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Piezoelectricity of SrTiO3: An ab initio description
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The complete piezoelectric tensor of ferroelectric SrTiO3 at low temperature is computed by ab initio theoretical
simulations. Both direct and converse—coupled with elastic compliance—piezoelectricity are computed and
interpreted in terms of electronic and nuclear contributions. The role of the ferroelectric soft phonon mode on this
property is found to be dramatic thus leading to a possible giant piezoelectric response at very low temperature.
Two possible space groups are considered for the ferroelectric phase of SrTiO3, both compatible with the available
experimental data: a tetragonal I4cm and an orthorhombic Ima2 one. The piezoelectric response of the two
symmetries is predicted to be rather different and could be experimentally detected to clarify the (still unknown)
structure of the ferroelectric phase of SrTiO3.
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I. INTRODUCTION

Standard piezoelectric ceramics, such as lead zirconate
titanate (PZT) based materials, are widely used as sensor
and actuator devices, hydrophones, multilayered capacitors,
ultrasonic motors, transformers, and medical ultrasonics de-
vices for acoustic radiation force impulse imaging.1,2 Such
materials could be used for several applications at cryogenic
temperatures such as actuators for adaptive optics (space tele-
scopes and low-temperature capacitors, for instance); however,
their piezoelectric response is significantly reduced at very low
temperatures. In 1997, Grupp and Goldman discovered a giant
piezoelectric effect of strontium titanate (SrTiO3) down to
1.6 K, where the sole converse piezoelectric coefficient d31 =
16 × 10−10 m/V was reported which is comparable to those
of PZT at room temperature. These findings opened the way
for applications of SrTiO3 in ultralow-temperature scanning
microscopies and magnetic field-insensitive thermometers.3

Till now, this remained the only experimental determination
of a piezoelectric constant of SrTiO3, whose complete direct
and converse third-order piezoelectric tensors still have to
be determined and discussed. Even theoretically, only a few
features of the direct piezoelectric tensor e have been reported:
Furuta and Miura4 computed two constants, e31 and e33, with
an in-plane compressive tetragonal structure while Naumov
and Fu5 computed the quantity e33 − e31—which corresponds
to the piezoelectric response to a tetragonal strain at fixed
volume—of cubic SrTiO3 under a finite electric field. In what
follows we shall briefly recall the main structural and electronic
features of SrTiO3.

SrTiO3 is probably the most studied complex oxide
perovskite of the ABO3 family due to its many technolog-
ical applications in optoelectronics, macroelectronics, and
ferroelectricity (see Ref. 6 and references therein). This
material exhibits an impressive variety of peculiar properties:
a colossal magnetoresistance,7 anomalously large dynamical
effective charges resulting in a giant longitudinal optical-
transverse optical (LO-TO) splitting,8 the huge zero-point
motion of Ti ions,9 giant elastic softening (superelasticity) at
low temperature,10 extremely large dielectric constants which

increase when the temperature decreases,11,12 superlattice
high-Tc superconductivity,13 anomalous ferroelasticity,14 and
so on.

At room temperature, SrTiO3 crystallizes in a simple
cubic structure of space group Pm3m where each Ti ion is
octahedrally coordinated to six O ions. This arrangement of
atoms shows at least two types of structural instabilities, each
connected to a particular soft phonon mode of its first Brillouin
zone (BZ): a structural R-point rotation of TiO6 octahedra and
a �-point ferroelectric displacement of Ti ions from the center
of the octahedra. On cooling, SrTiO3 undergoes a second-order
antiferrodistortive (AFD) phase transition at Ta = 105 K to a
tetragonal phase with space group I4/mcm. The tetragonal
phase is characterized by static rotations of TiO6 octahedra
around the tetragonal axis c and by a slight unit-cell stretching;
the crystallographic axes of the AFD phase are rotated by 45◦
around the c axis of the cubic phase. Two order parameters are
associated with this phase transition: the octahedra-rotation
angle θ (reported to be 2.1◦ at 4.2 K) (Ref. 15) and the
tetragonality of the unit cell c/a (reported to be 1.0009 at 10 K)
(Ref. 16). In recent years, many theoretical investigations have
helped in clarifying the specific aspects of this transition,6,17–22

which was recently found to be fully describable by classical
Landau theory with terms up to the sixth order of the free
energy expansion.23

By further cooling below Ta , down to about 50 K, the ferro-
electric instability leads to a softening of the Ti-displacement
phonon mode and to anomalously large values of the static
dielectric constants which grow according to a Curie-Weiss
law. A ferroelectric phase transition could be expected to
occur at Tf ∼ 35 K; however, below a certain temperature
Tq = 37 K, these quantities saturate and the ferroelectric
transition is suppressed down to 0 K by strong zero-point
quantum fluctuations.12,24 SrTiO3 then remains in a quantum
coherent state (also called the Müller state after its discoverer)
even at very low temperatures where it becomes a so-called
quantum paraelectric.25

It has been known for a long time that a ferroelectric
transition to a lower (unknown) symmetry phase can be
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induced by applying to SrTiO3 either an electric field26 along
c or a stress perpendicularly to c (Refs. 27,28). It has even
been reported that room-temperature ferroelectricity can be
achieved by epitaxial strain.29 More recently, it has been
found that the transition can also be driven by doping with
Ca or Bi atoms30,31 and by isotope substitution: when 16O
atoms are fully replaced by their 18O isotopes, a ferroelectric
transition occurs at Tf = 24 K (Refs. 32,33). Many optical
and spectroscopic measurements have been performed on
this ferroelectric phase SrTi18O3: Raman,34,35 hyper-Raman,36

Brillouin scattering,37 and birefringence.38 All these analyses
reported qualitative evidence of the ferroelectric transition,
confirming a reduction of the symmetry. Evidence of structural
changes are rare: only a recent neutron scattering experiment
has revealed a lowering of the symmetry to a phase that is most
likely to be orthorhombic.39 The orthorhombic symmetry of
the ferroelectric phase of SrTi18O3 has also been supported
by ab initio theoretical phonon calculations that suggest the
Ima2 space group.40

In this work, we report accurate ab initio simulations of the
complete direct and converse third-rank piezoelectric tensors
e and d of ferroelectric SrTiO3, as well as of its elastic C
and compliance S fourth-rank tensors. Electronic and nuclear
relaxation (dynamical) contributions to the piezoelectricity are
presented. Effective Born charges, phonon frequencies, and
the effect of nuclear vibrations on the dielectric tensor ε are
also discussed in connection to the piezoelectric properties
of SrTiO3. Two different possible symmetries are considered
for the ferroelectric low-temperature phase of SrTiO3, a
tetragonal I4cm and an orthorhombic Ima2; the effect of the
different symmetries on the computed piezoelectric response
is analyzed.

The calculations are performed using a basis set of atom-
centered Gaussian-type functions (GTF). Five different one-
electron Hamiltonians are considered: the reference Hartree-
Fock (HF) method, a local density approximation (LDA),
and a generalized gradient approximation (GGA), namely
Perdew-Burke-Ernzerhof (PBE),41 to the density functional
theory (DFT), and a hybrid scheme (namely PBE0)42 which
includes 25% of the exact HF exchange. The CRYSTAL program
for solid state quantum chemistry is used.43,44

The structure of the paper is as follows. In Sec. II we briefly
illustrate the theoretical methods used for the calculation
of phonon frequencies, dielectric constants, effective Born
charges, and elastic and piezoelectric constants and we
report the main computational parameters adopted for the
calculations, whose effect is discussed in Sec. III A where the
definition of an optimal setup is sought after. The subsequent
sections present the main results on the structural, vibrational,
and piezoelectric properties of SrTiO3. Conclusions and
perspectives are drawn in Sec. IV.

II. COMPUTATIONAL METHOD AND DETAILS

All the calculations reported in the paper are performed
with the program CRYSTAL for ab initio quantum chemistry
of a solid state.43,44 An atom-centered Gaussian-type-orbital
basis set is adopted which has been obtained by adding further
polarization functions to the one used by Evarestov et al.20

and is available on the web:45 an all-electron split-valence
8-411G(2d1f ) for the O atoms, an all-electron split-valence
86-411(2d1f ) for Ti atoms while the core of Sr atoms is
described by a Hay-Wadt effective-core pseudopotential46 and
the valence by 211G(2d1f ) functions.

In CRYSTAL, the truncation of infinite lattice sums is
controlled by five thresholds, which are here set to 10, 10,
10, 12, and 24 and whose effect is commented on in Sec. III A.
Reciprocal space is sampled according to a sublattice with a
shrinking factor of 8. The DFT exchange-correlation contribu-
tion is evaluated by numerical integration over the cell volume:
radial and angular points of the atomic grid are generated
through Gauss-Legendre and Lebedev quadrature schemes
using an accurate predefined pruned grid. The accuracy in
the integration procedure can be estimated by evaluating the
error associated with the integrated electronic charge density
in the unit cell versus the total number of electrons per cell:
1 ×10−5|e| out of a total number of 112 electrons per cell for
the orthorhombic phase, for instance. For any further detail
about the grid generation and its influence on the accuracy and
cost of the calculations, see Refs. 47–49 and the discussion
of Sec. III A. The convergence threshold on energy for the
self-consistent-field (SCF) step of the calculations is set to
10−10 hartree for geometry optimizations and to 10−11 hartree
for phonon frequency calculations.

All structures have been optimized by the use of analytical
energy gradients with respect to both atomic coordinates
and unit-cell parameters,50–52 with a quasi-Newtonian tech-
nique combined with the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm for Hessian updating.53–56 Convergence
has been checked on both gradient components and nuclear
displacements; the corresponding tolerances on their root
mean square are set to 0.0003 and 0.0012 a.u., respectively.

The calculation of vibration frequencies has been per-
formed within the harmonic approximation to the lattice
potential. Details on the calculation of vibrational frequencies
with CRYSTAL can be found elsewhere57,58 as well as some
recent examples of the application.59,60 Here, let us simply
remind that vibration frequencies at the � point of the
BZ can be obtained from the diagonalization of the mass-
weighted Hessian matrix of the second derivatives of the total
energy per cell with respect to pairs of atomic displacements
in the reference cell. The first derivatives are computed
analytically, whereas the second derivatives are computed
numerically.

A. Dielectric tensor

The electronic contribution to the static dielectric tensor
is evaluated through a coupled-perturbed Hartree-Fock/Kohn-
Sham scheme61 adapted to periodic systems.62 This is a pertur-
bative, self-consistent method that focuses on the description
of the relaxation of the crystalline orbitals under the effect of
an external electric field. The perturbed wave function is then
used to calculate the dielectric properties as energy derivatives.
Further details about the method and its implementation in
the CRYSTAL program can be found elsewhere63–65 as well as
some recent examples of its application.59,66–68 The total static
dielectric tensor is the sum of the electronic and the vibrational
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contributions

ε0
ij = εel

ij + εvib
ij = εel

ij + 4π

V

∑
p

Zp,iZp,j

ν2
p

, (1)

where νp is the phonon frequency of mode p, V is the unit cell
volume, and Zp is the mass-weighted mode effective Born
vector.69 Atomic Born effective tensors and mode effective
Born vectors can be computed with the CRYSTAL program
through a Berry-phase approach.70,71 The intensity Ip of IR
absorbance for a given mode p is proportional to |Zp|2.

B. Piezoelectric tensors calculation

In the linear regime, direct e and converse d piezoelectric
tensors describe the polarization P induced by strain η and the
strain induced by an external electric field E, respectively,

direct effect P = e η at constant field, (2)

converse effect η = dT E at constant stress. (3)

Our approach consists in directly computing the intensity of
the polarization induced by strain. The Cartesian components
of the polarization can then be expressed as follows in terms
of the strain tensor components:

Pi =
∑

v

eivηv so that eiv =
(

∂Pi

∂ηv

)
E

. (4)

In the above expression, i = x,y,z; η is the pure strain tensor,
the derivative is taken at constant electric field, and Voigt’s
notation is used according to which v = 1, . . . ,6 (1 = xx, 2 =
yy, 3 = zz, 4 = yz, 5 = xz, 6 = xy) (Ref. 72). In CRYSTAL

the polarization can be computed either via localized Wannier
functions or via the Berry phase (BP) approach.73 The latter
scheme is used in the present work according to which direct
piezoelectric constants can be written as follows in terms of
the numerical first derivatives of the BP ϕl with respect to the
strain:70,74,75

eiv = |e|
2πV

∑
l

ali

∂ϕl

∂ηv

, (5)

where ali is the ith Cartesian component of the lth direct
lattice basis vector al . The derivatives in the right-hand side of
Eq. (5) are computed numerically by applying finite strains to
the crystal lattice.

A simple connection exists between the direct and converse
piezoelectric tensors

e = dC and d = eS , (6)

where C is the fourth-rank elastic tensor of energy second
derivatives with respect to pairs of deformations and S = C−1

is the fourth-rank compliance tensor. For any detail about the
numerical accuracy of elastic and piezoelectric calculations
with the CRYSTAL program we refer to previous works.76

We recall that piezoelectric constants can be decomposed
into purely electronic “clamped-ion” and nuclear “internal-
strain” contributions, as for the dielectric tensor, eiv = e

clamp
iv +

erelax
iv ; the nuclear term measures the piezoelectric effect due

to relaxation of the relative positions of atoms induced by

FIG. 1. (Color online) Graphical representation of the structure
of SrTiO3. In panel (a), the cubic Pm3m phase is represented in the
xy plane; the conventional cubic cell (thick continuous line) and the
quadruple pseudocubic tetragonal cell (dashed line) are shown which
contain 5 and 20 atoms, respectively. The same structure and cells are
also represented in a different view in panel (b). Panel (c) reports the
structure of the I4/mcm tetragonal phase in the xy plane; rotation
of adjacent TiO6 octahedra (largely magnified for making it visible)
can be inferred from comparison with panel (a). These pictures have
been prepared using the J-ICE online interface to Jmol (Ref. 79).

the strain77,78 and can be computed by optimizing the atomic
positions within the strained cell.

III. RESULTS AND DISCUSSION

Before presenting our results, let us briefly describe which
are the structural features of the four models we use for SrTiO3.
At room temperature, SrTiO3 exhibits a simple cubic Pm3m

structure (see Fig. 1) whose crystallographic cell contains five
atoms and is characterized by three identical lattice parameters
a = b = c = a0. Ti atoms are found at the vertices of the cube,
O atoms at the midpoints of cube edges, and a Sr atom occupies
the cube center. Let us introduce a quadruple pseudocubic
cell, which will prove useful in the subsequent discussion,
by doubling the lattice parameter along z (c = 2a0) and by
doubling the cell in the xy plane so that a = b = √

2a0. Such
a pseudocubic cell is represented in Fig. 1 in the dashed lines.

Below Ta = 105 K, SrTiO3 undergoes a transition to
a tetragonal phase of I4/mcm symmetry, whose crystallo-
graphic cell contains 20 atoms and almost coincides with
the pseudocubic cell, apart from a rotation of the adjacent
TiO6 octahedra along the z direction of an angle θ [as can
be inferred by comparing Figs. 1(a) and 1(c)] and a slight
deviation from the pseudocubic ratio c/2a0 = 1. A structural
parameter u (0.25 in the pseudocubic structure) is considered,
which corresponds to the fractional coordinate along z of
the O atom in the 8h Wyckoff position; its value is related
to the octahedra rotation angle θ according to the relation
θ = arctan (1 − 4u).

Starting from the I4/mcm tetragonal phase, the symmetry
has been lowered to describe a ferroelectric phase to both a
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tetragonal I4cm and a orthorhombic Ima2 one. In both cases,
a further structural parameter appears, |δ|, which measures
the displacement of Ti atoms from their equilibrium positions
in the Pm3m and I4/mcm phases. Note that, while in the
tetragonal I4cm structure Ti atoms are symmetry-constrained
to move along the z direction, in the orthorhombic Ima2
structure they can move in the xy plane, much more along
the x direction than along the y direction.

A. Definition of an optimal computational setup

The structural changes among the different phases of
SrTiO3 are quite small, though their effects on several proper-
ties turn out to be paramount, as discussed in the Introduction.
The accuracy of ab initio simulations in reproducing basic
structural and electronic properties has to be carefully checked
before computing more sophisticated quantities. In particular,
in this section, we discuss the effect of the adopted Hamiltonian
and of two computational parameters: the DFT integration
grid and the bi-electronic integrals tolerances. The radial
and angular points of the atomic grid are generated through
Gauss-Legendre and Lebedev quadrature schemes; each grid
is labeled with the symbol (nr ,na) where nr represents the
number of radial points and na the maximum number of
angular points. The truncation of infinite lattice sums for
the integrals evaluation is controlled by five thresholds in the
CRYSTAL program.43

A number of structural and electronic parameters of the
four phases (namely, pseudocubic Pm3m, I4/mcm, I4cm,
and Ima2) considered are reported in Table I. Along with
the structural parameters, already defined at the beginning of
Sec. III, the direct band gap Eg and the difference between
the cubic phase energy and that of the other phases �Ec are
reported as well. All the values reported have been obtained
by fully optimizing the structures at the PBE0 level.

Let us first consider the effect of the DFT grid; grid
G1 = (55,434), which usually performs rather well, is found
to describe very poorly even the two simple structures of
cubic and tetragonal AFD phases. The structural and electronic
parameters provided by grid G2 = (75,974) are already quite
converged, if compared to those obtained with a richer
grid G3 = (99,1454). This is especially so for the first two
structures in the table. The only two (coupled) parameters
that still vary when passing from G2 to G3 are u and angle
θ for the two ferroelectric structures I4cm and Ima2 thus
revealing a particularly flat potential energy surface in that
region. However, the most relevant structural parameter to
piezoelectricity, that is, the displacement |δ| of Ti atoms, is
already converged with G2 in both structures. The G2 grid
will be used in the following.

In general, all the structural parameters are found to
be more stable with respect to the integrals’ tolerances.
A T2 = (10,10,10,12,24) set slightly improves upon T1 =
(8,8,8,8,16) and is almost at convergence if compared to a
richer set T3 = (12,12,12,15,30). Again, this is particularly
so for the two simplest structures. In the following, we will
use the T2 set of integral tolerances.

Finally, by recalling that calculations refer to 0 K, let us
note that, regardless of the specific setting, the tetragonal
AFD I4/mcm phase is always electronically more stable

TABLE I. Influence of the DFT integration grid and electronic
integral tolerances on computed structural and electronic properties
(as defined in the text) of the four structures of SrTiO3 here considered.
Three DFT grids (nr ,na) with nr radial points and a maximum of na

angular points are used: G1 = (55,434), G2 = (75,974), and G3 =
(99,1454). Three sets of integral tolerances are considered: T1 =
(8,8,8,8,16), T2 = (10,10,10,12,24), and T3 = (12,12,12,15,30).
Calculations are performed with the PBE0 hybrid functional.

DFT Grid Integral Tolerances

G1 G2 G3 T1 T2 T3

Pm3m

a = b (Å) 5.480 5.505 5.505 5.505 5.505 5.505
c (Å) 7.750 7.785 7.785 7.786 7.785 7.785
Eg (eV) 4.141 4.110 4.110 4.088 4.110 4.126

I4/mcm

a = b (Å) 5.481 5.501 5.501 5.502 5.501 5.501
c (Å) 7.816 7.792 7.792 7.793 7.792 7.792
u 0.226 0.239 0.239 0.238 0.239 0.239
θ (deg) 5.484 2.519 2.519 2.748 2.519 2.519
Eg (eV) 4.225 4.135 4.135 4.177 4.135 4.149
�Ec (mHa) 2.207 0.029 0.015 0.023 0.029 0.035

I4cm

a = b (Å) 5.481 5.500 5.502 5.499 5.500 5.500
c (Å) 7.816 7.798 7.796 7.808 7.798 7.798
u 0.226 0.240 0.242 0.238 0.240 0.240
θ (deg) 5.484 2.291 1.833 2.748 2.291 2.291
|δ| (Å) 0.012 0.037 0.041 0.047 0.037 0.037
Eg (eV) 4.225 4.154 4.150 4.155 4.154 4.169
�Ec (mHa) 2.208 0.031 0.019 0.037 0.031 0.040

Ima2
a (Å) 5.481 5.504 5.506 5.504 5.504 5.502
b (Å) 5.482 5.503 5.504 5.504 5.503 5.503
c (Å) 7.816 7.789 7.787 7.792 7.789 7.791
u 0.226 0.239 0.241 0.241 0.239 0.239
θ (deg) 5.484 2.519 2.062 2.063 2.519 2.519
|δ| (Å) 0.008 0.016 0.018 0.017 0.016 0.015
Eg (eV) 4.224 4.153 4.152 4.129 4.153 4.167
�Ec (mHa) 2.208 0.041 0.031 0.043 0.041 0.042

than the cubic Pm3m one. The two ferroelectric phases are
always electronically more stable than the AFD one, with the
orthorhombic Ima2 in turn more stable than the tetragonal
I4cm.

1. Effect of the Hamiltonian

In this section we briefly discuss the effect of the adopted
one-electron Hamiltonian on the structural properties of the
four SrTiO3 phases. The structural properties, as obtained with
the four Hamiltonians considered, are reported in Table II. To
validate the accuracy of the present calculations, we compare
both with the experiments and the theoretical results by El-
Mellouhi et al.,21 obtained with the screened hybrid Heyd-
Scuseria-Ernzerhof 06 (HSE06) functional,80 which have been
recently reported and declared to constitute one of the most
accurate ab initio datasets in the literature as concerns SrTiO3.

From the analysis of cubic Pm3m and tetragonal I4/mcm

structures, for which accurate experimental data are available,
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TABLE II. Influence of the adopted one-electron Hamiltonian on computed structural and electronic properties (as defined in the text) of
the four structures of SrTiO3 here considered. The pseudocubic structure is considered for comparison with the others.

Present Study Ref. 21

HF LDA PBE PBE0 HSE06 Exp.

Pm3m

a = b (Å) 5.529 5.453 5.563 5.505 5.518 5.501 (Ref. 81)
c (Å) 7.819 7.711 7.867 7.785 7.804 7.780 (Ref. 81)
Eg (eV) 12.203 1.906 1.901 4.110 3.590 3.75 (Ref. 82)

I4/mcm

a = b (Å) 5.528 5.441 5.554 5.501 5.515 5.507 (Ref. 9)
c (Å) 7.816 7.730 7.881 7.792 7.809 7.796 (Ref. 9)
c/2a0 1.000 1.005 1.003 1.001 1.001 1.001 (Ref. 9)
u 0.249 0.228 0.231 0.239 0.241 0.240 (Ref. 15)
θ (deg) 0.229 5.029 4.346 2.519 2.010 2.1 (Ref. 15)
Eg (eV) 12.204 2.014 1.974 4.135 3.227 3.246 (Ref. 83)
�Ec (mHa) −0.001 0.246 0.155 0.029 0.013

I4cm

a = b (Å) 5.529 5.442 5.551 5.500
c (Å) 7.818 7.729 7.900 7.798
c/2a0 1.000 1.002 1.004 1.002
u 0.249 0.229 0.231 0.239
θ (deg) 0.229 4.802 4.346 2.519
|δ| (Å) 0.013 0.008 0.053 0.037
Eg (eV) 12.203 2.010 2.014 4.154
�Ec (mHa) 0.000 0.243 0.169 0.031

Ima2
a (Å) 5.527 5.440 5.559 5.504
b (Å) 5.529 5.442 5.558 5.503
c (Å) 7.819 7.729 7.879 7.789
c/2a0 1.000 1.002 1.002 1.001
u 0.249 0.228 0.230 0.239
θ (deg) 0.229 5.029 4.574 2.519
|δ| (Å) 0.009 0.007 0.031 0.016
Eg (eV) 12.205 2.013 2.018 4.153
�Ec (mHa) 0.062 0.248 0.176 0.041

it can be noticed that the pure generalized-gradient PBE
functional overestimates the lattice parameters by 1.1% and
HF by 0.5%, while a simple LDA functional underestimates
them by 1.2%. The global hybrid PBE0 functional provides
excellent lattice parameters for both structures with an overall
error of 0.06%.

The HF description of the AFD phase is quite poor: along
with the usual huge electronic band gap of 12.2 eV, with
respect to an experimental value of 3.2 eV, it describes a very
small distortion with respect to the pseudocubic structure.
The rotation angle θ of the octahedra is very small, 0.2◦
with an experimental value of 2.1◦ at 4 K, the stretching of
the cell is null (c/2a0 = 1.000), and the electronic relative
stability of the AFD phase with respect to the cubic is inverted.
LDA overestimates the rotation angle θ , more so than PBE
and PBE0, which provides a reasonable agreement with the
experiment.

For each Hamiltonian, given the description of the first
two structures, we expect a similar description also for the
two ferroelectric phases for which structural experimental
data are not presently available. The hybrid PBE0 functional

guarantees a good description of the structural and electronic
properties of SrTiO3 and it constitutes our choice for the next
calculations of phonon frequencies in Sec. III B and the elastic
and piezoelectric constants in Sec. III C. The PBE0 results
of the present work provide as good an agreement with the
experiments as that obtained by El-Mellouhi et al.21 in their
study with a screened hybrid HSE06 (as can be inferred form
the comparison of the two corresponding columns in Table II).

B. Phonon frequencies

We have anticipated in the Introduction that, due to an
anomalously large zero-point motion,9 the many peculiar
properties of SrTiO3, such as giant LO-TO splitting, giant
elastic softening, and colossal magnetoresistance, strongly
depend on their soft phonon modes. In particular, its giant
piezoelectricity at low temperature is due to Ti atoms’
displacements from their equilibrium positions. The aim of
this section is to discuss the vibration phonon frequencies of
SrTiO3 and particularly their evolution when passing from
the pseudocubic structure to AFD I4/mcm and ferroelectric
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TABLE III. Phonon wave numbers ν̄ (cm−1), infrared intensity Ip (km/mol), and vibrational contribution to the dielectric tensor εvib

(for the first three structures, parallel and perpendicular components refer to the z direction) for each mode p of the four SrTiO3 structures
considered. Dashes indicate null values. IR intensities and vibrational contributions to the dielectric tensors are not reported for imaginary
phonon frequencies (crosses). The last two rows report the total vibrational and electronic contributions to ε. Values obtained with the PBE0
hybrid functional. Experimental values are from Refs. 34,84–86. The symmetry labeling of the modes according to the irreps of the various
structures can be found in Refs. 20,34,40.

Cubic Pm3m Tetragonal I4/mcm Tetragonal I4cm Orthorhombic Ima2

ν̄calc ν̄exp Ip εvib
‖ εvib

⊥ ν̄calc ν̄exp Ip εvib
‖ εvib

⊥ ν̄calc ν̄exp Ip εvib
‖ εvib

⊥ ν̄calc ν̄exp Ip εvib
zz εvib

yy εvib
xx

i59 52 × × × 59 44 - - - 52 44 268 42 - 48 44 - - - -
i58 52 × × × i27 11 × × × i22 14 × × × 36 14 5760 3906 -
i31 90 × × × i31 90 × × × 91 90 5206 268 - 58 90 5454 - 689 -
i24 90 × × × 50 90 - - - 56 90 3034 - 210 71 90 5294 - - 423
137 145 - - - 134 144 - - - 134 144 0.21 - - 134 144 0.22 - - -
138 145 - - - 149 144 - - - 148 144 - - - 149 144 0.23 - - -
164 170 91 1.46 - 161 170 50 0.78 - 162 171 255 - 2.10 163 171 554 - 3.93 4.91
165 170 176 - 1.38 174 170 119 - 0.92 177 171 120 1.65 - 174 171 3.35 0.05 - -
264 265 0.52 - - 271 265 0.24 - - 271 265 4.63 - 0.01 271 265 1.01 - - -
264 265 - - - 272 265 - - - 272 265 - - - 273 265 - - - -
448 446 - - - 446 420 - - - 425 420 - - - 440 420 3.07 - - 0.01
448 446 - - - 447 420 7.21 - 0.01 447 420 10.65 - 0.01 443 420 - - - -
458 450 - - - 459 450 - - - 460 450 - - - 460 450 0.06 - - -
458 450 - - - 461 450 - - - 461 450 - - - 461 450 - - - -
480 474 - - - 460 474 - - - 460 517 0.03 - - 490 517 0.90 - - -
480 474 - - - 487 474 - - - 511 517 - - - 501 517 0.45 - - -
546 546 773 1.11 - 543 546 1518 - 1.09 544 546 1489 - 1.08 545 546 766 - 1.09
546 546 1529 - 1.10 547 546 750 1.08 - 550 546 808 1.14 - 547 546 757 1.08 1.09 1.10
867 ∼800 - - - 861 ∼800 - - - 862 ∼800 - - - 865 ∼800 0.03 - - -

εvib 2.57 2.48 1.86 2.02 312.8 213.2 3907 695.1 429.2
εel 4.88 4.88 4.88 4.88 4.85 4.88 4.88 4.87 4.85

I4cm and Ima2 ones. The vibrational contribution to the
piezoelectricity is connected to the vibrational contribution
to the dielectric tensor which can be computed analytically
through Eq. (1). Phonon frequencies (expressed in wave
numbers ν̄ = ν/c, with c speed of light), infrared intensities
Ip, and vibrational contributions to the dielectric tensor εvib

are reported in Table III for the four structures considered,
as obtained with the PBE0 hybrid functional. Experimental
vibration frequencies are also reported.

For the cubic Pm3m phase, accurate measurements of
the phonon frequencies are available84,85 both for �-point
and R-point phonons, which correspond to the BZ center
frequencies of the pseudocubic structure reported in Table III.
It is seen that, when vibration frequencies greater than 100
cm−1 are considered, the overall agreement between the
computed and observed values is definitely satisfactory with
an average discrepancy of 3 cm−1 and a maximum error
of 8 cm−1. The agreement is necessarily less satisfactory
as regards low-frequency soft modes. The first mode in the
list, with a calculated imaginary frequency of i59 cm−1, is
the R-point mode corresponding to the octahedra rotation.
At room temperature this frequency is small and positive
(see the experimental value) and it decreases by lowering the
temperature until reaching zero at Ta = 105 K (Ref. 17): the
computed values are “projected” at 0 K and then imaginary.
The second and third imaginary frequencies correspond to the
ferroelectric instability due to the Ti atoms’ displacement. The

corresponding soft modes are expected to be rather anharmonic
and thus difficult to be properly described at the harmonic level.
The vibrational contributions to the dielectric tensor are small
(2.57 and 2.48 for the parallel and perpendicular components,
respectively), compared to the experimental average value
of 310 at room temperature87 because the second and third
modes’ contributions (which would be significant due to their
strong IR activity) have to be neglected due to their imaginary
computed frequencies.

When passing from the cubic to the AFD tetragonal
I4/mcm phase, the agreement between the computed and
measured phonon frequencies are slightly ameliorated; high-
frequency modes remain almost unchanged while the first
mode in the list (the TiO6 rotation) that drives the transition
at T = 105 K correctly becomes positive, 59 cm−1, and
comparable to the experimental value of 44 cm−1. The two
soft modes connected to the ferroelectric instability still show
imaginary frequencies thus providing a small value for εvib,
the same as for the cubic phase.

As concerns the ferroelectric phase, recent Raman mea-
surements on SrTi18O3 have revealed peaks at 11, 17, and
17.5 cm−1 that correspond to a large set of very soft phonon
modes which significantly affect many properties of the
system.34 While the second mode in Table III is still imaginary
in the tetragonal I4cm structure, it correctly becomes small
and positive, 36 cm−1, in the orthorhombic Ima2 one.
As suggested by recent neutron scattering experiments and
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TABLE IV. Elastic and compliance constants of the four structures considered of SrTiO3. Electronic “clamped-ion” and total “relaxed,”
with nuclear contribution, constants are reported. The computed bulk modulus B is also reported. Calculations performed at the PBE0 level.

Elastic Tensor C (GPa) Compliance Tensor S (TPa−1)

C11 C12 C13 C22 C23 C33 C44 C55 C66 S11 S12 S13 S22 S23 S33 S44 S55 S66 B (GPa)

Pm3m

Relaxed 370 114 114 370 114 370 133 133 133 3.16 −0.75 −0.75 3.16 −0.75 3.16 7.50 7.50 7.50 199
Clamped 370 114 114 370 114 370 133 133 133 3.16 −0.75 −0.75 3.16 −0.75 3.16 7.50 7.50 7.50 199
I4/mcm

Relaxed 371 109 116 371 116 366 132 132 125 3.13 −0.68 −0.78 3.13 −0.78 3.22 7.58 7.58 8.00 199
Clamped 371 109 116 371 116 366 132 132 125 3.13 −0.68 −0.78 3.13 −0.78 3.22 7.58 7.58 8.00 199
I4cm

Relaxed 371 108 112 371 112 282 121 121 124 3.19 −0.63 −1.01 3.19 −1.01 4.34 8.24 8.24 8.07 185
Clamped 371 109 116 371 116 365 130 130 125 3.13 −0.68 −0.78 3.13 −0.78 3.22 7.63 7.63 7.99 199
Ima2
Relaxed 298 60 115 330 117 364 131 120 89 3.84 −0.30 −1.12 3.43 −1.01 3.42 7.63 8.34 11.27 171
Clamped 370 110 116 371 116 367 131 131 126 3.15 −0.69 −0.77 3.14 −0.77 3.21 7.63 7.63 7.95 199

theoretical simulations, our phonon calculations also support
the orthorhombic symmetry of the low-temperature ferroelec-
tric phase of SrTiO3 (Refs. 39,40). Both ferroelectric phases
show a large IR activity and, consequently, a large vibration
contribution to the dielectric tensor, particularly due to the two
ferroelectric soft phonon modes (when positive). However,
even for the orthorhombic phase, where all frequencies are
positive, the value of εvib (3907 for the zz component) is still
very small if compared to experimental values: about 104 for
both the parallel and perpendicular components of SrTiO3 in
the low-temperature regime.11,12 This underestimation is quite
expected from the analysis of Eq. (1) where the vibration
contribution to ε is clearly shown to be inversely proportional
to ν2

p; the largest contribution for the low-temperature phases
comes from ferroelectric soft modes with experimental fre-
quencies of 11 and 17 cm−1. In our calculations such phonon
frequencies are either imaginary or, in the orthorhombic phase,
positive but not small enough.

C. Piezoelectricity

Direct and converse piezoelectricity measure the variation
of polarization under a finite strain and the strain induced by an
applied electric field, respectively. The two third-rank tensors
associated with these properties, e and d, are connected to each
other via the elastic C and compliance S tensors, according
to relations (6). For this reason we start by analyzing such
quantities.

In Table IV, we report the elastic and compliance constants
of SrTiO3 for the four structures here considered as computed
with the PBE0 hybrid functional. The electronic “clamped-
ion” contribution is separated from the total “relaxed” con-
stants which include nuclear terms. The computed bulk
modulus B is also reported. At first glance, it can be noticed
that the “clamped-ion” contribution is essentially the same for
every structure, with a bulk modulus always about 199 GPa.
While the nuclear relaxation contribution is almost negligible
for the cubic Pm3m and AFD tetragonal I4/mcm phases,
it becomes significant for the two ferroelectric phases where
the bulk modulus decreases from 199 to 185 and 171 GPa

for the tetragonal I4cm and the orthorhombic Ima2 phases,
respectively. The orthorhombic phase thus provides a larger
elastic softening, again in better agreement with experimental
observations.10 Let us enter into more detail to interpret such
an elastic softening: in the tetragonal phase, the softened
constant is C33 ≡ Czzzz that passes from 365 to 282 GPa
whereas in the orthorhombic phase C11 ≡ Cxxxx from 370
to 298 GPa and C22 ≡ Cyyyy from 371 to 330 GPa. This is
due to the fact that while in the tetragonal structure Ti atoms
are symmetry-constrained to move along the z direction, in
the orthorhombic structure they can move in the xy plane,
much more along x than along y. The same, even if inverse,
reasoning holds true for the compliance constants.

In Table V, we report direct and converse piezoelectric
constants of the two ferroelectric structures considered of
SrTiO3. As for elastic and compliance tensors, electronic
“clamped-ion” and total “relaxed,” with nuclear contribution,
constants are reported. From an inspection of that table, a
large effect of nuclear relaxation can easily be inferred. Direct
piezoelectric constants are as large as 8.82 and 9.28 C/m2

for the tetragonal and orthorhombic phases, respectively. Such
a piezoelectric response is two orders of magnitude higher
than that of α quartz, a standard piezoelectric material, whose
largest constant e11 is 0.15 C/m2 at room temperature and
0.07 C/m2 down to 5 K (Ref. 88).

Let us consider, first, the tetragonal phase. A relatively small
constant e31 ≡ ezxx = 0.20 C/m2 measures the polarization
induced along z by a strain ηxx ; nuclear relaxation doubles
its value. The largest constant is e33 ≡ ezzz which passes from
−0.13 to 8.82 C/m2 after relaxation. This constant gives the
variation of polarization along z when the crystal is strained
along the same direction; the effect of nuclear relaxation
is very large in this case (there is even a change of sign)
because it directly involves the motion of Ti atoms along z

(the ferroelectric soft phonon modes described in Sec. III B).
When the crystal is deformed in the yz plane, a polarization
appears along y that results in the e24 ≡ eyyz = 4.86 C/m2

constant which is also quite affected by nuclear relaxation.
As anticipated in the Introduction, one of the few piezoelectric
quantities already reported in the literature so far is e33 − e31 ∼
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TABLE V. Direct and converse piezoelectric constants of the two ferroelectric structures considered of SrTiO3. Electronic “clamped-ion”
and total “relaxed,” with nuclear contribution, constants are reported. Calculations performed at the PBE0 level.

Direct Piezoelectricity e (C/m2) Converse Piezoelectricity d (pm/V)

e11 e31 e12 e13 e33 e24 e35 e26 d11 d31 d12 d13 d33 d24 d35 d26

I4cm

Relaxed 0.20 8.82 4.86 −8.41 37.90 40.06
Clamped 0.08 −0.13 0.05 0.29 −0.55 0.37
Ima2
Relaxed 9.28 6.70 0.20 4.61 6.04 33.51 20.08 −16.70 38.49 68.10
Clamped 0.02 −0.06 0.06 0.04 −0.09 0.04 −0.26 0.24 0.31 −0.69

6 C/m2, to be compared with our value of 8.62 C/m2 (Ref. 5).
Converse piezoelectric constants are the result of a coupling
between direct piezoelectric and compliance constants. In
particular, the high relaxed value of d33 of 37.90 pm/V with
respect to the purely electronic value of −0.55 pm/V is equally
due, on the one hand, to the relaxation effect on e33 and, on the
other hand, to the softening of the C33 elastic constant upon
relaxation. The high value of d24 of 40.06 pm/V is dominated
by e24 and less affected by the small softening of C44.

In the orthorhombic Ima2 structure, Ti atoms can be
displaced in the xy plane and not along the z direction; as a
consequence, a larger number of high piezoelectric constants
appears. The only relatively small constant e13 = 0.20 C/m2

measures the variation of polarization along x when the crystal
is strained along z and is the analog of e31 = 0.20 C/m2 for
the tetragonal structure. The largest constant is e11 ≡ exxx =
9.28 C/m2 because Ti atoms can mainly be displaced along x.
The two constants e12 and e26, which measure the polarization
induced along x and y by strains along y and in the xy plane,
respectively, have similar values of 6.70 and 6.04 C/m2. As
regards the converse piezoelectricity, a very large constant
d24 ≡ dyyz = 68.10 pm/V is found which describes the strain
ηyz induced in the structure by an external electric field applied
along y. The effect of nuclear relaxation on this constant is very
large (from −0.69 to 68.10 pm/V) and it is due to e24 and to
the peculiar softening of the C66 elastic constant, from 126 to
89 GPa (see Table IV).

In conclusion, when a deformation is applied which
involves a direction along which Ti atoms can be displaced, a
large piezoelectric response is expected to arise in SrTiO3

at low temperatures. When the corresponding ferroelectric
phonon modes become very soft (as experimentally happens

at very low temperatures), a giant piezoelectric response is
measured.3

IV. CONCLUSION

A full characterization of the piezoelectricity of SrTiO3 at
low temperatures is performed by means of accurate ab initio
simulations using the global hybrid functional PBE0. Four
structures (the cubic Pm3m, the antiferrodistortive tetragonal
I4/mcm, a ferroelectric tetragonal I4cm, and a ferroelectric
orthorhombic Ima2) are considered and their structural,
vibrational, elastic, and piezoelectric properties computed and
discussed.

Complete direct and converse piezoelectric tensors of the
two ferroelectric structures are computed and their main
features discussed. Electronic “clamped-ion” contributions are
separated from fully nuclear relaxed data. The anomalously
large zero-point motion of Ti atoms, connected to the ferro-
electric instability, is found to largely affect the piezoelectric
response of SrTiO3. A much richer piezoelectric response is
predicted to occur if the symmetry of the ferroelectric system is
orthorhombic (as was recently theoretically suggested), rather
that tetragonal. A complete experimental characterization of
the piezoelectric tensor of SrTiO3 is then expected to shed
some light on the structural features of the still unknown
symmetry of the ferroelectric low-temperature phase.
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