1)
While there is a zigzag phase in this diagram, it is very far
removed from the range of the parameters that can be called
physical, 0.5 eV � U � 2 eV, 2 eV� Ũ � 3 eV (even though
in the above estimate we have liberally stretched the admissible
range in favor of a zigzag phase). In fact, the zigzag regime
appears only when Ũ < 0.6U , i.e., when the Hubbard gap is
larger than the eg-t2g splitting, a rather unlikely proposition.
(2) In the physical range of parameters, the ground state is
either ferromagnetic or the spin liquid phase. It is rather curious
that the very narrow slivers of the phase space in the J,K

coordinates4 are transformed into a very large range in the
U,Ũ space.

It is also worth mentioning that in order to explain the
experimental data of Refs. 7,8 one needs not only the ground
state to be zigzag, but also that K be several times larger than
|J |; Chaloupka et al.4 used K = 10.44 and J = −4.01 meV.
This solution cannot be obtained for a given set of U and Ũ (see
Fig. 9). Moreover, a closer look at the expressions in their work
reveals that K + J = I1 − I3/2, which does not depend on Ũ

and is always negative. Thus the two equalities above cannot
be satisfied simultaneously for any choice of parameters, be
they physical or not. Moreover, the values of J and K used in
Ref. 4 can only be obtained if Ũ < 0.2 eV, which is clearly an
impossible regime.

B. Long-range exchange

As mentioned above, an alternative interpretation of the
experimental results, given in Refs. 7,8, is in terms of sizable
2nd and 3rd neighbor exchange constants, comparable to the
nearest neighbor exchange. In this picture the Kitaev term
may or may not play a role, but this role is not decisive
in establishing the observed magnetic order. Given that the
calculated hopping amplitudes (Table I) are clearly dominated
by the nearest neighbor terms, standard superexchange cannot
explain such long-range interactions.
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FIG. 9. (Color online) Variation of (a) Kitaev parameter K and (b) Heisenberg exchange coupling J with on-site Coulomb coupling
strength U and Ir t2g-eg excitation energy Ũ . Positive values refer to antiferromagnetic, negative to ferromagnetic values of K and J . The other
parameters entering the K and J are given in Table IV A.

However, it is important to remember that in the opposite,
itinerant limit every electron is fully delocalized over a
hexagon and, as such, is equally sensitive to the mean-field
magnetization pattern on the 1st, 2nd, or 3rd nearest neighbors.
As discussed in our earlier work,5 the zigzag order, as
compared to the stripy one, results in a sizable pseudogap
at the Fermi level even without a Hubbard U . This creates an
energy gain that cannot be cast in a form of nearest neighbor
interaction, as it depends on the magnetization pattern over an
entire hexagon.

We are far from stating that the superexchange Hamiltonian
outlined in Ref. 4 is irrelevant and an itinerant description will

FIG. 10. (Color online) Phase diagram of the Kitaev-Heisenberg
model for Na2IrO3 with parameters determined following Ref. 4. The
calculated exchange integrals are functions of the Mott-Hubbard gap
U and the cubic crystal field splitting Ũ . The contours mark isolines
of the ratio K/J .

give the final answer to all questions regarding the magnetism
in Na2IrO3. However, relying solely on the localized picture
and, correspondingly, on the nnKH model, is, apparently,
inadequate.

VII. CONCLUSIONS

In summary, we have performed an extensive investigation
of the electronic properties of Na2IrO3 in the framework
of nonrelativistic and relativistic density functional theory
calculations and derived by means of the Wannier function
projector method, the corresponding microscopic parameters.
We resolved the following open questions: (1) By considering
various idealized crystal structures for Na2IrO3 we could
disentangle the effect of each of the structural distortions
present in this system and concluded that it is the joint
effect of these distortions that constructively enhances the
intrahexagon effective hopping parameters and suppresses the
interhexagon ones favoring the formation of quasimolecular
orbitals. (2) We modeled the relativistic DFT results in terms
of a tight-binding model including the spin-orbit coupling
term and analyzed the electronic properties of Na2IrO3 in
terms of two complementary descriptions, the (itinerant)
quasimolecular basis and the (localized) relativistic jeff basis.
We observed that the behavior of Na2IrO3 lies in between the
fully itinerant and the fully localized description and that a
quasimolecular orbital description keeps its character even at
large values of the spin-orbit coupling strength. (3) We showed
that XAS and RIXS observations can be well understood
within an itinerant description of Na2IrO3 in contrast to other
iridates such as Sr3CuIrO6 where localization is imposed
by the crystallographic arrangement of the IrO6 octahedra.40

(4) Finally, we provided ab initio–derived estimates for the
parameters appearing in the Kitaev and Heisenberg terms in
Na2IrO3 and found that the recently proposed nnKH model
(see Sec. VI), even though it is a very interesting model per
se, is unfortunately not realistic for Na2IrO3. In conclusion,
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in order to obtain a full understanding of the behavior of
Na2IrO3 all three features—spin-orbit, Coulomb correlations,
and delocalization of valence electrons over Ir6 hexagons—are
essential.
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APPENDIX: IDEALIZED Na2IrO3 CRYSTAL
STRUCTURES AS USED IN WIEN2k

1. Experimental structure from Ref. 8

Space group C2/m (No. 12)
a = 5.4269 Å, b = 6.4104 Å, c = 9.3949 Å, γ = 124.12◦

Atom x y z

Na1 0.0 0.0 0.5
Na2 0.5 0.5 0.0
Na3 0.5 0.5 0.3400
Ir 0.0 0.0 0.1670
O1 0.4590 0.2110 0.1780
O2 0.0070 0.7960 0.0

2. Idealized structure S1

Space group C2/m (No. 12)
a = 5.4501 Å, b = 6.4411 Å, c = 9.4399 Å, γ = 125.26◦

Atom x y z

Na1 0.0 0.0 0.5
Na2 0.5 0.5 0.0
Na3 0.5 0.5 0.3333
Ir 0.0 0.0 0.1667
O1 0.4646 0.2097 0.1785
O2 0.0000 0.7903 0.0

3. Idealized structure S2

Space group C2/m (No. 12)
a = 5.4501 Å, b = 6.4190 Å, c = 9.4399 Å, γ = 124.47◦

Atom x y z

Na1 0.0 0.0 0.5
Na2 0.5 0.5 0.0
Na3 0.5 0.5 0.3333
Ir 0.0 0.0 0.1667
O1 0.4606 0.1909 0.1667
O2 0.0000 0.8091 0.0

4. Idealized structure S3

Space group C2/m (No. 12)
a = 5.0658 Å, b = 5.9869 Å, c = 8.7743 Å, γ = 125.26◦

Atom x y z

Na1 0.0 0.0 0.5
Na2 0.5 0.5 0.0
Na3 0.5 0.5 0.3333
Ir 0.0 0.0 0.1667
O1 0.5000 0.2443 0.1667
O2 0.0000 0.7557 0.0

Note that due to the necessity of using a monoclinic angle
γ in WIEN2k, the Ir honeycomb layers in the Na2IrO3 unit
cells presented above are parallel to the ac plane. Accordingly,
within this convention the vector of the Bloch factors in Eqs. (4)
and (7) is given by

TM=1...6(k) = (1,e−ikx ã,eikzc̃,ei(kzc̃−kx ã),eikzc̃,e−ikx ã), (A1)

where ã and c̃ are the lengths of the two primitive lattice vectors
lying in the ac plane. Here, one explicitly accounts for the
choice of WIEN2k of the actual positions of the two Ir atoms
in the primitive unit cell, which are, e.g., (−0.167,0,0.167)
and (−0.833,0,0.833) in the experimental Na2IrO3 structure.
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