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A theory of combined interference and interaction effects on the diffusive transport properties of 3D topological
insulator surface states is developed. We focus on a slab geometry (characteristic for most experiments) and
show that interactions between the top and bottom surfaces are important at not too high temperatures. We
treat the general case of different surfaces (different carrier densities, uncorrelated disorder, arbitrary dielectric
environment, etc.). In order to access the low-energy behavior of the system, we renormalize the interacting
diffusive σ model in the one loop approximation. It is shown that intersurface interaction is relevant in the
renormalization group (RG) sense and the case of decoupled surfaces is therefore unstable. An analysis of
the emerging RG flow yields a rather rich behavior. We discuss realistic experimental scenarios and predict a
characteristic nonmonotonic temperature dependence of the conductivity. In the infrared (low-temperature) limit,
the system flows into a metallic fixed point. At this point, even initially different surfaces have the same transport
properties. Investigating topological effects, we present a local expression of the Z2 theta term in the sigma
model by first deriving the Wess-Zumino-Witten theory for class DIII by means of non-Abelian bosonization
and then breaking the symmetry down to AII. This allows us to study a response of the system to an external
electromagnetic field. Further, we discuss the difference between the system of Dirac fermions on the top and
bottom surfaces of a topological insulator slab and its nontopological counterpart in a double-well structure with
strong spin-orbit interaction.
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I. INTRODUCTION

Topological states of matter have recently attracted im-
mense scientific interest, which was, in particular, boosted
by the theoretical prediction1–5 and, subsequent, experimental
discovery6,7 of two-dimensional (2D) and three-dimensional
(3D) time-reversal invariant topological insulators.

In their bulk, topological insulators8–11 (TI) are electronic
band insulators characterized by a topological invariant that
accounts for the nontrivial structure of the Bloch states. In
contrast, the interface between two topologically different
phases (e.g., TI-vacuum) hosts gapless, extended boundary
states. Their appearance is topologically protected via the
bulk-boundary correspondence.12 In retrospect, we understand
that the quantum Hall effect (QHE)13 at given quantized
transverse conductance was the first example of a topological
insulator: the Landau levels provide the bulk band gap,
which is accompanied by the topological Thouless-Kohmoto-
Nightingale-den Nijs (TKNN)14 number and the protected
chiral edge states.

In contrast to the QHE, the newly discovered 2D and
3D topological insulators require the absence of magnetic
field and rely on strong spin-orbit interaction. Further, their
topological invariant takes only values in Z2 (contrary to the
TKNN integer). The 2D TI phase (also known as quantum spin
Hall state) was experimentally identified by the characteristic
quantized value 2e2/h of the two-point conductance in HgTe
quantum wells.6 The discriminating feature of all 3D TI is the
massless Dirac states on the 2D boundary, which were first

spectroscopically detected in BiSb7 alloys and, subsequently,
in many other materials.8 To present date, various experimental
groups confirmed predominant surface-state transport (for a
review, see Ref. 15), in particular, elucidating ambipolar field
effect16–20 and the typical QHE steps of Dirac electrons,21–25

Aharonov-Bohm oscillations26–28 as well as weak antilocaliza-
tion (WAL) corrections in the magnetoconductivity data.29–31

Moreover, several transport experiments reveal the importance
of electron-electron interactions in 3D TI materials.31–33

Inspired by recent experimental advances, we present here
a detailed analysis of interference and interaction corrections
to conductivity in the most conventional setup for transport
experiments: the slab geometry, in which the 3D TI films are
rather thin (down to ∼10 nm) although still thick enough to
support well separated surface states. As we will explain in
more detail, the long-range Coulomb interaction between the
two major surfaces plays an important role. We derive the
quantum corrections to conductivity in the diffusive regime by
taking into consideration the WAL effect as well as corrections
of Altshuler-Aronov type34 induced by inter and intrasurface
interactions. We consider the general situation of different
surfaces subjected to different random potentials, mismatch in
carrier densities, and unequal dielectric environment.

The present paper constitutes a natural extension of the
previous work35 by three of the authors in which a single
3D TI surface was analyzed. It was found that the interplay
of topological protection and interaction- and interference-
induced conductivity corrections drives the system into a novel
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E. J. KÖNIG et al. PHYSICAL REVIEW B 88, 035106 (2013)

critical state with longitudinal conductance of the order of
e2/h. As we show below, the intersurface interaction in a thin
TI slab makes the overall picture much more complex and
crucially affects the ultimate infrared behavior.

In another recent paper,36 two of us were involved in
the theoretical investigation of inter and intrawell interac-
tion effects in double quantum well heterostructures studied
experimentally in Ref. 37. Let us point out key differences
between the present paper and that work. First, in Ref. 36,
only equal carrier densities were considered. Second, disorder
was assumed to be the same in both quantum wells (and thus
completely correlated). This affects the soft-mode content of
the low-energy theory. Third, quantum wells host electrons
with spin degeneracy, which can be lifted by a magnetic field.
As a consequence, (i) electrons in double quantum wells fall
into a symmetry class different from that of 3D TI and (ii)
more interaction channels have to be included. These subtleties
affect in a crucial way the renormalization group (RG) flow:
according to the analysis of Ref. 36, the interwell interaction
becomes irrelevant at low energies, which is opposite to what
we find in the two-surface TI model in the present paper.
Finally, the TI problem shows topology-related effects that
were absent in the double quantum well structure.

As in the two preceding works, we here use the interacting,
diffusive nonlinear sigma model (NLσM) approach to capture
the diffusive low-energy physics. Quantum corrections to the
longitudinal conductivity σ are obtained by renormalization of
this effective action in the one-loop approximation (i.e., per-
turbatively in 1/σ but exactly in interaction amplitudes). The
interacting NLσM was originally developed by Finkel’stein
in the 1980’s38,39 (for review articles, see Refs. 40–42).
In addition to perturbative RG treatment (which can also
be performed diagrammatically43), it also allows one to
incorporate topological effects and was thus a fundamental tool
for understanding the interplay of disorder and interactions in
a variety of physical problems, including the superconducting
transition in dirty films,44,45 the integer QHE,46,47 and the
metal-insulator transition in Si MOSFETs.48

Analyzing the RG equations for the thin 3D TI film, we
find that (in contrast to the previous work on the double
quantum well structure) the intersurface interaction is relevant
in the RG sense. The system flows towards a metallic fixed
point at which even two originally different surfaces are
characterized by the same conductivities. As we discuss in
detail below, the hallmark of the intersurface interaction in
3D TI transport experiments is a characteristic nonmonotonic
temperature dependence of the conductivity. In contrast to the
case of decoupled surfaces, due to the intersurface interaction,
quantum corrections to the conductivity depend on the carrier
densities.

The paper is structured as follows. In Sec. II, we expose
in detail the theoretical implications of a typical experimental
slab geometry setup, demonstrate the relevance of intersurface
interaction and introduce the microscopic fermionic Hamil-
tonian. Subsequently (see Sec. III), we use the non-Abelian
bosonization technique to map the fermionic theory on the
[U(1)-] gauged, interacting NLσM with aZ2 topological term.
Here, we also discuss the Fermi liquid treatment of generally
strong electron-electron interactions. Next, we renormalize
the NLσM in Sec. IV. Sections III and IV contain both

pedagogical explanations and important details for experts.
Readers purely interested in the results can jump to Sec. V,
where the RG flow and the implied phase diagram are
analyzed. Detailed predictions for typical experiments can be
found in Sec. VI. We close the paper by summarizing our
results and discussing prospects for future work in Sec. VII.

II. TOPOLOGICAL INSULATOR SLABS: EXPERIMENTAL
SETUP AND THEORETICAL MODEL

A. Setup

In this work, we analyze the effect of interaction on
transport properties of strong 3D topological insulator thin
films in the diffusive regime. While we mainly focus on the
theoretically most interesting case of purely surface transport,
we also show that our theory can easily be extended to a case
when only a part of the sample is in the topological phase, i.e.,
one has a conduction through a topologically protected surface
spatially separated from a thick (bulk) conducting region.

A typical experimental setup is shown in Fig. 1. Our
analysis is valid in the regime where the penetration depth of
surface states a is small with respect to the film thickness d. We
therefore neglect intersurface tunneling (which would destroy
the topological protection). Further, we assume the disorder
correlation length (depicted by the range of the impurity
potentials) to be small ξ � d. We treat a generic case when
the vicinity to the coat or, respectively, to the substrate may
induce a different degree of disorder on the top and bottom
surfaces. We thus consider the corresponding mean-free paths
l1 and l2 as two independent parameters. Moreover, we also
allow the chemical potentials μ1 and μ2 on the two surfaces
to be different. (By convention, we set μs = 0 at the Dirac
point. Here and below, s = 1,2 denotes the surface index.)
The chemical potentials may be experimentally controlled by
means of electrostatic gates. As has been stated above, we
mostly focus on the situation where both μ1 and μ2 lie well
within the bulk gap �bulk. The extension of our results to the
experimentally important regime when only one of chemical
potentials is located within the bulk gap, |μ1| � �bulk � |μ2|,
can be found in Sec. V B1.

If the electrostatic gates are present and too close121 to the
sample, Coulomb interaction is externally screened and the
electron-electron interaction is purely short range. However,
such an experimental scenario is a rare exception from the rule.
Therefore, in the main text, we assume sufficiently distant

l

l

FIG. 1. (Color online) Scheme of a typical experimental setup.
The hierarchy of length scales is explained in the main text.
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gates and concentrate on the limit of long-range Coulomb
interaction. In addition, we derive general RG equations (see
Appendix D), which allow us to explore the crossover from
the long-range case to the short-range one, see Appendix F.
Qualitatively, the RG flow for a sufficiently strong short-range
interaction in the case of externally screened surfaces turns
out to be similar to the flow in the absence of external
screening. Since we assume that the thickness d of the sample
is much smaller than its other linear dimensions, we neglect
contributions of four side faces of the slab (whose area is
proportional to d).

The goal of the present analysis is to study conduction
properties of thin 3D TI films in the diffusive regime, i.e., at
energy scales E far below the elastic scattering rates 1/τs of
both surfaces,

E � min
s=1,2

h̄/τs . (1)

In turn, the elastic scattering rates are assumed to be small
compared to the chemical potentials

h̄/τs � |μs |. (2)

In experiment, E is set by the ac frequency (E = h̄ω) or
by temperature (E = kBT ), whichever of the two is larger.
Equation (1) is equivalent to the hierarchy of length scales

l � LE , (3)

where we have introduced the maximal mean-free path l =
maxs=1,2 ls and the length scale LE = mins=1,2(h̄Ds/E)1/2,
with Ds being the diffusion coefficients for the two surfaces.

B. Interaction

Can Coulomb interaction between the top and bottom
surface states play an important role in the experiment? To
answer this question, we compare the sample thickness with
all natural length scales of the system: the screening length lscr,
the (maximal) mean-free path l and the experimentally tunable
scale LE .

The Coulomb interaction is (throughout the paper under-
lined symbols denote 2 × 2 matrices in the surface space)

U 0 (r) = e2

ε

(
1
r

1√
r2+d2

1√
r2+d2

1
r

)
. (4)

The two-dimensional vector r connects the two-dimensional
positions of the particles, r = |r|, e is the charge of the
electrons, and ε denotes the effective dielectric constant.

Fourier transformation and RPA-screening leads to36,49–51

[U ≡ U (q) ≡ 2πe2/εq]

U scr (q) = U

1 − (	1 + 	2) U + U 2	1	2(1 − e−2dq )
(5)

with

U = U

(
1 − 	2U (1 − e−2dq ) e−dq

e−dq 1 − 	1U (1 − e−2dq )

)
.

Here, 	s is the polarization operator of the surface states.
In the present section, we will concentrate on the statically

screened interaction potential. In this limit, the polarization
operator is determined by the thermodynamic density of states:
	s(ω = 0,q) = −νs .

In the diffusive regime defined by the condition (3), the
wave vector q satisfies the inequality 1/LE � q � 1/l.
Therefore, in a sample of thickness d � LE , we always have
dq � 1 and the two surfaces decouple,

U scr
d�LE= 2π

e2

ε

(
1

q+κ1
0

0 1
q+κ2

)
, (6)

where κs = 2πe2νs/ε is the inverse Thomas-Fermi screening
length for a single surface s. A universal form of the Altshuler-
Aronov correction to conductivity induced by the Coulomb
interaction34,35 arises in the unitary limit when one can neglect
q as compared with κs in Eq. (6). The unitary limit is achieved
if κ−1

s � l (the meaning of this condition as well as the
complementary case are discussed in Sec. III F3).

In the opposite limit of a small interlayer distance, d � l,
we can approximate e−dq ≈ 1 in the whole diffusive regime.
This implies

U scr
d�l= 2πe2

ε

1

q + κ1 + κ2 + 2dκ1κ2 (1 − qd)

×
(

1 + 2κ2d 1
1 1 + 2κ1d

)
. (7)

At the first glance, it looks as if also negative interaction
potential was possible. However, this is not the case as shall
be explained in what follows. Depending on the hierarchy of
the length scales κ−1

1 ,κ−1
2 and d the following scenarios are

conceivable.
First, consider κsd � 1 for both s = 1 and 2. In this case,

the q dependence of the interaction potential implies the
definition of the coupled layer screening length lscr:

(U scr)ss ′ (q) ∼ 1

q + κ1 + κ2
⇒ lscr = 1

κ1 + κ2
. (8)

If in addition the condition lscr � l is fulfilled, the
Coulomb interaction potential (7) becomes “overscreened”
(q-independent) for all diffusive momenta q � l−1.

Second, assume that κsd � 1 for at least one surface. Then
the q dependence of U scr is always negligible and thus the
notion of coupled layer screening length is meaningless. It
is worthwhile to remark that, as expected, the potential (7)
reduces to the decoupled form (6) in the limit when κ−1

s � d

for both surfaces (which also implies that κ−1
s � l).

In this paper, we derive the conductivity corrections in
the unitarity limit of q-independent interaction, see Eq. (94).
As expected, in the limit of decoupled surfaces, κ−1

s � d,
they reproduce the previous result,35 while whenever d �
κ−1

1 or d � κ−1
2 novel conductivity corrections induced by

intersurface electron-electron interaction emerge.
Finally, in the intermediate regime l � d � LE , the scale-

dependent conductivity can be obtained by the following
two-step RG analysis. First, one integrates the single-surface
RG equations starting from the shortest scale l up to the
intersurface distance d. After this, one uses the running
coupling constants at scale d as starting values for the
coupled-surface RG flow and integrates these RG equations
up to the scale lE .

Different regimes discussed above are shown schematically
in Fig. 2 in the parameter plane d–κ−1. For simplicity, we
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FIG. 2. (Color online) Sketch of the regimes discussed in the
main text for the case of comparable screening lengths, κ−1

1 ∼ κ−1
2

(denoted by κ−1). The regimes I and II correspond to effectively
decoupled surfaces (studied in Ref. 35), while in regimes III and IV,
intersurface interaction is important. The conductivity corrections in
I and III are due to “overscreened” Coulomb interaction. In contrast,
in II and IV, this type of corrections sets in only in the low-energy
regime where the running length scale (i.e., the typical scale LE)
exceeds the screening length.

assume there the two surfaces have comparable screening
lengths: κ−1

1 ∼ κ−1
2 .

In the end of the paper, Sec. VI, we analyze in detail the
regions and limits of applicability of our theory with respect
to representative experimental setups. In particular, we show
that the hierarchy of scales d � l � LE is realistic.

In order to illustrate the importance of intersurface inter-
action (i.e., the relevance of the inequality d � κ−1

s ) under
realistic conditions, we show in Fig. 3 a dependence of the
screening length on the Fermi momentum.

FIG. 3. (Color online) Plot of the single surface screening length
κ−1

s . The red curve (large dashes) is the lower bound (corresponding to
α = 1) of the screening length. The solid, blue curve is the screening
length for Bi2Se3 film with experimental parameters given in Table I in
Sec.VI B. For the latter, the required minimal thickness and maximal
Fermi momentum are also depicted (dotted blue lines). The disorder-
induced regularization of the divergence at small Fermi momentum
is schematically represented by the black dot-dashed curve.

The density of states for the linear (Dirac) spectrum is
ν(μs) = k

(s)
F /2πh̄vF , where k

(s)
F is the Fermi wave vector of

the sth surface state and vF the Fermi velocity. Therefore

κ−1
s = 1

α

1

k
(s)
F

. (9)

We introduced the dimensionless parameter α = e2/εh̄vF ,
which is the effective coupling constant of the Coulomb
interaction and is equal to c/εvF times the fine structure
constant of quantum electrodynamics. Clearly, α plays the
same role as the dimensionless density parameter rs in
conventional theories of electrons in parabolic bands. We will
assume that the interaction is not too strong, α � 1, otherwise
the system may become unstable, see a discussion at the end
of Sec. II C.

The dashed red curve in Fig. 3 represents the lower bound
(corresponding to α = 1) of κ−1

s as a function of k
(s)
F . The actual

value of κ−1
s for an exemplary case of Bi2Se3 (experimental

parameters can be found in Table I below) is depicted by the
blue solid curve. We see that the screening length can by far
exceed the thickness of the topological insulator slab. Indeed,
the Bi2Se3 experiments16,31–33 are performed on probes of
thickness d 
 1–100 nm. For this material, our assumption
of separate gapless surface states (no tunneling) is both
numerically52 and experimentally53 shown to be valid down
to d 
 10 nm (blue horizontal dashed line). Thus relevant
experimental values of d in the experiments of interest range
from d 
 10 nm up to d 
 100 nm. On the other hand, surface
electrons have a maximal Fermi wave vector of kF ∼ 0.1/Å
associated with μ = �bulk = 0.3 eV, see blue vertical dashed
line. For the lowest concentration, increase of the screening
length is limited by disorder. In this way, we estimate the
range of κ−1

s as 20–200 nm, so that the condition κ−1
s > d can

be easily fulfilled. This is particularly the case for relatively
thin films (d 
 10 nm) and in the vicinity of surface Dirac
point.

The above analysis proves the relevance of the intersurface
electron-electron interaction. In fact, in course of this analysis,
we have made several simplifying assumptions that require
certain refinements; we list them for the reader’s benefit.
First, in general, the coating material (ε1), the topological
insulator (ε2), and the substrate (ε3) are all dielectrics with
different dielectric constants ε1 �= ε2 �= ε3. In order to deter-
mine the exact Coulomb interaction, one has to solve the
electrostatic problem of a point charge in such a sandwich
structure of dielectrics,54–56 see Appendix B. Second, the
long-range Coulomb interaction is accompanied by short-
range contributions, which, in particular, induce corrections
to the polarization operator which affect the screening length.
More precise calculations taking Fermi liquid corrections into
account can be found in Sec. III F4 and Appendix C. Finally,
we neglected the dependence of the Fermi velocity vF on
the chemical potential μs , see Sec. II C. However, all these
refinements do not modify our conclusion of the importance
of interaction between the surface states. We now proceed with
a presentation of the field-theoretical formalism that will allow
us to explore the problem.
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C. Microscopic Hamiltonian

The model under consideration is schematically depicted
in Fig. 4. It is described in path integral technique

Z =
∫

D[ψ̄,ψ] e−S[ψ̄,ψ] (10)

by the following microscopic Matsubara action:

S[ψ̄,ψ] =
∫

τ,x
ψ̄(∂τ + H0 + Hdis)ψ + Sint. (11)

The notation
∫
τ,x = ∫

d2x
∫ β

0 dτ will be used throughout the
article, where, as usual, β = 1/T is the inverse temperature.
If not specified otherwise, we set Boltzmann’s constant,
Planck’s constant, and the speed of light kB = h̄ = c = 1 in the
remainder. The fermionic fields ψ̄(x,τ ) = (ψ̄↑

1 ,ψ̄
↓
1 ,ψ̄

↑
2 ,ψ̄

↓
2 )

and ψ(x,τ ) = (ψ↑
1 ,ψ

↓
1 ,ψ

↑
2 ,ψ

↓
2 )T describe the spinful (↑,↓)

excitations living on surfaces s = 1 and s = 2. The one-
particle Hamiltonian that characterizes the surface s is

(H0 + Hdis)s = [Vs(x) − μs] ⊗ Iσ + i(−)sv(s)
F ∇ ∧ �σ , (12)

where Iσ is the unit matrix in spin space and we define a ∧ b =
axby − aybx . The disorder potentials Vs(x) for two surfaces are
assumed to be white-noise distributed and uncorrelated:

〈Vs(x)Vs ′ (x′)〉 = δ(x − x′)δss ′

πνsτs

. (13)

The disorder strengths 1/πνsτs may be different for two
surfaces.

It is worth emphasizing the following physical implications
of this Hamiltonian.

(1) The model (and its analysis below) corresponds to the
general case in which the chemical potentials μ1, μ2 and hence
the carrier densities of the two surfaces may differ.

(2) Since the disorder potentials are different for two sur-
faces, no intersurface diffuson and cooperon modes will arise.
Note that the considered model of fully uncorrelated disorder
correctly describes the low-energy physics of the majority
of experimental setups, even in the presence of moderate
intersurface correlations of disorder. Indeed, any mismatch
in chemical potentials and/or disorder configurations leads to
an energy gap in the intersurface soft modes. Two physical
regimes are conceivable: (i) almost identical surfaces in almost
fully correlated random potentials, |μ1 − μ2| � 1/τs and
〈[V1(x) − V2(x′)]2〉 � ∑

s=1,2〈Vs(x)Vs(x′)〉, and (ii) all other

FIG. 4. (Color online) Pictographic representation of the mi-
croscopic model: diffusively propagating surface states at different
chemical potentials that interact with each other by means of long-
range Coulomb interaction.

parameter regimes, when at least one of the conditions in (i) is
not fulfilled.

Our model is designed for the case (ii), where the gap is
comparable to the elastic scattering rate and intersurface soft
modes do not enter the diffusive theory at all. It also applies
to the case (i) in the ultimate large-scale limit (i.e., at energy
scales below the gap). In this case, there will be, however, an
additional, intermediate regime in the temperature dependence
(or ac frequency dependence), which is not considered in our
work.

(3) �σ in Eq. (12), in general, does not describe the physical
spin. For example, in Bi2Se3 structures, the effective spin σ

is determined by a linear combination of real spin and the
parity (band) degrees of freedom. The mixing angle depends
on how the crystal is cut.57 In this case, also the Fermi velocity
becomes anisotropic.

(4) Because of interaction effects, the true dispersion
relation is not linear but contains logarithmic corrections (or
more generally is subjected to “ballistic” RG58–60), which leads
to dependence of the Fermi velocity on the chemical potential.
This is reflected in the notation v

(s)
F ≡ vF (μs).

(5) Similarly, also the strength of the disorder may be
substantially different for both surfaces, so that the (quantum)
mean-free times τs are considered as two independent input
parameters. This is primarily because the vicinity to the
substrate or, respectively, to the coating material makes the
impurity concentration on both surfaces a priori different. In
addition, τs acquire renormalization corrections, leading to a
logarithmic dependence on μs .59,61–63

(6) The (pseudo-)spin texture on the top and bottom surfaces
is opposite [denoted by the factor (−)s].

(7) Finally, in some materials (in particular, in Bi2Te3),
the Dirac cone is strongly warped. We neglect the warping as
it does not affect the main result of this paper, namely, the
(universal) RG equations. Recently,64 it has been shown that
warping only influences the dephasing length (i.e., the length
scale at which the RG flow is stopped).

The interaction is mediated by the Coulomb potential,
see Eq. (4) and Appendix B. With the definition ρs(τ,x) =
ψ̄s(τ,x)ψs(τ,x), the corresponding contribution to the action
is given by

Sint = 1

2

∑
ss ′

∫
τ,x,x′

ρs(τ,x)U0,ss ′ (|x − x′|)ρs ′ (τ,x′). (14)

For equal surfaces [v(1)
F = v

(2)
F ], a simple rescaling of

Eqs. (11) and (14) shows that the effective coupling to the
Coulomb interaction is α. It can, in general, become of the
order of unity. Since the perturbation theory is insufficient in
such a case, we adopt the more general, yet phenomenological,
Fermi liquid theory to access the behavior for energies down
to the elastic scattering rates τ−1

1,2 (see Secs. III F3, III F4, and
Appendix C). This (clean) Fermi liquid theory will then be a
starting point for the interacting diffusive problem at energies
below the elastic scattering rate.

If the interaction becomes too strong, it might in prin-
ciple drive the system into a phase with spontaneously
broken symmetry.65 Examples are the Stoner instability66

as well as more exotic phenomena such as topological
exciton condensation,67 which is specific to 3D TI thin films.
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Throughout our analysis, we assume that the system is not
in a vicinity of such an instability. To our knowledge, this
assumption is consistent with all transport experiments on 3D
TI slabs addressed in this work.

III. σ -MODEL DESCRIPTION

We are interested in the low-energy (low-temperature,
long-length-scale) physics of the 3D TI problem defined by
Eqs. (1) and (2). This physics is controlled by coupled diffuson
and cooperon modes. In this section, we derive the effective
field theory—diffusive nonlinear σ model—that describes the
system in this regime.

A. Symmetries of the action

The structure of the effective low-energy theory, the diffu-
sive NLσM, is controlled by symmetries of the microscopic
action. The information about other microscopic details enters
the theory only via the values of the coupling constants. We
thus begin by analyzing symmetries of the problem.

First, our system obeys the time reversal symmetry H =
σyH

T σy . Second, we assume no intersurface tunneling, i.e.,
the particle number is conserved in each surface separately.
This implies invariance of the action with respect to U(1) ×
U(1) transformations (global in space and time).

The presence of Coulomb interaction promotes the U(1)
symmetry in the total-density channel, ρ1 + ρ2, to trans-
formations that are local in time but global in space.
In other words, rotations of fermionic fields, ψ̄s(τ,x) →
ψ̄s(τ,x) exp [−iχs(τ )], ψs(τ,x) → exp [iχs(τ )]ψs(τ,x), with
equal phases χ1(τ ) = χ2(τ ) leave the action (11) invariant.
This is a special case of “F invariance”68 and has important
consequences for the present problem. The F invariance (it is
intimately linked to gauge invariance) generally states that in
each channel with long-range interaction, time-dependent but
spatially constant U(1) rotations are symmetries of the action.
In our problem, as it follows from the q → 0 limit of the
Coulomb interaction:

U (q)
q→0∝ 1

q

(
1 1
1 1

)
, (15)

only the interaction between the total densities is long ranged.
The structure of Eq. (15) remains true also in the case of
asymmetric dielectric environment, see Appendix C 4.

To make the time-reversal symmetry explicit, we define
particle-hole bispinors by combining ψ and ψ̄ fields.41,69 In
the momentum space, the bispinors read

�n(k) = 1√
2

(
ψ̄n(−k)T

iσyψn(k)

)
(16)

and

�̄n(k) = [C�n(−k)]T with C = iσyτx, (17)

where n is the index associated to the fermionic Matsubara
frequency iεn, and τ matrices act in the particle-hole space.
This allows us to rewrite the one-particle Hamiltonian as

Sfree = −
∑

n

∫
k
�̄n(k)[iεn − HT (−k)]�n(k). (18)

It is convenient to perform a rotation of bispinors

η = √
τx�, (19)

where
√

τx = e−iπ/4(Iτ + iτx)/
√

2. The free action then takes
the form

Sfree = −
∑

s

∫
x
ηT

s {[iε̂ − Vs + μs](−iσy) (20)

+ (−)s+1v
(s)
F (∂x − i∂yσz)}ηs. (21)

The Matsubara frequency summation is incorporated into the
scalar product ηT (. . . )η. In these notations, ε̂ is a diagonal
matrix in the Matsubara space consisting of entries εn.

In order to perform the average over disorder, we replicate
the theory NR times. Furthermore, in order to implement the
U(1)-gauge invariance in the framework of the NLσM, we
apply a double cutoff truncation procedure with NM � N ′

M

for the Matsubara frequencies.68 Here, N ′
M and NM are the

numbers of retained Matsubara harmonics for fast (electrons
of the original theory) and slow (diffusons and cooperons of the
NLσM) degrees of freedom, respectively. As a consequence, η
becomes a (2s × 2σ × 2τ × 2N ′

M × NR)-dimensional Grass-
mannian vector field. Except for the frequency term, the free
action (21) is manifestly invariant under global orthogonal
rotations of the kind

ηs → (Os ⊗ Iσ )ηs with Os ∈ O(2τ × 2N ′
M × NR). (22)

Since the surfaces are fully decoupled in the absence of inter-
actions, the rotations O1 and O2 of the fields corresponding to
the top and bottom surfaces are completely independent.

B. Quasiclassical conductivity

To obtain the quasiclassical conductivity, we first find
the fermionic self-energy within the self-consistent Born
approximation (SCBA):

�s
n = −2iσy

πνsτs

〈
ηx,sη

T
x,s

〉
SCBA. (23)

Here, 〈. . . 〉SCBA denotes the self-consistent treatment,
i.e., a shift μs → μs + �s

n in the fermionic propagator.
Equation (23) yields for the imaginary part of the self-
energy Im(�s

n) = (1/2τs)sgn(εn). The quasiclassical Drude dc
conductance of the noninteracting problem in the absence of a
magnetic field is

σD
s = 2πνsDs

e2

h
, (24)

with Ds = (v(s)
F )2τs . Note that the transport time is twice the

quantum mean-free time τs . In the diagrammatic language,
this is a consequence of vertex corrections.

C. Fermionic currents and bosonization rules

To derive the NLσM, we use the method of non-Abelian
bosonization.70–74 An advantage of this approach is that
nontrivial topological properties of the Dirac fermions are
translated into the field theory in a particularly transparent
way.

In the first step, the kinetic term (see Sec. III D) is bosonized.
Subsequently, we bosonize also the terms induced by the
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chemical potential, disorder, and frequency (see Sec. III E).
Since only interaction couples the two surfaces, we omit the
surface index s in Sec. III D and Sec. III E. This index is
restored later in Sec. III F where the interaction is included.

Local left (η↑ → OLη↑) and right (η↓ → ORη↓) rotations
define the left and right currents. The bosonization rules for
these currents as well as for the mass term are

j+ = vF η↑ηT
↑ ↔ 1

8π
(O∂+OT ), (25a)

j− = vF η↓ηT
↓ ↔ 1

8π
(OT ∂−O), (25b)

η↑ηT
↓ ↔ iλO, (25c)

where ∂± = ∂x ± i∂y . The energy scale λ is of the order of the
ultraviolet (UV) cutoff and is introduced here for dimensional
reasons (see Secs. III E 1 and IV B for a discussion of its
physical meaning). Note that in general, the UV cutoff is
different for the top and bottom surfaces, λ1 �= λ2. Further, O is
an orthogonal (2τ × 2N ′

M × NR) × (2τ × 2N ′
M × NR) matrix

field. Below, we will need the following constant matrices in
this space:

�τ1τ2;αβ
nm = sgn (n) δτ1τ2δαβδnm,

η̂τ1τ2;αβ
nm = nδτ1τ2δαβδnm, (26)(

Iα0
n0

)τ1τ2;αβ

nm
= δτ1τ2δα0αδα0βδn−m,n0 .

Here and throughout the paper, we use a convention that α,β ∈
{1, . . . ,NR} denote replicas and m,n ∈ {−N ′

M, . . . ,N ′
M − 1}

Matsubara indices. The double cutoff regularization scheme68

prescribes that matrices O have nontrivial matrix elements
Onm only for low-energy excitations n,m ∈ {−NM, . . . ,NM −
1} and stay equal to the origin O0 of the σ model manifold
outside this low-energy region. As explained below, O0 = �.

D. Bosonization of the kinetic part

The kinetic part of Eq. (21) is nothing but the Euclidean
counterpart of the model considered in Ref. 70. Upon non-
Abelian bosonization, it yields the Wess-Zumino-Novikov-
Witten (WZNW) action

SWZNW =
∫

x

1

16π
tr∇O∇O−1 + i

24π
�WZ, (27)

where �WZ is the Wess-Zumino (WZ) term

�WZ =
∫

x,w

εμνρ tr[(Õ−1∂μÕ)(Õ−1∂νÕ)(Õ−1∂ρÕ)], (28)

where εμνρ denotes the Levi-Civita symbol. The definition
of the WZ term involves an auxiliary coordinate w ∈ [0,1]
and smooth fields Õ(x,w) satisfying Õ(x,w = 0) = const
and Õ(x,w = 1) = O(x). As a result, the compactified two-
dimensional coordinate space R2 ∪ {∞} 
 S2 is promoted to
the solid 3-ball B3 (i.e., the “filled” sphere).

E. Free NLσM of class AII

1. Disorder, frequency, and the chemical potential

The action (27) is the bosonized counterpart of the second
(proportional to velocity) term of the microscopic action (21).
Let us now consider the first term in Eq. (21), which carries

information about the chemical potentials, frequency, and
random potential.

Bosonization of the terms with frequency and the chemical
potential in the microscopic action (21) yields

δS = 2
∫

x
tr[(iε̂ + μ)η↑ηT

↓ ] ↔ −2λ

∫
x

tr(ε̂ − iμ)O. (29)

Upon disorder averaging and bosonization, the term with
random potential provides the following contribution to the
field theory:

δSdis = − 1

πντ

∫
x
(trη↑ηT

↓ )2 + 1

πντ

∫
x

tr(η↑ηT
↓ )2

↔ λ2

πντ

∫
x
(trO)2

+ λ2

2πντ

∫
x

tr(OT − O)T (OT − O). (30)

As we see, disorder induces mass terms for O matrices.
Both mass terms in Eq. (30) are strictly non-negative.
Therefore they are minimized by arbitrary traceless symmetric
orthogonal matrix. It is convenient to choose the specific
saddle-point solution as

O = �. (31)

This saddle-point solution coincides with the SCBA. Indeed,
Eq. (23) can be written as

i

2τ
�⊗1σ = 2

πντ

〈(
−η↓ηT

↑ −η↓ηT
↓

η↑ηT
↑ η↑ηT

↓

)〉
SCBA

↔ 2

πντ

〈(
iλOT −1

8πvF
OT ∂−O

1
8πvF

O∂+OT iλO

)〉
. (32)

It is solved by the saddle-point solution (31) provided the
auxiliary UV energy scale λ introduced in Eq. (25) is related
to the density of states (i.e., to the chemical potential),

λ = πν

4
= |μ|

8v2
F

. (33)

We will rederive this relation from a different viewpoint below,
see Sec. IV B.

Equation (31) is not the only solution of the saddle point
equation. It is easy to see that rotations

O → OT
softOOsoft, Osoft ∈ G = O(2τ × 2NM × NR) (34)

leave the mass term unaffected. On the other hand,
the saddle-point O = � is invariant under rotations from
a smaller group, Osoft ∈ K = O(2τ × NM × NR) × O(2τ ×
NM × NR). This can be understood as a breakdown of
symmetry G → K. We thus obtain a nontrivial manifold of
saddle-points annihilating the mass term. Allowing for a slow
variation of Osoft and restricting other terms in the action to
this manifold, we will obtain the NLσM action.

2. Free NLσM with Z2 topological term

As we have just discussed, we keep only the soft modes

Q = OT
soft�Osoft with Osoft ∈ G. (35)
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The subscript “soft” will be omitted in the remainder. The
NLσM manifold M = G/K. We also rename the coupling
constants according to the conventional notation of diffusive
NLσMs and restore the surface index s,

Sfree =
∑

s

∫
x

σs

16
tr (∇Qs)

2 − 2πT zs tr (η̂Qs) + iS(θ)
s . (36)

As will become clear from linear response theory (see
Sec. III G 3), σs measures the dc conductivity of surface s (in
units e2/h). Its bare value is the Drude conductance depending
on the chemical potential μs , as can be directly verified
(see Appendix A 1). The coupling constants zs determine the
renormalization of the specific heat.

The nontrivial second homotopy group of the NLσM
manifold π2(M) = Z2 allows for topological excitations
(instantons), similarly to the QHE theory. A crucial difference
is that in the QHE case the second homotopy group is Z, so
that any integer topological charge (number of instantons) is
allowed. Contrary to this, in the present case, any configuration
of an even number of instantons can be continuously deformed
to the trivial, constant vacuum configuration. Therefore the
theta term S(θ)

s appearing in Eq. (36) only distinguishes be-
tween an even (S(θ)

s = 0 mod 2π ) and odd (S(θ)
s = π mod 2π )

numbers of instantons.
Such a Z2 theta term S(θ) does not appear in the case of

usual metals with strong spin-orbit coupling; it results from
the Dirac-fermion nature of carriers and is a hallmark of
topologically protected metals (in our case, the surface of a
topological insulator). The topological term flips the sign of
the instanton effects (as compared to the case of a usual metal
with spin-orbit interaction) from localizing to delocalizing.
Thus the theta term translates the protection against Anderson
localization into the NLσM approach.

We are now going to show that S(θ)
s is nothing but the WZ

term (obtained from non-Abelian bosonization) restricted to
the smaller symmetry group:

S(θ)
s = 1

24π
�WZ,s |Õs (x,w=1)=Qs (x)=QT

s (x). (37)

Note that, since the second homotopy group of the NLσM
manifold is nontrivial, the definition of the WZ term requires
that away from w = 1 the extended fields can take values in
the big orthogonal group G.

To show that Eq. (37) is indeed the Z2 theta term, we
proceed in the same way as was recently done for the
symmetry class CII.75 First of all, it is straightforward to check
that S(θ)

s is invariant under small variations of the σ -model
field, Qs → Q′

s = Qs + δQs (Q′2
s = 1 = Q2

s ). Thus S(θ)
s only

depends on the topology of the field configuration. This
immediately implies that it is zero in the topologically trivial
sector. In order to proof that S(θ)

s also returns the correct value
S(θ)

s = π (mod 2π ) in the topologically nontrivial sector, it is
sufficient to insert a single instanton into S(θ)

s . Instantons are
field configurations that per definition can not be continuously
deformed into the vacuum configuration. Introducing the third
dimension and allowing the field to take values in the entire
orthogonal group we can continuously shrink the instanton
in the w = 1 sphere to the constant at w = 0. A necessary
condition for this untwisting to happen is that for some
subinterval of (0,1) the field leaves the NLσM manifold for

the larger orthogonal group. A direct calculation shows that
the group volume covered while untwisting indeed yields the
value iS(θ)

s = iπ (see Appendix A 2).
There have been alternative derivations of the Z2 term

before.76,77 Viewing this theta term as a symmetry-broken WZ
term, Eq. (37) yields a local expression for it and implies
the following advantages. First, this form is very useful for
understanding the crossover between 3D topological insulators
of class DIII and AII. Second and more importantly, an analysis
of the response of the system to an external electric field
requires coupling of the diffusive matter fields to U(1) gauge
potentials. In particular, one should gauge the topological
term, which can be done in a standard way by using a local
expression for it. We will show in Sec. III G4 that such a
procedure yields the correct linear response theory for the
anomalous quantum Hall effect of Dirac fermions.

In addition to a nontrivial second homotopy group π2,
the sigma model manifold of the class AII possesses also a
nontrivial first homotopy group, π1(M) = Z2. For this reason,
the RG flow in 2D systems of class AII (as well as in other
classes with a nontrivial π1 group, namely, AIII, BDI, CII, and
DIII) is affected by vortices, as was shown in Ref. 75. In the
case of AII (and DIII) class these areZ2 vortices,75 i.e., a vortex
is identical to an antivortex. In a recent work,78 it was argued
that such vortices are crucial for establishing localization in
the class AII. Conversely, the robustness of a nonlocalized
state on the surface of a weak topological insulator and of the
critical state separating 2D trivial and topological insulators
were explained by vanishing of the corresponding fugacity.

On the surface of a strong 3D TI, the effect of vortices
is erased by the Z2 topological term, in the same way as
argued previously75 for the case of the symmetry class CII.
Specifically, due to the Z2 theta term, the vortices acquire an
internal degree of freedom which, upon averaging, annihilates
the contribution of vortices to renormalization. For this reason,
the vortices need not be taken into account in the present
context.

F. Interacting NLσM

In the previous section, we have derived the diffusive
nonlinear σ model for noninteracting particles. The next step
is to include the electron-electron interactions.

1. Interacting Fermi gas

We concentrate first on the case of a weak Coulomb
interaction (α � 1). At length scales larger than the screening
length, the interaction is effectively pointlike:

Sint = T

2

∑
m,α;ss ′

∫
x

tr
(
Iα
mψsψ̄s

)
U

q

ss ′
(
Iα
−mψs ′ψ̄s ′

)
, (38)

where U
q

ss ′ is the “overscreened” Coulomb interaction matrix,
i.e., the q → 0 limit of Eq. (7) (for its generalization in case of
an asymmetric dielectric environment, see Appendix B). We
use the bosonization rule

trIα
mψsψ̄s = trIα

m(1 − τy)ηs,↑ηT
s,↓ − trIα

m(1 − τy)ηs,↓ηT
s,↑

→ iλ
[
trIα

m(1 − τy)
(
Os + OT

s

)]
. (39)

035106-8



INTERACTION AND DISORDER EFFECTS IN THREE- . . . PHYSICAL REVIEW B 88, 035106 (2013)

FIG. 5. (Color online) Schematic representation of the Dirac cone
and the strong Rashba spin-orbit coupling. If the chemical potential
(black plane) is large compared to the typical energy scale E (e.g.,
temperature), only one kind of helical states can take part in the
dynamics.

When disorder is introduced, the matrices O become restricted
to the σ -model manifold M, and we obtain

Sint= − λ28T
∑

m,α;ss ′

∫
x

tr
[
J α

−mQs

]
U

q

ss ′ tr
[
J α

mQs ′
]
. (40)

Here, we have defined J α
n = Iα

n

1+τy

2 . As has been already
emphasized, we want to treat the general case of strong
interactions up to α ∼ 1. Therefore, in the following (and in
more detail in Appendix C), we present the Fermi liquid (FL)
treatment of strongly interacting surface states of a thin 3D TI
film.

2. Effective spinless theory

One of the most striking peculiarities of the surface states
of 3D topological insulators is their Rashba-like kinetic term.
As a consequence, spin and momentum are locked in a
manner visualized in Fig. 5. Such states are called helical;
one associates helicity eigenvalues +1 (−1) with states with
positive (respectively, negative) kinetic energy. As has been
stated above, we will be interested in the low-energy regime
E � |μ1,2|. Hence, at each of the surfaces, only one type
of helical states represents dynamical low-energy degrees of
freedom, while the other one is suppressed by a mass ≈2|μ1,2|.
Therefore we project onto the appropriate helicity eigenstate
of each surface using the following projection operator:

Ps = |μs, p〉〈μs, p| with |μs, p〉 = 1√
2

(
1

isgnμs eiφ( p)

)
,

(41)

where we have defined the polar angle φ of the momentum,
px ≡ | p| cos φ and py ≡ | p| sin φ. The clean single-particle
action becomes effectively spinless:

S
(s)
0 = −

∑
s

∫
p
ζ̄s( p)

[
iε̂ + sgn(μs)

(|μs | − vs
F | p|)]ζs( p),

(42)

where ζs , ζ̄s are the fields associated with the helicity
eigenstates, ζs = 〈μs, p|ψs and ζ̄s = ψ̄s,σ |μs, p〉.

FIG. 6. An example of contribution to a one Coulomb-line
reducible small angle scattering amplitude. Independently of sgn(μs),
ingoing arrows denote fields ζs , outgoing arrows ζ̄s .

3. Scattering channels

In the presence of a Fermi surface, the electron-electron
interaction at low energies decouples into separate scattering
channels defined by small energy-momentum transfer and by
the tensor structure in the surface space:

Sint = −T

2

∫
P1,P2,K

∑
α

[
OIA

0+1 + OIA
2 + OIA

c

]
(43)

with

OIA
0+1 =

∑
s1s2

[
ζ̄ α
s1

(P1)ζ α
s1

(P1 + K)
]

×�
0+1,q

s1,s2;p̂1,p̂2

[
ζ̄ α
s2

(P2)ζ α
s2

(P2 − K)
]
, (44)

OIA
2 =

∑
s1s2

[
ζ̄ α
s1

(P2)ζ α
s1

(P1 + K)
]

×�
2,q

s1,s2;p̂1,p̂2

[
ζ̄ α
s2

(P1)ζ α
s2

(P2 − K)
]
, (45)

and

OIA
c =

∑
s1s2

[
ζ̄ α
s1

(P2)ζ α
s1

(−P1 + K)
]

×�
c,q

s1,s2;p̂1,p̂2

[
ζ̄ α
s2

(−P2 + K)ζ α
s2

(P1)
]
. (46)

Here, the capital letters denote 2 + 1 momenta. The smallness
of K = (ωm,q) means that the following conditions hold
(ωm,|q|) � (|μs |,p(s)

F ) for both s = 1,2. We emphasize that
all “Dirac factors” of 3D surface electrons are included in the
angular dependence of the scattering amplitudes (subscripts
�p̂1,p̂2 ).

We refer to the three scattering channels as small angle
scattering channel (�0+1), large angle scattering channel (�2),
and the Cooper channel (�c). The quantities entering Eq. (43)
are the static limit of the corresponding scattering amplitude,
�(ωm = 0,q). They already include static screening and do
not acquire any tree-level corrections due to disorder.40,42

Exemplary diagrams are given in Figs. 6–9. There, the small

FIG. 7. An example of contribution to a one-Coulomb-line
irreducible small-angle scattering amplitude.
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FIG. 8. An example of contribution to a large-angle scattering
amplitude.

angle scattering amplitude is subdivided into its one Coulomb
line reducible (�0) and irreducible (�1) parts such that

�0+1 = �0 + �1. (47)

The irreducible part �1 also includes the short-range inter-
action induced by the finite thickness of the 3D TI film (see
Appendixes B and C 6).

For the short-range interaction amplitudes (�1, �2, �c), the
static limit coincides with the “q-limit” �q = limq→0 �(ωm =
0,q), see also Appendix C. It should be kept in mind that for
the one-Coulomb-line-reducible part �0 (it is long-ranged),
the “q-limit” �0,q is only a valid approximation if the
mean-free path l exceeds the screening length. This applies
to most realistic situations. (In the opposite case, �0 is
parametrically small. On top of this, the q dependence of the
Coulomb potential implies a strong scale dependence of both
conductivity corrections and the interaction amplitude until the
running scale reaches the screening length at which �0 ≈ �0,q

is again justified.)
We conclude this section with a side remark concerning

the topological exciton condensation.67 In order to find the
conventional pole structure of the FL Green’s functions for
the case sgn(μs) = −1, one needs to transpose the bilinear
form in action (42) and swap the notation ζs(εn) ↔ ζ̄s(−εn).
If sgn(μ1μ2) = −1, this interchange of notations obviously
happens in only one surface. In this case, the large-angle
scattering amplitude �2

12 and the Cooper-channel amplitude
�c

12 are interchanged. Even though this procedure illustrates
the analogy between exciton condensation (divergence in �2

12)
and Cooper instability (divergence in �c

12), in the following,
we choose to keep our original notation of ζs and ζ̄s also in the
case of μs < 0.

4. Clean Fermi liquid theory

A systematic treatment of the scattering amplitudes in-
volves the field theory of the FL79–81 (see Appendix C). It
is valid down to energy scales ∼τ−1

1,2 and therefore constitutes

FIG. 9. An example of contribution to a scattering amplitude in
the Cooper channel.

FIG. 10. A diagram contributing to �0.

the starting point for the effective diffusive theory at lower
energies, T � τ−1

1,2 .
In contrast to the Green’s function of the free theory, in the

FL, the exact electronic propagator contains both a singular
and a regular part. The singular part (“quasiparticle pole”)
includes a renormalized dispersion relation and its residue is
no more equal to unity but rather is as ∈ (0,1). As usual in
the context of disordered FLs,40 we absorb the quasiparticle
residue by rescaling the fermionic fields and redefining the
scattering amplitude.

The conservation of the particle number separately in each
of the two surfaces leads to the following Ward identities:

	ω
s1,s2

≡ lim
ωm→0

	s1,s2 (ωm,q = 0) = 0 (48)

and

	q
s1,s2

≡ lim
|q|→0

	s1,s2 (ωm = 0,q) = −∂Ns1

∂μs2

. (49)

Since these identities reflect the gauge invariance, they can not
be altered during the RG procedure. Thus the static polarization
operator is always given by the compressibility ∂Ns1/∂μs2 .

The FL theory in a restricted sense contains only short-
range interactions �1, �2, and �c. For electrons in metals,
one has also to include the long-range Coulomb interaction.
Following Ref. 79, the associated scattering amplitude �0

is obtained by means of static RPA-screening of Coulomb
interaction with the help of the FL renormalized polarization
operator and triangular vertices (see Fig. 10). In Appendix C,
we explicitly perform the formal FL treatment. This determines
the interaction amplitudes at ballistic scales. They will serve
as bare coupling constants of the diffusive NLσM (see
Sec. III F7). We now turn our attention to the disordered FL.
This will allow us to find out which of the interaction channels
give rise to soft modes within our problem.

5. Diffusive Fermi liquid theory

The full amplitudes �0+1(K), �2(K), and �c(K) contain,
among others, diagrams describing multiple particle-hole
(in the Cooper channel, particle-particle) scattering (see
Appendix C). The very idea of dirty FL lies in replacing the
dynamic part of these particle-hole (particle-particle) sections
by their diffusive counterpart.40,42 In particular, only the zeroth
angular harmonic of the scattering amplitudes survives in the
diffusive limit.

The scattering amplitude �2
12 (as well as �c

12) contains
only particle-hole (respectively, particle-particle) sections
consisting of modes from opposite surfaces of the topological
insulator. Since we assume the disorder to be uncorrelated
between the surfaces, these modes will not become diffusive

035106-10



INTERACTION AND DISORDER EFFECTS IN THREE- . . . PHYSICAL REVIEW B 88, 035106 (2013)

and are hence not of interest for the present investigation. We
therefore do not consider �2

12 and �c
12 any longer. As one can

see from Figs. 6–8, the large angle scattering amplitudes �2
11

and �2
22 cannot be distinguished from the small angle scattering

amplitudes �0+1
11 and �0+1

22 , respectively. We incorporate the
effect of �2

11 and �2
22 into the “singlet channel,” which has the

following matrix structure in the surface space:

�ρ =
(

�0+1−2
11 �0+1

12

�0+1
12 �0+1−2

22

)
. (50)

Here, we used

�0+1−2 = �0+1 − �2. (51)

The intrasurface Cooper channel interaction �c
ss will be

also neglected. Its bare value is repulsive for the Coulomb
interaction, so that the Cooper renormalization on ballistic
scales 1/τ � E � |μ| renders it small on the UV scale of
the diffusive theory (i.e., at the mean-free path). Within the
diffusive RG of a single 3D TI surface it quickly becomes
of the order of 1/

√
σ and thus negligible (see Ref. 40

and supplementary material of Ref. 35). Consequently, we
drop the Cooper channel amplitude and do not consider the
superconductive instability in this work.122 For the opposite
case of attraction in the Cooper channel, Coulomb interaction
suppresses the transition temperature Tc.44 The difference
between Coulomb and short-range repulsive interaction was
addressed in Ref. 83.

6. Bosonization of Fermi Liquid

The non-Abelian bosonization relies on the Dirac nature of
the 2D electrons and on the associated non-Abelian anomaly.
On the other hand, for α ∼ 1, the spectrum of the system
gets strongly renormalized by interactions. An appropriate
description in such a situation is the FL theory, which is
restricted to fermionic excitations close to the Fermi level. So,
one can ask whether the result of non-Abelian bosonization
remains applicable for α ∼ 1. The answer is yes, for the
following reasons. All terms of the bosonized theory except
for the Z2 theta term are determined by fermionic excitations
close to the Fermi energy. Therefore they equally hold for
the FL if the coupling constants are appropriately redefined in
terms of the corresponding FL parameters.

On the other hand, the Z2 theta term is a consequence
of the chiral anomaly and thus the only term determined by
energies far from μ. However, it is well known that anomalies
in quantum field theories are insensitive to interactions. Hence,
the Z2 term in the diffusive NLσM persists even for α ∼ 1.
This follows also from the key property of the FL state: its
spectrum is adiabatically connected to the free spectrum. This
implies that topological implications remain unchanged. To
summarize, the only difference between the NLσM for the
weakly interacting Fermi gas (α � 1) and the FL (α ∼ 1) is
the replacement of the interaction strength by the appropriate
FL constant,

Uq → −�ρ

in Eq. (40).

7. Bare value of scattering amplitudes

According to the formal FL treatment (see Appendix C 4),
the singlet-channel interaction amplitude is given by

ν�ρν = −ν − det 	q

	
q

11 + 	
q

22 + 2	
q

12

(
1 −1

−1 1

)
, (52)

where (ν)ss ′ = νsδss ′ and

	q = −ν − ν

(
�1−2

11 �1
12

�1
12 �1−2

22

)
ν. (53)

Here, �1−2 = �1 − �2. The remarkably simple matrix struc-
ture of ν + ν�ρν is actually due to the presence of the
long-range Coulomb interaction. This fact will be explained
by means of F invariance in Sec. III G 2. It has very important
consequences for the RG flow in the diffusive regime, see
Sec. IV B.

8. Action of NLσM

We are now in a position to present the full action
of the diffusive interacting NLσM for the problem under
consideration:

S =
∑

s

[
S(kin)

s + iS(θ)
s

] + S(η + int). (54)

It contains the kinetic term

S(kin)
s = σs

16

∫
x

tr (∇Qs)
2 (55)

and the Z2 theta term

S(θ)
s = 1

24π
�s |Õs (x,w=1)=Qs (x)=QT

s (x) (56)

for each of the surfaces, as well as the frequency and interaction
terms,

S(η + int) = −πT

[∑
s

2zs trη̂Qs

−
∑

ss ′;n,α

tr
(
J α

n Qs

)
�ss ′ tr

(
J α

−nQs ′
)]

. (57)

Here, we have introduced the notation

�ss ′ = 8

π
λs�

ρ

ss ′λs ′ . (58)

G. Inclusion of scalar and vector potentials into the NLσM

In this section, we investigate consequences of the gauge
invariance for the interacting NLσM.

1. Electromagnetic gauge invariance

We include the scalar potential �s and the vector potential
Aμ,s for surface s in the microscopic action (11) by means of
covariant derivatives. This makes the action gauge invariant,
i.e., unchanged under local U(1) rotations of the fermionic
fields ψ and ψ̄ accompanied by the corresponding gauge
transformation of the potentials. Note that locality implies
independent rotations on the top and bottom surfaces of the TI
film.
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The rotations of ψ fields imply the following rotation of
bispinors:

ηs (x) → Wsηs (x) , (59)

where

Ws =
(

e−iχ̂T
s

1 + τy

2
+ eiχ̂s

1 − τy

2

)
, (60)

and we use the following convention for hatted matrices:
â ≡ ∑

n,α aα
n Iα

n . Let us recall that the ηs fields are considered
as vectors in the Matsubara space. Upon introducing replica
indices in the theory, the U(1) rotation angles and correspond-
ingly the gauge potentials get replicated as well.

2. F algebra and F invariance

As a direct consequence of Eq. (59), Q matrices transform
under a gauge transformation χs in the following way:

Qs → WsQsW
T
s . (61)

Under such rotations, in the limit N ′
M,NM → ∞, NM/N ′

M →
0, the frequency term acquires the correction68

δχ trη̂Qs = 2
∑
n,α

(
inχα

s,ntrJ α
−nQs − n2χα

s,nχ
α
s,−n

)
, (62)

while the factors entering the interaction term vary as follows:

δχ trJ α
n Qs = −i2nχα

s,n. (63)

As explained in Sec. III A, the presence of the Coulomb
interaction implies invariance of the fermionic action (11)
under a simultaneous rotation in both surfaces by the same
spatially constant (“global”) but time-dependent U(1) phase
even without inclusion of gauge potentials (“F invariance”).
This symmetry has to be preserved on NLσM level, implying
that (

z + �
) (1

1

)
= 0. (64)

Here, (z)ss ′ = zsδss ′ . Since the intersurface interaction is
symmetric, �12 = �21, Eq. (64) yields

z + � = const ×
(

1 −1
−1 1

)
. (65)

This relation is consistent with Eq. (52). However, contrary
to Eq. (52), the relation (65) is manifestly imposed by the
symmetry (“F invariance”) of the action (54). It should
therefore remain intact under RG flow.

3. Gauging the NLσM and linear-response theory

Generally, the requirement of gauge invariance prescribes
the correct coupling to the scalar and vector potentials in the
action of the NLσM, Eq. (54). In particular, in the kinetic term,
one has to replace ∂μQs → Dμ,sQs with the long derivative
Dμ of the form

Dμ,sQs ≡ ∂μQs +
∑
n,α

iAα
μ,s,−n

[
J α

n − (
J α

n

)T
,Qs

]
. (66)

For simplicity, the electron charge is absorbed into the vector
potential here and in the following section.

As the theory is nonlocal in the imaginary time, the inclu-
sion of the scalar potential is nonlinear. The corresponding

term that should be added to the NLσM (54) reads

S� = −2
∑
nα,ss ′

�α
n,s(z + �)ss ′ trJ α

n Qs

+ 1

πT

∑
nα,ss ′

�α
n,s(z + �)ss ′�α

−n,s . (67)

The inclusion of the scalar and vector potentials allow us
to express the density-density correlation function and the
conductivity in terms of the matrix fields Qs by means of the
linear-response theory. In particular, a double differentiation
of the partition function with respect to the scalar potential
yields the density-density response:

	RPA
ss ′ (ωn,q)

= − 2

π
(z + �)ss ′ + 4T

∑
s1,s2

(z + �)ss1

〈
trJ α

n Qs1 (q)

× trJ α
−nQs2 (−q)

〉
(z + �)s2s ′ . (68)

Here, 〈...〉 denotes average with respect to the action (54). The
superscript “RPA” emphasizes that the quantity appearing in
the total density-density response includes RPA resummation.
It is thus one-Coulomb-line-reducible, and only its irreducible
part corresponds to the polarization operator.

In the same spirit, we obtain the expression for the
conductivity (in units of e2/h) at a finite, positive frequency
ωn:

σ ′
ss ′ (ωn) = B

(s)
1 δss ′ + B

(ss ′)
2 . (69)

Here, we introduced two correlators:

B
(s)
1 = σs

8n

〈
tr
[
J α

n − (
J α

n

)T
,Qs

][
J α

−n − (
J α

−n

)T
,Qs

]〉
(70)

and

B
(ss ′)
2 = σsσs ′

128n

∫
x−x′

∑
μ=x,y

〈
tr
{[

J α
n − (

J α
n

)T
,Qs

]
∂μQs

}
x

× tr
{[

J α
−n − (

J α
−n

)T
,Qs ′

]
∂μQs ′

}
x′
〉
. (71)

Substituting the saddle-point value Qs = �, we obtain the
classical value σ ′

ss ′ (ωn) = σsδss ′ . Hence the dimensionless
coupling constant of the NLσM has been identified with the
physical conductivity in units of e2/h.

4. Gauging the theta term and anomalous quantum Hall effect

The local expression of the Z2 theta term, i.e, the WZW
term, Eq. (56), also allows of inclusion of gauge potentials.84–89

However, the situation is more subtle here. Specifically, it turns
out that the contribution of nonsingular gauge potentials to
the topological term S(θ) vanishes. We explicitly show this in
Appendix A 1.

The situation changes when the time-reversal symmetry is
broken (at least, in some spatial domain at the surface) by a
random or/and uniform magnetic field. Subjected to a strong
magnetic field, 3D TI surface states display the characteristic
quantum Hall effect of Dirac electrons25,90 with quantized
transverse conductance:

σxy = g

(
n ± 1

2

)
e2

h
, n ∈ Z, (72)
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where g is the degeneracy of Dirac electrons, e.g., g = 2 for
two 3D TI surfaces. It is intimately linked to the topologi-
cal magnetoelectric effect.91–94 Theoretically, the anomalous
quantum Hall effect was explained and discussed in a previous
work by three of the authors.95 We will explain in the following
how to understand it in the framework of the linear response
theory within the NLσM. As it turns out, the crucial point is
that gauge potentials drop from S(θ).

We first briefly recall the NLσM field theory describing
the ordinary integer QHE (i.e., for electrons with quadratic
dispersion). It contains Pruisken’s theta term,96 which assumes
the following form upon inclusion of the vector potential:68

SQHE = ϑ

16π

∫
x
εμν trQU∂μQU∂νQU (73a)

+ iϑ

4π

∫
x
εμν tr∂μÂνQU (73b)

+ ϑ

4π

∫
x
εμν

∑
n,α

nAα
μ,nA

α
ν,−n. (73c)

Here, QU = U−1�U with U ∈ U(2NM × NR), εμν =
−ενμ is the 2D antisymmetric symbol (εxy

def.= 1), and ϑ

is the theta angle of the Pruisken’s NLσM. We emphasize
that the last two terms [see Eqs. (73b) and (73c)] determine
the effective electromagnetic response and thus prescribe the
relation between the physical observable σxy (in units of e2/h)
and the theta angle ϑ . In particular, ϑ/2π is identified as the
bare value of the Hall conductance.97

Let us now turn to a single Dirac surface state. As has been
discussed above, all gauge potentials drop from S(θ). Let us first
add a random magnetic field (keeping zero average magnetic
field) to the gauged NLσM. This implies a breakdown of the
symmetry:

M → U (2NMNR)

U (NMNR) × U (NMNR)
. (74)

The Z2 theta term becomes the Pruisken’s theta term98 (recall
θ = π mod 2π ):

S
(θ)
U = θ

16π

∫
x
εμν trQU∂μQU∂νQU . (75)

We emphasize that together with the gauged kinetic term S
(θ)
U

is the complete gauged theory, no extra terms of the types (73b)
and (73c) appear. Being topological, the Pruisken’s theta term
is invariant under smooth U(1) rotations. Recall that exactly
the terms (73b) and (73c) provided a link between ϑ and σxy

in the conventional (non-Dirac) QHE setting. Their absence in
Eq. (75) is thus physically very natural: without a net magnetic
field the Hall conductivity is zero.

We consider now the case when the average magnetic
field is nonzero. The action of the NLσM describing a Dirac
fermion is then given by a sum of Eqs. (73) and (75). The
renormalization of the action of the NLσM is governed by the
full theta angle ϑ + θ . On the other hand, only ϑ is related
with the bare value of σxy . Then standard arguments for the
quantization of the Hall conductivity47 lead to the result (72)
for the anomalous QHE.

IV. ONE-LOOP RG

In the preceding section, we have derived the diffusive
NLσM, Eq. (54). We will now investigate its behavior under
renormalization. This will allow us, in particular, to deduce
the scale dependence of the conductivity. The most important
steps of the calculation are presented in the main text (further
details can be found in Appendix D).

We calculate the renormalization of the NLσM param-
eters within the linear-response formalism (rather than the
background-field method). This is favorable since it implies
a more direct physical interpretation of the NLσM coupling
constants. Furthermore, this way, one can in principle treat si-
multaneously different infrared regulators, such as temperature
or frequency. However, for the sake of clarity of presentation,
we restrict ourselves to a purely field-theoretical regularization
scheme and add a mass term to the action

SL = −
∑
s=1,2

σsL
−2

8

∫
x

tr�Qs. (76)

The connection between the running length scale L and the
physical regulators temperature or frequency was analyzed
in Ref. 99. Roughly speaking, in the presence of a single
infrared scale E, e.g., when calculating dc conductance at
finite temperature and assuming an infinite sample, one can
replace L by LE in the results.

We will calculate all UV-divergent contributions in the
dimensional regularization scheme. This allows us to preserve
the local O(2τ × NM × NR) × O(2τ × NM × NR) symmetry
of the Q matrix (35) and to ensure the renormalizability of the
theory.

A. Diffusive propagators

We employ the exponential parameterization of the matrix
fields Qs = � exp Ws . The antisymmetric fields

Ws =
(

0 qs

−qT
s 0

)
anticommute with �. Further, we define a set of real matrices in
the particle-hole space: τ̃μ ≡ 2−1/2(1,τx,iτy,τz). This allows
us to introduce the fields q(μ) ≡ trτ qτ̃ T

μ , where trτ is the trace in
the particle-hole space only. With these definitions at hand, we
expand the action, Eqs. (54) and (76), to quadratic order in q(μ)

and obtain the NLσM propagators that describe the diffusive
motion in the particle-hole (diffusons) and particle-particle
(cooperons) channels.

The fields q(1) and q(3) describe cooperons. Their propaga-
tor is unaffected by interaction (since we have discarded the
interaction in the Cooper channel),〈[

q(μ)
s ( p)

]α1α2

m1m2

[
q

(ν)
s ′ (− p)

]β1β2

n1n2

〉
= 4

σs

Ds(ωn12 , p)δss ′δμνδn1m1δn2m2δα1β1δα2β2 (δμ1 + δμ3),

(77)

where

[Ds(ωn12 , p)]−1 = p2 + L−2 + 4zs

σs

ωn12 . (78)

035106-13
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The Matsubara indices n1, m1 are non-negative, while the
indices n2, m2 are negative; we have also defined n12 ≡ n1 −
n2 > 0 and m12 ≡ m1 − m2 > 0.

Next, we consider the diffusons q(0) and q(2). Their Green’s
function, written as a matrix in surface space, is〈[

q(μ)
s ( p)

]α1α2

m1m2

[
q

(ν)
s ′ (− p)

]β1β2

n1n2

〉
= 4

σs

Ds(ωn12 , p)δμνδn12,m12δα1β1δα2β2 (δμ0 + δμ2)

×
{
δn1m1δss ′ − 8πT

σs ′
δα1α2 [�Dc(ωn12 , p)]ss ′

}
. (79)

Here, we have introduced

[Dc(ωn12 , p)]−1
ss ′ = D−1

s (ωn12 , p)δss ′ + 4ωn12

σs

�ss ′ . (80)

B. RG invariants

The bare action contains, aside from the mass L−1, seven
running coupling constants: σ1, σ2, z1, z2, �11, �22, and �12.
We are now going to show that three linear combinations of
them are conserved under RG. To this end, we evaluate the
density-density response (68) at the tree level:

	RPA(ω, p) = − 2

π
[z + �](1 − 4ωσ−1Dc(ω, p)[z + �]),

(81)

where (σ )ss ′ = σsδss ′ . There is no need for infrared regulariza-
tion here, and we therefore omit the mass term (76).

On the other hand, the density-density response function
can be obtained from the fermionic formulation of the theory,
see Appendix C 5:

	RPA = [	q − ν�0ν](1 + ω��(ω, p)[	q − ν�0ν]), (82)

where

��(ω, p) = [νD p2 + ω(ν + ν�ρ,qν)]−1. (83)

The equality of Eqs. (81) and (82) relates two functions
of momentum and frequency. In the static limit, we find the
following constraint connecting the NLσM coupling constants
with physical FL parameters:

2

π

(
z + �

) = −	q + ν�0ν. (84)

Next, from comparison of momentum dependence in
Eqs. (81) and (82), we find the Einstein relation: σs = 2πνsDs .
Accordingly, σ measures the conductance in units of e2/h,
consistently with what has been found in Secs. III B and III G3.

In view of gauge invariance (see Sec. III F4), the static
polarization operator entering Eq. (84) is nothing but the
compressibility

	ss ′,q = − ∂Ns

∂μs ′
.

Its value is not renormalized because it can be expressed
as a derivative of a physical observable with respect to the
chemical potentials. On ballistic scales, the chemical potential
enters logarithmically divergent corrections only as the UV
cutoff of the integrals. In the diffusive regime, the UV cutoff

is provided by the scattering rates τ−1
s � |μs |. Therefore

diffusive contributions to the derivative with respect to the
chemical potential vanish.40 Since ν�0ν only depends on 	q

(see Appendix C 4), it is not renormalized as well. Therefore
the right-hand side of Eq. (84) is not renormalized and hence
neither is its left-hand side, i.e., z + �. This matrix constraint
yields three RG invariants: z1 + �11, z2 + �22, and �12. Thus,
only four out of seven NLσM parameters are independent
running coupling constants. We emphasize that, in contrast
to Eq. (65), this reasoning is valid also in the absence of
long-range interaction.

Finally, let us evaluate Eq. (84) on the bare level. Expressing
the static polarization operator as 	q = −ν − ν�1−2ν and
using the definition of zs in Sec. III E1 one can find the
following relations for the bare values:

4λs

π
≡ 2

π
zs = νs. (85)

Equivalently, the same relationship between λs and νs can be
obtained by comparing the bare definition of � [see Eq. (58)]
with the right-hand side of Eq. (84). The relation (85) has been
foreseen earlier on the basis of SCBA, see Eq. (33). In conclu-
sion, the SCBA and the density response independently show
that the UV cutoff scale for the bosonization is automatically
set by the chemical potential (which is also very natural from
the physical point of view).

C. Renormalization of conductivities

1. Correlator B1

We will first analyze the correlator B
(s)
1 , see Eq. (70). The

one-loop correction is determined by the expansion to second
order in q(μ). The tensor structure in particle-hole space implies
that the diffuson contribution (μ = 0,2) vanishes. The classical
value together with the cooperon contribution (μ = 1,3) is

B
(s)
1 = σs + 2

∫
p
Ds(ωn, p). (86)

We evaluate this term in the announced regularization scheme:

B
(s)
1 = σs + 2I(2+ε)

1 (87)

= σs + 1

2π

(
−2

ε
+ 2 ln L/l + const

)
. (88)

For dimensional reasons, we have introduced the reference
length scale l, which for the present diffusive problem is set by
the mean-free path l = maxs=1,2 ls . We have further evaluated
the following standard dimensionless integral:

I(D)
1 ≡ lD−2

∫
dDp

(2π )D
1

p2 + L−2

=
(

l2

L2

)D
2 −1

(4π )
D
2

�

(
1 − D

2

)
D=2+ε= 1

4π

[
−2

ε
+ 2 ln L/l + ln 4π − γ + O (ε)

]
,

where γ ≈ 0,577 is the Euler-Mascheroni constant. The
logarithmic term in Eq. (88) is nothing but the well-known
weak-antilocalization effect.100
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2. Correlator B2

Next, we turn our attention to B
(ss ′)
2 , Eq. (71). Because

of the presence of gradients, it does not contribute neither at
classical nor at tree level. Furthermore, due to the absence of
the Cooper channel and the uncorrelated disorder on the top
and bottom surfaces, there are no quantum corrections to the
transconductance σ12. The correlator B

(ss ′)
2 can be recast into

the form (see Appendix D)

B
(ss ′)
2 = 16δss ′

nσs

∫
p

p2
∑
ωm>0

ωm

×[(D�Dc)ss(ωm, p)Ds(ωm+n, p)

−(D�Dc)ss(ωm+n, p)Ds(ωm+2n, p)]. (89)

For its evaluation, it is instructive to separate contributions
stemming from intrasurface interaction �ss and intersurface
interaction �12. This leads to

Bss ′
2 = −4δss ′

⎧⎪⎪⎪⎨
⎪⎪⎪⎩1 − 1 + γss

γss

ln (1 + γss)︸ ︷︷ ︸
single surface

+ (1 + γss)

[
ln (1 + γss)

γss

− ln (1 + γ̃ss)

γ̃ss

]
︸ ︷︷ ︸

intersurface interaction

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ I

(2+ε)
2

= −δss ′

π

[
1 − 1 + γss

γ̃ss

ln (1 + γ̃ss)

]
×

(
−2

ε
+ 2 ln L/l + const

)
. (90)

We have introduced γss = �ss/zs , γ̃11 = γ11 + (σ1/σ2)(1 +
γ11) and γ̃22 = γ22 + (σ2/σ1)(1 + γ22). Note that in the limit
of z2 + �22 = 0 [which corresponds to �12 = 0 in view of
Eq. (65)], we recover the well-known conductivity corrections
to σ11 for a single surface (see also Sec. V B1). Further, in
Eq. (90), we have evaluated the second standard diverging
integral

I(D)
2 ≡ lD−2

∫
dDp

(2π )D
p2

( p2 + L−2)2

=
(

l2

L2

) D
2 −1

(4π )
D
2

D

2
�

(
1 − D

2

)
D=2+ε= 1

4π

[
−2

ε
+ 2 ln L/l + ln 4π − 1 − γ + O (ε)

]
.

D. Renormalization of the interaction amplitudes

The renormalization of the interaction amplitudes, or
equivalently, of Finkelstein parameters zs , is intimately linked
to the renormalization of the specific heat.101 This is because
the scale (e.g., temperature) dependence of the total thermody-
namic potential � is governed by the scale dependence of zs .
In the present case of coupled surfaces, we can only extract the
correction to the sum z1 + z2 from the (one-loop) correction
to the total thermodynamic potential:99

z′
1 + z′

2 = 1

2π trη�

∂

∂T

�

T
. (91)

At the classical level, Eq. (91) yields the relation z′
1 + z′

2 =
z1 + z2. Evaluating the quantum corrections in Eq. (91), we
find

(z′
1 + z′

2) = (z1 + z2) + 2
∑
s=1,2

�ss

∫
p
Ds (0, p) . (92)

As the correction is a sum of contributions from the two
opposite surfaces, it is natural to assume that the parameters
zs are renormalized separately (and without intersurface
interaction effects):

z′
s = zs + 2�ss

∫
p
Ds (0, p) = zs + 2

�ss

σs

I(2+ε)
1

= zs + 1

2π

�ss

σs

(
−2

ε
+ 2 ln L/l + const

)
. (93)

We have directly proven this assumption of separate zs

renormalization by the background field method.123

E. The one-loop RG equations

Applying the minimal subtraction scheme to Eqs. (88), (90),
and (93), we derive the one-loop perturbative RG equations:

dσ1

dy
= − 2

π
F

(
γ11,

σ1

σ2

)
, (94a)

dσ2

dy
= − 2

π
F

(
γ22,

σ2

σ1

)
, (94b)

dγ11

dy
= −γ11 (1 + γ11)

πσ1
, (94c)

dγ22

dy
= −γ22 (1 + γ22)

πσ2
, (94d)

where y = ln L/l, γss = �ss/zs , l = maxs=1,2 ls , and

F (γ,x) = 1

2
− 1 + γ

x
[
1 + γ

(
1 + 1

x

)] ln [(1 + x) (1 + γ )] . (95)

We recall that �12, z1 + �11 and z2 + �22 are not renormalized.
We mention that the mass L−1 acquires a quantum correction99

but it does not affect the one-loop renormalization of the other
parameters σs , zs , and �ss ′ .

For an alternative presentation of the RG Equations (94),
we introduce the total conductivity σ = σ1 + σ2 and the ratio
of the conductivities of the two surfaces t = σ1/σ2. In terms of
these parameters, the RG equations take the following form:

dσ

dy
= − 2

π

{
1 − 1

t

1 + γ11

1 + γ11
(
1 + 1

t

) ln[(1 + t)(1 + γ11)]

− t
1 + γ22

1 + γ22(1 + t)
ln

[(
1 + 1

t

)(
1 + γ22

)]}
, (96a)

dt

dy
= − 2

π

1 + t

σ

{
1 − t

2
− 1

t

1 + γ11

1 + γ11
(
1 + 1

t

)
× ln[(1 + t)(1 + γ11)] + t2 1 + γ22

1 + γ22(1 + t)

× ln

[(
1 + 1

t

)
(1 + γ22)]

}
, (96b)

dγ11

dy
= −

(
1 + 1

t

)
γ11 (1 + γ11)

πσ
, (96c)
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dγ22

dy
= − (1 + t)

γ22 (1 + γ22)

πσ
. (96d)

V. ANALYSIS OF THE RG EQUATIONS

It is worthwhile to remind the reader that the RG Equa-
tions (94) describe the quantum corrections to conductivity due
to the interplay of two distinct effects. First, they contain weak-
antilocalization corrections (WAL) δσ WAL

s = (1/π ) ln L/l due
to quantum interference in a disordered system with the strong
spin-orbit coupling. Second, these are interaction-induced
contributions of Altshuler-Aronov (AA) type, including effects
of both, long-range and short-range interactions. The result
(94) was obtained perturbatively to leading order in 1/σs � 1
but it is exact in the singlet interaction amplitudes. While these
equations describe the experimentally most relevant case of
Coulomb interaction, in Appendix F, we also present the RG
equations for the case of short-range interaction.

Equation (94), which determine the flow of the coupling
constants σ1,σ2,γ11, and γ22 implies a rich phase diagram in
the four-dimensional parameter space. Before discussing the
general four-dimensional RG flow, we highlight the simpler
case of two equal surfaces.

A. Two equal surfaces

Equal surfaces are defined by σ1 = σ2 = σ/2, γ11 = γ22 =
γ , and, because of Eq. (65), γ12 = −1 − γ . It can be checked
that the plane of identical surfaces is an attractive fixed plane
of the four-dimensional RG flow (see Appendix E). The RG
equations for the two coupling constants σ and γ are

dσ

dy
= − 2

π

[
1 − 2 + 2γ

1 + 2γ
ln (2 + 2γ )

]
, (97a)

dγ

dy
= −2γ (1 + γ )

πσ
. (97b)

Experimentally, the case of equal surfaces is realized if
both surfaces are characterized by the same mean-free path
and the same carrier density and, furthermore, if the dielectric
environment of the probe is symmetric (ε1 = ε3).

1. Flow Diagram within the fixed plane

The RG flow within the σ -γ plane is depicted in Fig. 11.
The green vertical fixed line at γ = −1 corresponds to the
case of two decoupled surfaces (recall γ12 = −1 − γ ), and
reproduces the result of Ref. 35 for a single surface of 3D TI.
In this limit, the total correction to the conductivity is negative
and obeys the universal law

δσγ=−1 = 2 × 2

π

⎛
⎝ 1/2︸︷︷︸

WAL

− 1︸︷︷︸
AA

⎞
⎠ ln L/l = − 2

π
ln L/l. (98)

The line of decoupled surfaces is repulsive, as can be seen from
Eq. (97b). Flowing towards the infrared, the conductivity first
decreases before turning up again while the system approaches
the second fixed line at γ = 0. Note that on this line γ12 = −1:
the intrasurface interaction has died out, but the intersurface
interaction is maximal. Here, the conductivity correction is

positive indicating the flow into a metallic state:

δσγ=0 = 2 × 2

π

⎡
⎣ 1/2︸︷︷︸

WAL

− (1 − ln 2)︸ ︷︷ ︸
interaction

⎤
⎦ ln L/l. (99)

The flow on this fixed line is towards the perfect-metal point

(1/σ ∗,t∗,γ ∗
11,γ

∗
22) = (0,1,0,0) .

As discussed below, see Sec. V B 2, this is the only attractive
fixed point even in the case of the general four-dimensional
RG flow. On the γ = 0 fixed line, the intersurface interaction
reduces the strength of the WAL effect but it is not strong
enough to reverse the behavior. The region γ > 0 corresponds
to attractive interaction in the singlet channel and is shown on
the flow diagram for the sake of completeness.

2. Typical bare values and crossover scale

Typically, before renormalization, the intersurface interac-
tion γ12 is weaker than or equal to the intrasurface interaction
γ . This implies that its bare value γ0 takes values in the range
between γ0 = −1 (decoupled surfaces, i.e., γ12,0 = 0) and
γ0 = −1/2 = γ12,0. For small α, we can approximate γ0 by
its RPA value:

γ0 = −1

2
− 1

2

κd

1 + κd
. (100)

Here, d is the system thickness and κ = 2π e2

ε2
ν the inverse

single surface screening length obtained for the general
symmetric situation: ε1 = ε3 �= ε2, see Appendix B. Note that
at κd = 0 the conductivity corrections due to WAL and AA
exactly compensate each other:

δσγ=−1/2 = 2

π

⎛
⎝2 × 1/2︸︷︷︸

WAL

− 1︸︷︷︸
AA

⎞
⎠ ln L/l = 0,

as can also be seen in Fig. 11.
Typically κd > 0 or, as already explained on general

grounds, −1 < γ0 < −1/2. Then the most drastic conse-

0

5

-1

FIG. 11. (Color online) RG flow for equal surfaces in the
parameter space σ (total conductivity) and γ (intrasurface interaction
strength). Here and in all following RG diagrams, arrows indicate the
flow towards the infrared.
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FIG. 12. (Color online) Temperature scale associated with the
minimum of σ as a function of the bare values σ0 and γ0. (Inset)
Same quantity as a function of σ0 and κd .

quence of intersurface interaction is the nonmonotonic temper-
ature (or length) dependence: the conductivity first decreases
with lowering T but eventually the sign of dσ/dT changes
and the system is ultimately driven into the metallic phase. It
is natural to ask for the temperature scale, which is associated
with this sign change. The scale y∗ at which the conductivity
reaches its minimum can be extracted from Eq. (97) and is
expressed by the integral

y∗ = −πσ0

2

∫ γ∗

γ0

dγ ′

γ ′
1 + γ0

(1 + γ ′)2

(
γ ′

γ0

)1−2 ln 2

e2[f (γ ′)−f (γ0)],

(101)

where f (x) = Li2(−x) − Li2[−(1 + 2x)], Li2 is the diloga-
rithm, and γ∗ = −1/2.

Numerical integration of Eq. (101) yields the crossover
length scale or temperature y∗ = ln L∗/l = 1/2 ln T0/T∗. Its
dependence on the bare values σ0 and γ0 is plotted in Fig. 12.
Using Eq. (100), one can also investigate the dependence of
y∗ on κd instead of γ0 (see inset in Fig. 12).

3. Role of topology: Dirac electrons versus electrons with
quadratic dispersion in the presence of spin-orbit interaction

The perturbative RG Equations (94) and (97) are valid for
σ � 1. Instanton effects are suppressed by exp(−2πσ ) in this
region and we therefore neglected them. As has been discussed
in Sec. III E2, in the diffusive NLσM of Dirac electrons, theZ2

theta term reflects the topological protection from Anderson
localization. This term is absent in the case of nontopological
symplectic metals (NTSM) such as electrons with quadratic
dispersion subjected to strong spin-orbit coupling.124 The
presence (respectively, absence) of the topological term results
in the opposite signs of the instanton contribution in the two
cases. However, as instantons are suppressed, our perturbative
result is equally applicable to the surfaces of a 3D TI and, for
example, to a double-quantum-well structure in a material with
strong spin-orbit coupling. Here, we discuss nonperturbative
differences between the two problems.

Let us start from the case of decoupled surfaces (green line,
i.e., γ = −1, in Fig. 13). This limiting case has been analyzed
before.35 For NTSM, localizing AA corrections overcome the
WAL effect and the system always flows towards localization
(see Fig. 13, left). In contrast, for TI the topological protection
implies dσ/dy > 0 for small σ and hence an attractive fixed
point at σ ∼ 1 (see Fig. 13, right).

0

5

10

5

1

σ

γ

σ

γ

FIG. 13. (Color online) Comparison between expected RG flow
for a double layer system of NTSM (left) and the coupled surfaces of
a thin 3D TI film (right).

As has been explained, the γ = −1 line is unstable with
respect to the intersurface interaction and the system eventually
flows towards the antilocalizing red line at γ = 0. Let us now
analyze this fixed line. The fact that conductivity corrections
(99) are positive stems back to the (noninteracting) WAL
effect. Its contribution 2 × (1/π ) ln L/l is independent of σ

only for σ � 1. For NTSM it decreases with decreasing σ

and eventually becomes negative at the metal-insulator transi-
tion (MIT) point σMIT ≈ 2 × 1.42 e2/h.102–104 (As explained
above, Sec. III E2, in a recent investigation78 the crucial role
of Z2 vortices for this MIT was pointed out.) Qualitatively, the
picture of the MIT survives the presence of interactions, which
even enhance the tendency to localization. Therefore, for the
double layer system of NTSM, we expect the antilocalizing
RG flow on the γ = 0 line to turn localizing below some
σMIT ∼ 1. This MIT point is indicated by a dot in the left panel
of Fig. 13.

In contrast, for the surfaces of a topological insula-
tor the system is topologically protected from Anderson
localization,77 i.e., the β function dσ/dy bends up when σ →
0. There is a numerical evidence105,106 that in a noninteracting
case, this happens without any intermediate fixed points.
Again, the arguments are qualitatively unchanged by the
presence of (pure intersurface) interaction and this scenario
is expected to hold also on the red γ = 0 line of the thin 3D TI
film, see Fig. 13, right. (Strictly speaking, one cannot rule out
a possibility that in the presence of interaction there emerge
intermediate fixed points but we assume the simplest possible
flow diagram consistent with large- and small-conductivity
behavior.)

The interpolation between the limiting cases of decoupled
surfaces and maximally interacting surfaces produces the two
phase diagrams shown in Fig. 13. For a double layer of NTSM,
there is a separatrix connecting the weak coupling, decoupled
layers fixed point (γ,1/σ ) = (−1,0) with the critical MIT
point (γ,1/σ ) ∼ (0,1) that we introduced above. (Strictly
speaking, we cannot exclude the possibility that this fixed point
might lie slightly off the γ = 0 line.) Below the separatrix, the
conductivity renormalizes down to σ = 0, i.e., the system is
in the Anderson-localized phase. In contrast, above the sepa-
ratrix, the characteristic nonmonotonic conductivity behavior
leads to the metallic state. As the horizontal position in the
phase diagram is controlled by the parameter κd, we predict
a quantum phase transition between metal and insulator as a
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function of the interlayer distance. On the other hand, in the
case of the coupled top and bottom surfaces of a thin 3D TI
film, the flow is always towards the metallic phase. The critical
point of decoupled surfaces at γ = −1 with σ ∼ 1 is unstable
in the direction of γ .

It is worth recalling that in this paper, we neglected the
tunneling between the opposite surfaces of the 3D TI. If
such a tunneling is included, it introduces a corresponding
exponentially small energy scale below which the two surfaces
behave as a single-layer NTSM. This would in particular imply
a crossover to localizing behavior at such exponentially low
temperatures.

B. General RG flow

We now turn our attention to the complete analysis
of RG Equations (94), which, in general, describe the
case of different carrier density, disorder, and interaction
strength on the top and bottom surfaces of a 3D TI film.
The renormalization of interaction parameters γ11 and γ22,
Eqs. (96c) and (96d), determines four fixed planes of the RG
flow: (1) γ11 = −1 = γ22. Repulsive fixed plane of two decou-
pled surfaces with only intrasurface Coulomb interaction. This
problem has been studied in Ref. 35. (2) γ11 = 0, γ22 = −1
or vice versa, a fixed plane describing a 3D TI film with
strongly different surface population. This case in analyzed in
Sec. V B1 below. (3) γ11 = 0 = γ22, an attractive fixed plane.
Intrasurface interaction has died out and only intersurface
interaction survived. This case is analyzed in Sec. V B2 below.

Concerning the repulsive fixed planes, one should keep
in mind that the renormalization of interaction amplitudes is
suppressed by the small factor 1/σ . Therefore, even if the
conditions on γ11 and γ22 are only approximately fulfilled, the
behavior in the fixed plane dictates the RG flow in a large
temperature-frequency window. RPA estimates of the bare
values of interaction amplitudes can be found in Appendix C 6.

We also remind the reader that the RG equations describing
the model with the finite-range interaction (and thus the whole
crossover between the problem with Coulomb interaction and
the noninteracting system) is discussed in Appendix F.

1. Strongly different surface population

We investigate here the fixed plane of Eq. (94) in which
γ11 = 0 and γ22 = −1. (Clearly, the reversed situation γ11 =
−1 and γ22 = 0 is completely analogous.) Both fixed planes
are “saddle-planes” of the RG flow, i.e., they are attractive in
one of the γ directions and repulsive in the other.

Before analyzing this fixed plane, it is worth explaining
why this limit is of significant interest for gate-controlled
transport experiments, in particular, those on Bi2Se3. As for
this material, the Fermi energy is normally located in the bulk
conduction band, an electrostatic gate is conventionally used
to tune the chemical potential into the bulk gap and hence
to bring the system into a topologically nontrivial regime. A
situation as depicted in Fig. 14 is then believed to arise in a
certain range of gate voltages:29 one of the two surfaces (here
surface 1) is separated by a depletion region from a relatively
thick bulk-surface layer.

Recently,107–109 disorder-induced interference correc-
tions for 3D TI bulk electrons have been investigated

l

l

FIG. 14. (Color online) Typical scenario for gate-controlled
transport experiments: a topologically protected surface separated
from a thick bulk-surface layer.

theoretically;125 while at small length scales, additional sym-
metries of the Hamiltonian provide nontrivial localization
behavior, at sufficiently large scales, the usual WAL effect
sets in. The strong coupling between electron states in the
conducting part of the bulk and at surface 2 does not alter this
universal low-energy property. In conclusion, at sufficiently
large length scales, the symplectic class NLσM, Eq. (54), is the
adequate description of such a system (under the assumption
of negligible tunneling between surface 1 and the conducting
part of the bulk).

Since the bulk-surface layer has a much higher carrier
density than the carrier density on the spatially separated
surface 1 we can expect that κ2 � κ1. Provided κ1d � 1, the
electron-electron interaction on the spatially separated surface
1 is effectively screened out such that |γ11| ≈ (κ1/κ2)(1 +
2κ2d) � 1 [see Eq. (7)]. Conversely, the effect of screening by
electrons on the surface 1 is negligible for Coulomb interaction
of the bulk states: 1 + γ22 ≈ κ1/κ2 � 1.

Substituting γ11 = 0 and γ22 = −1 into Eq. (96), we find
that the RG equations in this fixed plane are as follows:

dσ

dy
= − 2

π

[
1 − 1

t
ln(1 + t)

]
, (102a)

dt

dy
= − 2

π

1 + t

σ

[
1 − t

2
− 1

t
ln(1 + t)

]
. (102b)

They can equivalently be written in terms of conductivities
σ1 and σ2:

dσ1

dy
= − 2

π

[
1

2
− σ2

σ1
ln

(
1 + σ1

σ2

)]
, (103a)

dσ2

dy
= − 1

π
. (103b)

We emphasize that the limit γ11 = 0 and γ22 = −1 is very
peculiar. Indeed, due to the relation (65), this limit implies
that the condition z1/z2 = 0 holds. Equations (102) and (103)
are written under assumption that the ratio t = σ1/σ2 is
finite in spite of the fact that z1/z2 = 0. In the experiment
it corresponds to the case in which κ1/κ2 � 1 but the ratio
D1/D2 � 1, where Ds = σs/4zs is the diffusion coefficient.

Equations (103) become decoupled for σ1/σ2 = 0. Then, as
expected, δσ1 = 1

π
ln L/l (WAL, no interaction on the surface

1) and δσ2 = − 1
π

ln L/l (WAL and AA due to Coulomb
interaction on the surface 2). However, the line t = 0 is
unstable. As one can see from Eq. (102b), due to the very same
quantum corrections the initially small parameter t = σ1/σ2
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FIG. 15. (Color online) Perturbative RG flow in the fixed plane
γ11 = 0, γ22 = −1. In the experimentally motivated scenario (see
Fig. 14), the flow starts at t = σ1/σ2 � 1. The green line in the
right panel is a line of zeros of the right-hand side of Eq. (103a); it
determines the maximum in the RG flow of σ1.

increases under RG. The ultimate limit of the perturbative RG
flow is σ → 0 and t → ∞, see Fig. 15. The scale dependence
of σ1 is nonmonotonous; the position of the corresponding
maximum is determined by zeros of the right-hand side of
Eq. (103a) shown by a green line in the right panel of
Fig. 15.

As has been already emphasized, the perturbative RG
equations are sufficient only in the regime of large σs . We now
discuss the topological effects at small values of conductivities.
In the limit γ11 = 0, γ22 = −1 the renormalization of σ2

is exactly independent of the surface 1. Indeed, in the
conductivity corrections, the two surfaces influence each other
only via mutual RPA screening. In the NLσM description, the
interaction amplitudes in the full action (54) and hence in the
propagators (80) (diffusons and cooperons) fully account for
this effect. Since the layer 2 includes a single TI surface, we
know that σ2 is topologically protected and flows towards σ ∗

2 of
the order of the quantum of conductance (“interaction-induced
criticality”35). Before this happens, the flow of σ1 becomes
reversed from antilocalizing to localizing, see Eq. (103a).
However, since the surface 1 is also topologically protected,
its states can not be strongly localized and σ → σ ∗

1 > 0.126

Thus both surfaces are at the quantum critical points with
conductivities of order e2/h. The conclusion concerning the
surface 1 is particularly remarkable: even though γ11 = 0,
there is “intersurface-interaction-induced criticality” on the
surface 1.

2. Attractive fixed plane

According to Eqs. (96c) and (96d), any γss /∈ {0, − 1} is
renormalized to zero. The γ11 = γ22 = 0 is thus an attractive
fixed plane of the general RG flow. The flow within this plane
has the form determined by the following RG equations:

dσ

dy
= − 2

π

[
1 − 1

t
ln (1 + t) − t ln

(
1 + 1

t

)]
, (104a)

dt

dy
= − 2

π

1 + t

σ

[
1 − t

2
− 1

t
ln (1 + t) + t2ln

(
1 + 1

t

)]
,

(104b)
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FIG. 16. (Color online) The RG flow in the attractive fixed plane
γ11 = 0 = γ22. The zero of Eq. (104b) is displayed by the red line.

or, equivalently,

dσ1

dy
= − 2

π

[
1

2
− σ2

σ1
ln

(
1 + σ1

σ2

)]
, (105a)

dσ2

dy
= − 2

π

[
1

2
− σ1

σ2
ln

(
1 + σ2

σ1

)]
. (105b)

Even though the single-surface conductivities σs display
nonmonotonic behavior within this plane, eventually all
quantum corrections are antilocalizing, see Fig. 16. The ratio
of conductivities flows to the symmetric situation t = σ1

σ2
= 1,

as has been discussed in Sec. V A. We reiterate that at
the corresponding fixed line the WAL effect is competing
with a contribution of the opposite sign due to intersurface
interaction. While the WAL wins, the antilocalizing flow is
slower than for free electrons, see Eq. (99).

3. General RG flow

After having analyzed the RG flow in various fixed
planes, we briefly discuss the general RG flow. According to
Eqs. (94c) and (94d), there is a single attractive fixed point
of the overall RG flow—the metallic fixed point with zero
intrasurface interaction, σ1 = σ2 → ∞ and γ11 = γ22 = 0.
On the other hand, for the values of γss close to −1, the
corresponding conductivity σs is first subjected to localizing
quantum corrections and will thus show a nonmonotonic
behavior towards antilocalization. There also exists a range of
initial parameters for the RG flow for which the conductivity at
one surface demonstrates monotonous antilocalizing behavior,
while the conductivity in the other surface flows in the
described nonmonotonous manner.

VI. DISCUSSION AND EXPERIMENTAL PREDICTIONS

In the preceding section, we have performed a general
analysis of the renormalization group flow determined by
the RG Equations (94). The purpose of the present section
is to apply these results to specific experimentally relevant
materials.

A. Parameters

As explained in Sec. II A, the RG Equations (94) apply in
the case of the following hierarchy of length scales:

l � LE, (106a)

d � l. (106b)
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In order to deal with q-independent interaction amplitudes,
an additional requirement occurs in the case κsd � 1 for both
s = 1 and s = 2:

lscr � LE. (106c)

In view of condition (106a), the constraint (106c) is fulfilled
in the entire diffusive regime if lscr � l.

Further, we have assumed that the intersurface tunneling is
negligible; the corresponding condition reads

a � d. (106d)

In this section, we will concentrate on the case when the RG
scale is set by temperature, LE = lT . We recall the definition of
the length scales entering the above conditions: l = maxs=1,2 ls
is the larger mean-free path, lT = mins=1,2

√
Ds/kT the

smaller thermal length, d the sample thickness, a the pene-
tration depth, κs the inverse Thomas-Fermi screening length
for the surface s and lscr the total screening length for the 3D TI
film. The situation in which only one of the two surfaces is in
the diffusive regime while the other one is in the ballistic
regime (i.e., T τ1 � 1 and T τ2 � 2 or vice versa) is also
a conceivable and interesting scenario. However, we do not
address it in the present paper.

The effect of intersurface interaction becomes prominent if
the sample thickness does not exceed too much at least one of
the single surface screening lengths κ−1

s . As discussed above
(see Sec. V), this condition implies that the bare values of
interaction γ11 and γ22 are not too close to −1.

It is useful to present expressions for the length scales
appearing in the conditions (106a)–(106d) in terms of standard
parameters characterizing samples in an experiment. For sim-
plicity, we assume v

(1)
F = v

(2)
F and τ1 = τ2 in these formulas.

The densities of states (DOS) and inverse screening lengths
for the top and bottom surfaces are

νs =
√

ns

πv2
F

, κs ≡ 2πe2

ε2
νs = 2πα

√
ns

π
, (107)

where ns are the corresponding electron densities. If the
electron densities for each surface separately are not known,
the total density ntot = n1 + n2 can be used to estimate the
DOS and the screening lengths:

ν2
1 + ν2

2 = ntot

πv2
F

, κ2
1 + κ2

2 = (2πα)2 ntot

π
. (108)

The mean-free path can be expressed as

l = vF τtr = σ

πvF (ν1 + ν2)
. (109)

The thermal length in the diffusive regime is given by

lT =
√

D

kT
=

√
vF l

2kT
=

√
σ

kT 2π (ν1 + ν2)
. (110)

Hence the condition (106a) is fulfilled for temperatures

kT � kTDiff, (111)

where

kTDiff = vF

2l
= 1

σ [e2/h]

(
v2

F

2

)
2π (ν1 + ν2) (112)

is the temperature scale at which the diffusion sets in.
In order to obtain lscr entering Eq. (106c), we have to

consider the full (inter and intrasurface) Coulomb interaction,

see Appendix B. As explained in Sec. II B, it is only a
meaningful quantity provided κsd � 1. Taking into account
the influence of the surrounding dielectrics, we find

lscr = ε1 + ε3

2ε2

1

κ1 + κ2
. (113)

When deriving Eq. (113), we assumed for simplicity that
ε2 � ε1 + ε3. Regarding the experimental setups discussed in
Sec. VI B, this condition is well fulfilled for Bi2Se3 but only
marginally for HgTe. Thus in the latter case, Eq. (113) should
be considered as a rough estimate.

Finally, to check the validity of the condition (106d), one
needs to know the value of the penetration depth a. The latter
can be estimated from the condition

vF,⊥p⊥
�bulk

∼ 1, (114)

where p⊥ ∼ 1/a denotes typical momenta perpendicular to
the surface. Provided vF,⊥ ∼ vF , it yields

a ∼ vF

�bulk
. (115)

We are now going to consider two exemplary materials for
3D TIs: Bi2Se3 and strained HgTe. We shall estimate numer-
ically all the relevant parameters and present characteristic
plots for temperature dependence of conductivities.

B. Exemplary 3D TI materials

1. Bi2Se3

Bi2Se3 is currently the most conventional material for
experimental realization of the 3D TI phase. Typical ex-
perimental data (extracted from the point of the minimal
conductance in Refs. 31 and 110) are summarized in the upper
part of Table I. Using Eqs. (107)–(115), we can estimate the

TABLE I. Experimental values of sample parameters at the point
of the minimal carrier density and associated length scales for
transport experiments on Bi2Se3 films of Refs. 31 and 110. The
dots “. . . ” separate values for the symmetric (n1 = n2) and totally
asymmetric (n1 = ntot,n2 = 0) cases. The bare interaction amplitudes
are estimated in the random phase approximation (RPA).

Fermi velocity vF ∼ 5 × 105 m/s
Bulk gap �bulk ∼ 0.3 eV
Sample thickness d ∼ 10 nm

Coat: ε1 ∼ 1
Dielectric properties 3D TI (Bi2Se3): ε2 ∼ 100

Substrate (SrTiO3): ε3 ∼ 103−104

Carrier density ntot ∼ 3 × 1012 cm−2

Mobility μel ∼ 100 . . . 1000 cm2/V s
Sheet resistance 1/σ ∼ 0.097 h/e2 at T ∼ 50 mK

Effective coupling α ∼ 4 × 10−2

Chemical potential μ2
1 + μ2

2 = (0.2 eV)2

Penetration depth a ∼ 1 nm
Mean-free path l ∼ 24 . . . 34 nm
Diff. temperature TDiff ∼ 80 . . . 57 K
Screening length κ2

1 + κ2
2 ∼ (37 nm)−2

Scr. length (total) lscr ∼ 132 . . . 186 nm, for ε3 = 103

Bare interaction (RPA) top surface: γ11 ∼ −0.6 · · · − 1
bottom surface: γ22 ∼ −0.6 . . . 0
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FIG. 17. (Color online) Theoretical prediction for the temperature
dependence of the total conductivity in thin Bi2Se3 films.

hierarchy of length scales (lower part of the same table). One
can see that all of the requirements of validity for our theory
are fulfilled for length scales above lscr [temperatures below
Tmax = 2.6 . . . 1.9 K, see condition (106c)].127

From the experimental data, the ratio of carrier densities
is not known. Therefore we show in Fig. 17 the expected
temperature dependence of total conductivity for various
values of this ratio. Clearly, the behavior strongly differs from
the case of decoupled surfaces (dashed line). First, the slope
of dσ/d ln T is considerably smaller. Second, one observes
a clear curvature of the dependence σ (ln T ), which is a
manifestation of the nonmonotonicity. (For the parameters
used in the plot, the minimum of σ occurs at still lower
temperatures.) This curvature is especially pronounced for
strongly different surfaces.

It should be mentioned that the substrate used in Ref. 31
has a strongly temperature-dependent dielectric function ε3

since SrTiO3 approaches a ferroelectric transition at low
temperatures. This could result in a temperature dependence of
effective gate voltage and consequently of carrier density. The
resulting classical temperature dependence of conductivity
(and interaction constants) would mask the quantum effects
described in our analysis. However, in the presence of the
gating field, the temperature dependence of ε3 saturates at low
temperatures. This motivates the presentation in Fig. 17 where
we assumed independent of temperature ε3 = 1000.

2. Strained HgTe

Another very promising 3D TI material is strained HgTe.
The presence of Dirac-like surface states was experimentally
confirmed by the odd series of QHE plateaus, as well as by
ARPES.25 While the transport experiment indicates dominant
surface conduction, the extracted carrier density appears to
be too large for a pure surface theory with linear spectrum,
yielding the value of the chemical potential μ larger than the
gap �bulk, see Table II. (The role of the bulk conduction band
as well as the parabolic bending of the dispersion was also
discussed within an independent magnetooptical study by the
same experimental group.112) Thus it remains to be clarified
under what experimental conditions the strained HgTe sample
is in the true TI regime (i.e., the bulk contribution to transport
is negligible). Notwithstanding this point and motivated by

TABLE II. Typical experimental values for transport experi-
ments on HgTe films of Refs. 25 and 111.

Fermi velocity vF ∼ 5 × 105 m/s
Bulk gap �bulk ∼ 0.022 eV
Sample thickness d ∼ 70 nm

Coat: ε1 ∼ 1
Dielectric properties 3D TI (HgTe): ε2 ∼ 21

Substrate (CdTe): ε3 ∼ 10
Carrier density top surface: n ∼ 4.8 × 1011 cm−2

bottom surface: n ∼ 3.7 × 1011 cm−2

Mobility μel ∼ 34000 cm2/V·s
Sheet resistance 1/σ ∼ 0.04 h/e2 at T = 50 mK
Effective coupling α ∼ 0.21
Chemical potential top surface: μ1 ∼ 0.08 eV

bottom surface: μ2 ∼ 0.07 eV
Penetration depth a ∼ 15 nm
Mean-free path l ∼ 108 nm
Diff. temperature TDiff ∼ 18 K
Screening length top surface: κ−1

1 ∼ 19.53 nm
bottom surface: κ−1

2 ∼ 22.24 nm
Bare interaction (RPA) top surface: γ11 ∼ −0.893

bottom surface: γ22 ∼ −0.878

the excellent surface transport data, we apply our theory to
the HgTe experiment, see Fig. 18. In spite of the considerable
thickness of the probe, the effect of intersurface interaction is
clearly visible: the slope of dσ/d ln T is considerably smaller
than it is expected for decoupled surfaces.

C. Hallmarks of surface transport and interactions

We briefly summarize now our most salient predictions for
experimental signatures of surface transport in 3D TI with an
intersurface interactions.

(1) As already exploited in 3D TI experiments,31 the
magnetoconductance formula100 for the total conductivity is

δσ (B) = − e2

2πh

∑
s=1,2

[
ψ

(
1

2
+ B

(s)
φ

B

)
− ln

(
B

(s)
φ

B

)]
,

(116)
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FIG. 18. (Color online) Theoretical prediction for the temperature
dependence of the total conductivity in thin films of strained HgTe.
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FIG. 19. (Color online) (Top) Conductivity corrections for low
carrier concentration. The total electron concentration in units of
1012 cm−2 is equal to 0.55,0.48,0.41,0.34,0.27 from bottom to
top. The characteristic nonmonotonous behavior is clearly seen;
deviations from the behavior of decoupled surfaces are very strong.
(Bottom) Carrier-density dependence of conductivity corrections.
The nontrivial dependence is entirely due to the intersurface interac-
tion: in the case of the decoupled surfaces, the conductivity correction
would be constant as a function of density, σ (0.02K) − σ (50K) ≈
−2.49e2/h. We used the values of the parameters d , vF , and α as in
Table I for Bi2Se3. Further, we assumed the case of equal surfaces
(ntot = 2n) and TDiff = 1/2τ = 50K.

where the characteristic magnetic field B
(s)
φ = h̄/[4eD(s)

s τ
(s)
φ ]

is determined by the diffusion coefficient D(s)
s and the phase

breaking time τ
(s)
φ for the surface s. The function ψ denotes

the digamma function here.
(2) The characteristic effect of intersurface interaction is the

nonmonotonous temperature dependence of conductivity (see
Fig. 19, top). It may happen that in experimentally accessible
temperature window this effect manifests itself only as a
deviation of the conductance slope

δσ (T ) = e2

h
c ln T (117)

from the value c = 1/π characteristic for two decoupled
surfaces accompanied by some bending of the curve σ (ln T ),
see Figs. 17 and 18. The ultimate low-T behavior of the
coupled system is always antilocalizing and following the
universal law

δσ (T ) = e2

πh
(1 − 2 ln 2) ln T . (118)

However, depending on the parameters, this asymptotics may
become valid at very low temperatures only.

(3) The strength of intersurface interaction is governed by
the parameters κ1d and κ2d, where κ is the screening length.

Therefore, in contrast to usual, single surface conductivity
corrections, the predicted effect strongly depends on the carrier
density (see Fig. 19, bottom). It is also possible to access
the intersurface induced quantum corrections in the frequency
dependence of the ac conductivity [by the simple replacement
T → ω in δσ (T ) if ω � T ].

VII. CONCLUSIONS

In this paper, we have investigated interference and interac-
tion effects in the surface state conductivity of 3D topological
insulator slabs. We have taken into account the electron-
electron interaction within the top and bottom surfaces of a
slab and between them. These two surfaces were in general
assumed to be characterized by different carrier densities and
scattering rates, and by asymmetric dielectric environment.

Our field-theoretical analysis was based on the interacting
nonlinear σ model approach describing the system at length
scales above the mean free path. We demonstrated how
this effective theory can be obtained from the non-Abelian
bosonization. In particular, we have shown that upon inclusion
of potential disorder the Wess-Zumino term generates a local
expression for the Z2 theta term. The appearance of this
topological term is the hallmark of the Dirac surface states;
it is absent in conventional 2D metals of the same symmetry
class. We have further analyzed the U(1)-gauged σ model
that describes a coupling to the external electromagnetic field.
This has allowed us to connect the physical linear-response
characteristics of the problem and the σ model coupling
constants. We have also analyzed the effect of breaking of
time-reversal symmetry, namely, the anomalous quantum Hall
effect of Dirac electrons.

It is worth emphasizing that our theory treats the general
situation of potentially strong interactions and thus went
beyond perturbation theory. We have thus developed the Fermi
liquid theory of the strongly correlated double layer system in
the ballistic and diffusive regime.

We renormalized the interacting NLσM of the two surfaces
in the one-loop approximation and obtained the RG equations,
Eq. (94). This way we have determined the temperature
(or else, frequency, or length scale) dependence of the
conductivities of both surfaces. The RG is controlled by a
large conductivity, kF l � 1. Our calculations are exact in the
singlet interaction amplitudes, while contributions due to a
repulsive Cooper interaction are parametrically small and can
be neglected.

Inspecting the RG equations, we showed that intersurface
interaction is relevant in the RG sense and the limiting case
of decoupled surfaces is therefore unstable. The rich flow
diagram has been analyzed in detail. For fully decoupled
surfaces the system flows into an intermediate-coupling
fixed point (“interaction-induced criticality”). This point is,
however, unstable with respect to the intersurface coupling.
The flow is then towards a single attractive fixed point which
is “supermetallic,” σ → ∞, and at which even originally
different surfaces have the same transport properties, σ1 = σ2,
see Figs. 11 and 16. Further, this fixed point is characterized
by vanishing intrasurface and finite intersurface interactions.
Typically, this fixed point is reached via a characteristic
nonmonotonous temperature dependence of conductivity.
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Our perturbative results are equally applicable to weak
topological insulator113,114 thin films and to nontopological
double layer systems with spin-orbit interaction. For the latter
type of structures, we have also discussed the difference
compared to the strong TI films, which is in nonperturbative
topological effects (see a comparison of the flow diagrams in
Fig. 13). While in the TI case these effects lead to a topological
protection of the surface states from Anderson localization, a
conventional (nontopological) double layer system undergoes
a metal-insulator transition, which is tuned by the ratio of
interlayer distance and screening length. Finally, we have
estimated parameters and presented explicit predictions for
the temperature dependence of the conductivity for typical
experimental setups based on Bi2Se3 and strained HgTe
materials.

Before closing, we discuss perspectives for further research.
First, experimental studies of temperature dependence of con-
ductivity of 3D topological insulators for different positions
of chemical potentials would be highly useful. A comparison
of such experimental data with our theoretical predictions
would allow one to judge whether the system is in the truly
topological phase. Second, more work is needed on effects
of local breaking of time-reversal symmetry in TI slabs.
Third, it is known that Coulomb interaction in electronically
decoupled double-layer systems induces a finite but typically
small transconductance σ12.56,115–117 However, the side walls
of 3D TI films connect the two major surfaces, which might be
a serious obstacle for performing Coulomb drag experiments.
Fourth, in view of recent experimental progress,118 it would be
interesting to perform an RG analysis for a superconducting
counterpart of the system that we have explored, namely,
for surface states of a 3D topological superconductor with
spin-orbit interaction (class DIII).119
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APPENDIX A: NON-ABELIAN BOSONIZATION AND THE
TOPOLOGICAL TERM

In this Appendix, we include more detailed calculations
concerning non-Abelian bosonization, the gauged WZNW
model and the topological term S(θ). For brevity, we omit
the surface index s in this appendix.

1. Gauged WZNW model

The Wiegmann-Polyakov formula84 allows the inclusion of
smooth o(2τ × 2NM × NR) gauge fields Aμ. A generalization
to potentially topological gauge potentials can be found in

Refs. 86–89. The gauged WZNW model is given as86–89

S[O,Aμ] = − 1

16π

∫
x

tr(OT DμO)(OT DμO) (A1a)

+ iεμνρ

24π

∫
x,w

tr[(OT DμO)(OT DνO)(OT DρO)]

(A1b)

− iεμνρ

16π

∫
x,w

tr[Fμν(OT DρO + DρOOT )],

(A1c)

where we introduced Dμ = ∂μ + [Aμ,·] and Fμν = [Dμ,Dν].
In the main text, we were mostly interested in U(1) gauge
fields Aμ = iÂT 1+τy

2 − iÂ
1−τy

2 . (In this appendix, the electron
charge is absorbed into the vector potential.)

To obtain the Wiegmann-Polyakov formula, one can use
the following identity:89

(A1b) = i

24π
�[O] − i

8π

∫
x,w

εμνρ∂μtr[OAνO
T Aρ

+Aν(OT ∂ρO + ∂ρOOT )]

+ iεμνρ

16π

∫
x,w

tr[Fμν(OT DρO + DρOOT )]. (A2)

While the last integral in Eq. (A2) compensates the term
(A1c), the total derivative term yields the Wiegmann-Polyakov
formula provided Aμ is not singular:

S[O,Aμ] = S[O] + 1

8π

∫
x

tr[Aμ(O∂μOT + OT ∂μO)

+AμOT AμO − A2
μ − iενρOAνO

T Aρ

− iενρAν(OT ∂ρO + ∂ρOOT )] (A3)

= S[O] + 1

8π

∫
x

tr[A−(O∂+OT ) + A+(OT ∂−O)

+A+OT A−O − A+A−]. (A4)

Here we have introduced the (anti-)holomorphic combination
of gauge potentials A± = Ax ± iAy . In the case of topological
gauge potentials, the integral over the total derivative yields
also a contribution from the Dirac string.

Equation (A4) is a very powerful result. In particular, it
justifies a posteriori the bosonization rules (25a) and (25b).
Also, it follows immediately from expression (A3) that after
disorder-induced symmetry breaking (O → Q = QT ) the
gauge-field-dependent contributions from the topological term
vanish.

Further, one can use Eq. (A4) to determine the prefactor of
the kinetic term in the AII NLσM, Eq. (36). As explained in
the main text, soft rotations OT

softOOsoft of the WZNW fields
O are not affected by disorder induced masses, see Eq. (30).
The effective action for topologically trivial Goldstone modes
contains

Seff,kin[�μ] = 1

8π

∫
x
〈tr(�+OT �−O − �+�−)〉

− 1

2

〈[ ∫
x

tr(�+j− + �−j+)

]2
〉

, (A5)
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where j± are the (bosonic) currents, 〈. . . 〉 denotes average with
respect to the full bosonic theory (including the mass terms)
and �± = Osoft∂±OT

soft. To the leading order, the average
can be calculated close to the saddle point. Exploiting the
equivalence of bosonic and fermionic theories, one can equally
evaluate 〈. . . 〉 using the fermionic fields at SCBA level. At
|μ|τ � 1, the major contribution comes from the second line
of Eq. (A5), which, taking the vertex corrections into account,
yields the correct prefactor (i.e., the conductivity) of the kinetic
term in Eq. (36).

2. Instanton configuration

We define the following four-dimensional unit vector:

a ≡ (a0,a1,a2,a3)

≡ 1

|�x − �x ′|2 + λ2
[2λ(�x − �x ′),|�x − �x ′|2 − λ2],

where the 1 + 2 vector �x − �x ′ ≡ [(1 − w)/w,x − x′] contains
the extension parameter and the real-space coordinates. It
describes a topological excitation at position (1,x′) in a
three-dimensional base space. With the help of the vector a

we can define the following extended field configuration:

Õinst =

⎛
⎜⎝

−a0iτy + a3 0 a1 + a2iτy 0
0 1 0 0

a1 − a2iτy 0 −a0iτy − a3 0
0 0 0 −1

⎞
⎟⎠ . (A6)

For a0 = 0, i.e., on the physical space w = 1, Õinst is
a symmetric matrix and characterizes the two-dimensional
instanton. The choice of the extension is arbitrary, but, as
has been stressed in the main text, the Õinst field has to
leave the diffusive saddle-point manifold for some subinterval
w ∈ I ⊆ (0,1). For w → 0, the extended field Õinst satisfies
the boundary condition Õ(x,w = 0) = � = const.

We are now in the position to insert the instanton configura-
tion into the WZNW term. After tracing out the matrix degrees
of freedom this leads to

iS(θ) = −i

6π

∫
x,w

εμνλ(εabc aa∂μab∂νac∂λa0

−εabd aa∂μab∂νa0∂λad + εcda aa∂μa0∂νac∂λad

−εcdb a0∂μab∂νac∂λad )

= iπ. (A7)

Here, the last line is obtained by a straightforward calculation.
We have thus shown that the topological term distinguishes
between the trivial and the nontrivial sectors as it acquires on
them the values 0 and iπ (mod2πi), respectively.

APPENDIX B: EFFECT OF DIELECTRIC ENVIRONMENT
ON COULOMB INTERACTION

1. Electrostatic potential and single-particle effects

As has been stated above, the experimental setup consists of
a sandwich of (at least) three different dielectrics (see Fig. 1).
We define the z axis to be perpendicular to the two surfaces.
The sandwich consists of the coating material with a dielectric
constant ε1 (for d/2 < z), the topological insulator film with a
dielectric constant ε2 (for −d/2 � z � d/2), and the substrate

with a dielectric constant ε3 (for z < −d/2). Taking these
different dielectric properties into account, we here present the
expression for the Coulomb potential that generalizes Eq. (4).

By the method of mirror charges, one can derive54–56 the
electrostatic potential induced by a single point charge e

located at (x0,z0) = (0,0,z0) inside the middle region of the
sandwich (z,z0 ∈ [− d

2 , d
2 ]):

�(x,z,z0) = e

ε2

{
1√

x2 + (z − z0)2
+ r−1

23 F[x,d + (z + z0)]

+ r−1
21 F[x,d − (z + z0)]

+F(x,z − z0) + F[x, − (z − z0)]

}
, (B1)

where

F(x,z) =
∞∑

k=1

(r21r23)k√
x2 + (z − 2dk)2

(B2)

and the ratios

r21 ≡ ε2 − ε1

ε2 + ε1
and r23 ≡ ε2 − ε3

ε2 + ε3

were introduced. If one of these ratios vanishes, the text-
book limit of two dielectric half-planes follows. A Fourier
transformation of the x coordinates yields

�(q,z,z0) = 2πe

qε2

(
e−|z−z0|q + e−2dq

1 − r21r23e−2dq

×{r21e
(d+z+z0)q + r23e

(d−z−z0)q

+ 2r21r23 cosh[(z − z0)q]}
)

. (B3)

We consider now 3D TI surface states: the charges are
located at a typical distance a ∼ vF /�bulk (the penetration
depth) from the boundaries z = ± d

2 . The consequences of the
general expression (B3) on the 3D TI surface states are twofold.

First, there is a single-particle effect, stemming from the
interaction of the charged particles with their own mirror
charges. The associated electrostatic energy is incorporated
in the chemical potential in the main text and can be expressed
as

�μ1 = e

2
�reg

(
0,

d

2
− a,

d

2
− a

)

= e2

4ε2

[
r21

a
− r21 + r−1

21 + 2

d
ln(1 − r21r23)

]
. (B4)

The analogous shift of the chemical potential at the second
surface �μ2 is easily obtained by interchanging r21 ↔ r23. The
superscript “reg” indicates that self-interaction of the charges
is subtracted. In the second term, we used the approximation
a � d. The first term, i.e., the interaction with the nearest
mirror charge, is typically the dominating contribution �μ1 ≈
α2r21/4�bulk.

Second, the electrostatic energy associated with two-
particle interaction is the quantity U 0 entering Sint in Eq. (14).
This leads to the interaction parameters analyzed below.
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2. Interaction parameters

The interaction parameters are obtained by placing a
test charge into Eq. (B3). We will present this effective
Coulomb interaction in the surface space. The terms induced
by intersurface interaction contain a factor exp(−qd) (q takes
values between the IR and UV cutoffs, q ∈ [L−1

E ,l−1]). As a
result we have to distinguish between the following two cases.

In the first case, the momenta are large (qd � 1) throughout
our RG-procedure if dL−1 > 1 or for part of it if d ∈ [l,L].
Then the two surfaces become decoupled and

U 0 = 2π

q

(
2

ε2+ε1
0

0 2
ε2+ε3

)
. (B5)

(Here and in all subsequent appendices, we drop the electron
charge, it is formally included into a redefinition of ε1,ε2,ε3.)

In the second case, the momenta are small, qd � 1. As
we shall be interested in the low-energy theory, we keep only
the Fourier transformed terms that are not vanishing in the
limit of small transferred momentum qd → 0. All others are
irrelevant in the RG sense. This way we obtain the true long-
range Coulomb part

UC = 2

ε1 + ε3

2π

q

(
1 1
1 1

)
. (B6)

As expected, it does no longer depend on ε2. The limit
we considered is the large-distance behavior in which the
dominant part of the electric field lines lives in the dielectrics
surrounding the film.

There are other contributions that do not vanish in the
qd → 0 limit. These are short-range interaction amplitudes
introduced by the finite thickness of the film:

F (d) = −2π

ε2
d

(
0 1
1 0

)
− 4π

ε1 + ε3
d

[
Fsymm

(
1 1
1 1

)
+ FM

]
.

(B7)

Here, we have defined the scalar

Fsymm = (ε2 − ε1) (ε2 − ε3)

[
1

2ε2
2

+ 1

ε2 (ε1 + ε3)

]
(B8)

and the matrix

FM = 1

2ε2
2

(
(ε2 + ε1) (ε2 − ε3) ε2

2 − ε1ε3

ε2
2 − ε1ε3 (ε2 − ε1) (ε2 + ε3)

)
,

(B9)

which both vanish in the limit of ε1 = ε2 = ε3. In summary,
for coupled surfaces, we can write U 0 = UC + F (d).

The derivation of the above equations includes some
subtleties. First, we derived the electric field configuration
for a single point charge. Thus, in particular, we did not
consider the metallic surfaces between the dielectrics. As
in the theory of conventional metals, their effect will be
incorporated in the field theoretical description of the model
(see Appendix C). Second, we used the potential (B3) derived
for charged particles at position z,z0 and then moved them on
the surface between the dielectrics from inside of the TI film
(z0 = ±d/2 ∓ a ≈ ±d/2 and equally for z). This requires
that the (macroscopic) electrostatic theory of continuous,
homogeneous dielectrics can be applied to electrons located

at a distance a from the boundary. This is justified, as we
are interested in the long-range behavior of the electric field.
Furthermore, for Bi2Se3 it is known that a is of the order of
a few nanometers,52,120 hence one order of magnitude larger
than the atomic scale.

APPENDIX C: CLEAN FERMI LIQUID

In this appendix, we present the formal resummation of
scattering amplitudes following Refs. 79–81. We first consider
the short-range (one-Coulomb-line-irreducible) part of the
singlet channel [see also Eq. (43)],

�1−2
ss ′ = �1

ss ′ − �2
ssδss ′ , (C1)

and include the long-range, one-Coulomb-line-reducible, dia-
grams (�0) later on.

1. Resummation of interaction amplitudes

The first step is to single out the subset of particle-
hole-section irreducible diagrams I 1−2. The total interaction
amplitude as a matrix in the surface space and in 2 + 1-
momentum space is given by the Dyson equation

�1−2 (K) = I 1−2 − I 1−2R (K) �1−2 (K) . (C2)

(Matrix multiplication includes momentum integral
∫

pand a
Matsubara sum T

∑
n.)

The matrix

[R (K)]PP ′,ss ′ = δss ′δPP ′Rs,P (K) , (C3)

Rs,P (K) ≡ Gs (P ) Gs (P + K) (C4)

describes particle-hole bubbles and in the singlet channel.
This matrix is diagonal in both 2 + 1 momentum and surface
space; as we explained in the main text, it is sufficient to keep
only intrasurface bubbles in the assumed case of uncorrelated
disorder. In the presence of generic interaction, the quantity
Rs,P (K) can be represented as

Rs,P (K) = Rω
s,P + �s,P (K) (C5)

= R
q

s,P + �̃s,P (K). (C6)

Here, Rω
s,P (Rq

s,P ) are called regular (static) part of the bubble.
The ω and q limits are defined in the main text [see Eqs. (48)
and (49)]. The singular (dynamic) part of the particle-hole
bubble is

�s,P (K) = β
−ivF

s · q
ωm + ivF

s · q
δ

(s)
P ,

�̃s,P (K) = β
ωm

ωm + ivF
s · q

δ
(s)
P .

[We have absorbed the Fermi liquid (FL) residues into a
redefinition of the scattering amplitudes. In our notation, δ

(s)
P

restricts the momentum integration and Matsubara summation
over P to the Fermi surface (see Ref. 79).] From these
definitions and Eq. (C2), we obtain the relations

�1−2 (K) = �1−2,ω − �1−2 (K) � (K) �1−2,ω (C7a)

and

�1−2 (K) = �1−2,q − �1−2 (K) �̃ (K) �1−2,q . (C7b)
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This formal (re-)expression of the general scattering ampli-
tude will be used to calculate the polarization operator in the
next section.

2. Definitions

In order to introduce the long-range Coulomb interaction
and to describe its screening, we define the following quanti-
ties. The bare triangular vertices are obtained in response to
an external scalar potential φ(s)(ωm,q):

v
(1)
0 = (1,0) and v

(2)
0 = (0,1) . (C8)

We used the approximation 〈μs, p|μs, p + q〉 ≈ 1. In our
notation, bold, italic, underlined quantities are vectors in
surface space.

The triangular vertex T (s) renormalized by interaction
satisfies

T (s) (K) = v
(s)
0 − v

(s)
0 R (K) �1−2 (K) . (C9)

The polarization operator is a matrix in the surface space and
can be written as

	ss ′
(K) = v

(s)
0 R (K)

[
v

(s ′)
0

]T
− v

(s)
0 R (K) �1−2 (K) R (K)

[
v

(s ′)
0

]T
, (C10)

which transforms into

	ss ′
(K) = 	ss ′,q + T (s),q�̃ (K) [T (s ′),q]T

−T (s),q�̃ (K) �1−2 (K) �̃ (K) [T (s ′),q]T (C11a)

= 	ss ′,ω + T (s),ω� (K) [T (s ′),ω]T

− T (s),ω� (K) �1−2 (K) � (K) [T (s ′),ω]T . (C11b)

We will show below that these equations combined with
Ward identities can be used to derive the ω and q limits of the
polarization operator.

3. Ward identities

We will first investigate the Ward identities, which are due
to invariance under separate U(1) rotation of the fermionic
fields. Following the standard procedure, we obtain(

∂G−1
1

∂p0
,0

)
= T (1),ω and

(
0,

∂G−1
2

∂p0

)
= T (2),ω. (C12)

Next, we exploit that constant external fields can be
reabsorbed into a redefinition of the chemical potentials. This
leads to (

∂G−1
1

∂μs

,
∂G−1

2

∂μs

)
= T (s),q . (C13)

We insert this into the ω and q limits of the polarization
operator and obtain

	ss ′,ω = 0 and 	ss ′,q = − ∂Ns

∂μs ′
= −∂Ns ′

∂μs

. (C14)

The Ward identities (C13) and (C14) have very profound
consequences. They relate the static triangular vertex and
the static polarization operator to derivatives of physical
observables with respect to the chemical potential. It is

explained in the main text that for this reason they are not
renormalized in the diffusive RG.40

4. Screening of the Coulomb interaction

We consider the singular part of the Coulomb interaction
[see Eq. (B6)], i.e.,

U 0 = 2π

εeffq

(
1 1
1 1

)
, (C15)

where εeff = (ε1 + ε3)/2 for the most general situation of a di-
electric sandwich structure. This matrix has zero determinant,
det U 0 = 0.

The RPA-screened Coulomb interaction is defined as

U scr (ωm,q) = (1 − U 0	)−1U 0.

The static one-Coulomb-line-reducible singlet interaction
amplitude is obtained by attaching the (q limit) triangular
vertices to U scr(ωm = 0,q) from both sides (see Fig. 10 in
the main text). From the definition in Sec. C 2 we know that
	ss ′,q = T s,qνs ′ . (Note that none of these three quantities is
renormalized during RG.) Therefore we obtain

�0 = −
(

1

ν

)
	qU scr (ωm = 0,q) 	q

(
1

ν

)
. (C16)

By means of the orthogonal matrix

O = 1√
2

(
1 −1
1 1

)
, (C17)

we can rotate U scr(ωm = 0,q) into the basis where U 0 is
diagonal:

OT U scr(ωm = 0,q)O

=
[

1 −
( 4π

εeffq
0

0 0

)
OT 	qO

]−1( 4π
εeffq

0
0 0

)

=
4π
εeff

q − 2π
εeff

(
	

q

11 + 	
q

22 + 2	
q

12

)(1 0
0 0

)
. (C18)

The denominator in the last line of Eq. (C18) defines the
coupled surface screening length [analogously to Eqs. (7) and
(8)].

In the considered parameter range, we can take the q-limit
under the following condition: | 2π

εeff
(	q

11 + 	
q

22 + 2	
q

12)| � q.
Then we obtain

Uq
scr = −O

(
[êT

1 OT 	qOê1]−1 0
0 0

)
OT . (C19)

The q limit of Eq. (C16) is

�0,q =
(

1

ν

)
	qOê1 ⊗ êT

1 OT 	q

(
1

ν

)
1

êT
1 OT 	qOê1

. (C20)

We multiply by νOê1 from the right side and find[
−
(

1

ν

)
	q + �0,qν

]
Oê1 = 0. (C21)

This matrix equation implies that the surface-space matrix in
brackets has to be of zero determinant.
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Alternatively, using the q-limit of Eqs. (C11b) and (C16),
we can express the bare total interaction amplitude �ρ ≡ �0 +
�1−2 as

ν�ρν = −ν − det 	q

	
q

11 + 	
q

22 + 2	
q

12

(
1 −1

−1 1

)
. (C22)

From Eq. (C22), the following statement immediately follows:

det[ν + ν�ρν] = 0. (C23)

This relationship is equivalent to Eq. (C21).

5. Total density-density response

Here we analyze the one-Coulomb-line-reducible (which
we will also term “total”) density-density response 	RPA. It is
defined as

	RPA (K) = 	 (K) + 	 (K) U 0 (q) 	RPA (K) . (C24)

Equation (C24) implies that 	RPA is obtained by a resum-
mation of the RPA-type series, hence the corresponding
superscript.

For the present case, we want to obtain 	RPA in the diffusive
regime. The very idea of dirty FL is based on replacing
dynamic section �̃s,P according to the following prescription:

ωm

ωm + ivF
s · q

→ ωm

Zsωm + Dsq2
, (C25)

with Zs = 1 at the bare level. By using definitions (C11a) and
(C16), the total density-density response can be written as

	RPA(K) = [	q − ν�0ν][1 + ωm��[	q − ν�0ν]], (C26)

where

�� ≡ ��(ωm,q) = [νDq2 + (νZ + ν�0+1−2ν)ωm]−1.

(C27)

These equations are used in the main text (see Sec. IV B) to
provide a link between the bosonized NLσM and the dirty FL
theory.

6. Bare NLσM coupling constants

According to Eqs. (C18) and (C22), the bare values of the
interaction amplitudes are fully determined by ν1, ν2 and

	q = −ν
(
1 + Fν

)−1
, (C28)

where

F =
(

F11 F12

F12 F22

)
(C29)

are the FL constants in the density channel(s). It is convenient
to express ν�ρν in Eq. (C22) through F by means of the
identity (C28):

det 	q

	
q

11 + 	
q

22 + 2	
q

12

= −1

1/ν1 + 1/ν2 + F11 + F22 − 2F12
.

(C30)

In Appendix B, we derived the general expression for FL
constants F (d) ≡ 2π

ε2
df induced by the finite thickness of the

topological insulator film. Assuming that there is no additional
short-range interaction, one can deduce the bare value of

interaction constants for the NLσM. This is equivalent to the
RPA estimate (valid if α � 1).

In the following, we consider two limits. As in the main
text, the inverse single surface screening length is denoted
by κs = 2πνs/ε2. The first limit is the case of equal surfaces
ν1 = ν2 in a symmetric setup ε1 = ε2 = ε3. Then the effective
FL amplitude is

F (d) = −2πd

ε2

(
0 1
1 0

)
. (C31)

The bare value of the interaction constant is

γ11 = γ22 = [ν�ρν]11

ν1
= −1

2

(
1 + κd

1 + κd

)
. (C32)

Note that in the limit κd → ∞ (κd → 0), the bare value of
γ11 = γ22 is equal to −1 (−1/2).

The second limit is the experimentally relevant situation
with ε1 � ε2, ε3. In this limit, we find

F (d) = 4πd

ε2

(
1 − (ε2/ε3)2 − (ε2/ε3)2

− (ε2/ε3)2 − (ε2/ε3)2

)
. (C33)

It follows from Eqs. (C30) and (C33) that the bare values for
interaction constants are ε3 independent:

γ11 = −1 + 1

1 + κ1
κ2

+ 2κ1d
(C34a)

and

γ22 = −1 + 1

1 + κ2
κ1

+ 2κ2d
. (C34b)

In view of Eq. (65) following from the F invariance, it is
not surprising that the coupling constants are equal as long as
ν1 = ν2 even in the case of asymmetric dielectric environment.

APPENDIX D: DETAILED DERIVATION
OF RG EQUATIONS

In this section, we present the detailed derivation of the
one-loop corrections to conductivity.

a. Correlator B1

In the one-loop approximation, we can use Q = � + δQ

with δQ = ( 0 q

qT 0 ). Then we directly single out the classical
contribution in B1, Eq. (70) and obtain

Bs
1 = σs − σs

4n

∑
μ=0,2

tr
〈
Iα
n τ̃μδQ

[
Iα
−nτ̃

T
μ δQ − Iα

n τ̃μδQ
]〉
. (D1)

In addition, we write q = ∑3
ν=0 q(ν)τ̃ T

ν . When performing the
trace in τ space it turns out that the two diffuson contributions
(ν = 0,2) cancel out. This is a consequence of the opposite
sign of τ0 and τ2 under transposition. The cooperons (ν = 1,3)
contribute only to the last term in Eq. (D1). Then we find

Bs
1 = σs + σs

4n

∑
ν=1,3

〈
trIα

n

(
0 qν

qT
ν 0

)
Iα
n

(
0 qν

qT
ν 0

)〉

= σs + 2
∫

p
Ds(ωn, p). (D2)
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b. Correlator B2

The second term B2, Eq. (71), does not contribute on the
classical level. Expanding to second order in q we obtain the
tree level contribution, which also vanishes:

Bss ′
2

∣∣∣
tree level

= −σsδss ′

4

∫
x−x′

ei p(x−x′) p2Dc
ss ( p,ω) = 0.(D3)

The quartic order in q provides the one-loop corrections to
the correlator B2. We will first analyze the effect of diffusons.
Exploiting the relation 〈q(0)q(0)〉 = 〈q(2)q(2)〉, we can simplify
the expression for B2 (� and � denote Wick contractions):

B
(ss ′)
2 = −σsσs ′

8n

∫
x−x′

∑
μ=x,y

× [
tr
(
Iα
n q

�
0 ∂μq

T �
0

)
s,x tr

(
Iα
n q

�
0 ∂ ′

μq
T �
0

)
s ′,x′

+tr
(
Iα
n q

T �
0 ∂μq

�
0

)
s,x tr

(
Iα
n q

T �
0 ∂ ′

μq
�
0

)
s ′,x′

+2tr
(
Iα
n q

T �
0 ∂μq

�
0

)
s,x tr

(
Iα
n q

�
0 ∂ ′

μq
T �
0

)
s ′,x′

]
. (D4)

The Wick contraction produces three types of terms for each
of the three terms in Eq. (D4) [see Eq. (79)]. First, there is
the interference term DsDs . It contains an additional sum over
replicas and hence vanishes in the replica limit. Second, there
can be a term (D�Dc)ss ′ (D�Dc)ss ′ . It vanishes due to its
structure in the Matsubara space. The only remaining term is
(D�Dc)ssDs , which yields

B
(ss ′)
2 = 32πT δss ′

σsn

∫
p

p2
NM∑

n12=0

n12

×[(D�Dc)ss(ωn12 , p)Ds(ωn12+n, p)

−(D�Dc)ss(ωn12+n, p)Ds(ωn12+2n, p)]. (D5)

At this stage, we can send NM → ∞. Furthermore, note that
because disorder is surface uncorrelated, there is no correction
to the transconductance σ12. Since we are interested in the zero
temperature limit, Eq. (D5) becomes

B
(ss ′)
2 = 16δss ′

σs

∫
p

p2
∫ ∞

0
dω

(
D�Dc

)
ss

(ω, p) Ds (ω, p) .

(D6)

We use the relation(
D�Dc

)
ss

(ω, p) Ds (ω, p)

= �ssD
2
s (ω, p) Ds (ω, p) − 4ω�2

12Ds (ω, p) Ds (ω, p)

σ(−s) det{[Dc(ω, p)]−1}
(D7)

in order to split Eq. (D6) into the single surface and intersurface
contributions. Here, σ(−1) = σ2, σ(−2) = σ1 and

Ds(ω, p) = [ p2 + L−2 + 4(zs + �ss)ω/σs]
−1. (D8)

The single surface induced correction is given as

Bss ′
2

∣∣∣
single

= 16δss ′

σs

∫
p

p2
∫ ∞

0
dω �ssD

2
s (ω, p) Ds (ω, p)

= −4δss ′f (�ss/zs)
∫

p
p2D2

s (0, p). (D9)

Here, we introduced the function

f (x) = 1 − (1 + 1/x) ln(1 + x). (D10)

For the intersurface interaction induced term, we separate the
poles of {det[Dc(ω, p)]−1}. It yields

Bss ′
2 |inter = 64δss ′�2

12

det(z + �)

∫
p

p2Ds(0, p)
∫ ∞

0
dω ω Ds(ω, p)

×Ds (ω, p)

d+ − d−

∑
ς=±

ς

dς ( p2 + L−2) + 4ω

= 2σ 2
s �2

12δss ′

zs (zs + �ss) det
(
z + �

)
(d+ − d−)

×
[∑

ς=±
ςf2

(
σs

zs

,
σs

zs + �ss

,dς

)]∫
p

p2D2
s (0, p),

(D11)

where

d± = (z1σ2 + σ1z2)

2 det(z + �)

[
1 ∓

√
1 − 4σ1σ2 det

(
z + �

)
(z1σ2 + σ1z2)2

]
(D12)

and

f2 (a,b,c) = 2
(c − b)a ln a + (a − c)b ln b + (b − a)c ln c

(b − a) (c − a)(c − b)
.

(D13)

In the case of the long-range Coulomb interaction, the
condition det(z + �) = 0 holds. Therefore, d− diverges and
as a consequence f2( σs

zs
, σs

zs+�ss
,d−) → 0. The contribution due

to d+ is then, in the exemplary case s = 1, given as

B11
2 |inter = −4

(
1 + �11

z1

)⎧⎨
⎩

ln
(

1 + �11
z1

)
�11
z1

−
ln

[
1 + �11

z1
+ σ1(z2+�22)

σ2z1

]
�11
z1

+ σ1(z2+�22)
σ2z1

⎫⎬
⎭

∫
p

p2D2
s (0, p).

(D14)

Finally, we consider the effect of cooperons in B2. Due to
the absence of interaction amplitudes in the cooper channel,
all contributions are of the type DsDs and, in analogy with the
corresponding diffuson terms, vanish in the replica limit.

APPENDIX E: STABILITY OF THE FIXED PLANE
OF EQUAL SURFACES

We discuss here the stability of the fixed plane of identical
surfaces with respect to small perturbations. As anticipated, it
hosts the overall attractive fixed point of the four-dimensional
RG flow (see also Sec. V B2) and thus is itself attractive.
However, the parameters describing the deviation from equal
surfaces (δt = t − 1 and δγ = γ11 − γ22) flow towards zero in
a quite nontrivial manner.
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FIG. 20. (Color online) Eigenvalues of M(γ ) (in units of 1/σ ) as
a function of γ . Dashed lines: real part, solid lines: imaginary part.

From the general RG Equations (96), we obtain the
equations for small deviations:

d

dy

(
δt

δγ

)
= M (γ )

(
δt

δγ

)
, (E1)

with the γ -dependent matrix

M (γ ) = − 2

πσ

(
(3+4γ )G(γ )

(1+2γ )2
2G(γ )

(1+2γ )2

− (
γ + γ 2

)
1 + 2γ

)
, (E2)

and G(γ ) = −1 − 2γ + (2 + 2γ ) ln(2 + 2γ ). The eigenval-
ues of the matrix M(γ ) are shown in Fig. 20. They turn out to
be complex in most of the interval γ ∈ [−1,0] (except for
a narrow region of very small γ ). This implies a curious
oscillatory scale dependence of the difference of conductivities
δt = 2(σ1 − σ2)/σ . Although the fixed plane of equal surfaces
is repulsive in the regime γ < γ∗ ≈ −0.64, one should keep
in mind that γ itself is subjected to renormalization, flowing
towards zero and therefore, the plane of identical surfaces
becomes ultimately attractive.

APPENDIX F: RG FLOW FOR EXTERNALLY
SCREENED INTERACTION

If the single-layer screening length κ−1
s and the typical

length scale LE (e.g., the thermal length) exceed the distance
to the electrostatic gates, the external screening of interactions

can no longer be neglected. Effectively, the interactions
become short ranged. This implies the breakdown of F
invariance. As a consequence, the relations for NLσM param-
eters det(z + �) = 0 and (z1 + �11)/(z2 + �22) = 1 (derived
in the case of long-range interaction in Sec. III G2 and
Appendix C 4) are no longer true. Note that the invariance
under renormalization of (z + �) is not a consequence of F
invariance and still holds.

Here, we present general RG equations that allow us
to describe the crossover between the cases of long-range
Coulomb interaction and of no interaction:

dσ1

dy
= 2

π

[
1

2
− f

(
�11

z1

)

− σ 2
1 �2

12

∑
ς=± ςf2

(
σ1
z1

, σ1
z1+�11

,dς

)
2z1 (z1 + �11) det

(
z + �

)
(d− − d+)

]
, (F1a)

dσ2

dy
= 2

π

[
1

2
− f

(
�22

z2

)
,

− σ 2
2 �2

12

∑
ς=± ςf2

(
σ2
z2

, σ2
z2+�22

,dς

)
2z2 (z2 + �22) det(z + �) (d− − d+)

]
, (F1b)

dz1

dy
= −d�11

dy
= �11

πσ1
, (F1c)

dz2

dy
= −d�22

dy
= �22

πσ2
. (F1d)

In contrast to the Coulomb case [see Eq. (94)], these RG
equations can not be expressed in terms of the parameter
γss = �ss/zs . Further, we emphasize that the RG equations
for �ss and zs are exactly the same as in the Coulomb case. In
particular, �12 is not renormalized, since the general arguments
exposed in Sec. IV B hold also in the case of short ranged
interactions. It is worthwhile to repeat that 0 � |�ss | � zs and
typically |�12| � maxs=1,2 |�ss |.

For sufficiently strong interactions, the RG flow implies
localizing behavior of the conductivities. However, as the
RG flow predicts decreasing interaction amplitudes, the
system undergoes a crossover to the free-electron weak-
antilocalization effect. (Note that also �12/zs decreases.)
Accordingly, similar to the case of Coulomb interaction, in
the case of strong short-range interactions, we also predict a
nonmonotonic conductivity behavior. The quantitative differ-
ence is the steeper antilocalizing slope in the final stage of the
flow.
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