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We revisit the problem of spin-mediated superconducting pairing at the antiferromagnetic quantum-critical
point with the ordering momentum (π,π ) = 2kF . The problem has been previously considered by one of the
authors [P. Krotkov and A. V. Chubukov, Phys. Rev. Lett. 96, 107002 (2006); Phys. Rev. B 74, 014509 (2006)].
However, it was later pointed out [D. Bergeron et al., Phys. Rev. B 86, 155123 (2012)] that the analysis neglected
umklapp processes for the spin polarization operator. We incorporate umklapp terms and reevaluate the normal
state self-energy and the critical temperature of the pairing instability. We show that the self-energy has a
Fermi-liquid form and obtain the renormalization of the quasiparticle residue Z, the Fermi velocity, and the
curvature of the Fermi surface. We argue that the pairing is a BCS-type problem, but go one step beyond the
BCS theory and calculate the critical temperature Tc with the prefactor. We apply the results to electron-doped
cuprates near optimal doping and obtain Tc � 10 K, which matches the experimental results quite well.

DOI: 10.1103/PhysRevB.88.024516 PACS number(s): 74.20.Mn, 74.20.Rp

I. INTRODUCTION

Superconductivity near a quantum-critical point (QCP) in
a metal is one of the most studied and debated topics in the
physics of strongly correlated electron systems.1–4 When a
metal is brought, by doping, external field, or pressure, to
a near vicinity of a phase transition into a state with either
spin or charge density wave order, corresponding collective
bosonic excitations become soft and the fermion-fermion
interaction, mediated by collective bosons, gets enhanced.
Quite often, this interaction turns out to be attractive in one
or the other pairing channel, and gives rise to enhanced
superconducting Tc near a QCP. Examples of the pairing
mediated by soft bosonic fluctuations include the pairing
in double-layer composite fermion metals,5 pairing due to
singular momentum-dependent interaction,6 color supercon-
ductivity of quarks mediated by gluon exchange,7 pairing
by singular gauge fluctuations,8,9 pairing by near-critical
ferromagnetic and antiferromagnetic spin fluctuations,10–17

and phonon-mediated pairing at vanishing Debye frequency.18

The pairing at a QCP in dimensions D � 3 is generally
a nontrivial problem because near a QCP fermions do not
display a conventional Fermi-liquid (FL) behavior down to
the smallest frequencies, at least in some (hot) regions on
the Fermi surface (FS). To obtain the pairing instability in
this situation one has to go beyond the leading logarithmical
approximation as the summation of the leading logarithms
does not lead to an instability,12,19 except for a special case of
a color superconductivity.7

Pairing near the Q = (π,π ) antiferromagnetic QCP at-
tracted most of the attention in recent years, particularly in
D = 2, because of its relation to d-wave superconductivity in
the cuprates.3,13–15,20–24 The FS in hole-doped cuprates around
optimal doping is an open electron FS (closed hole FS) which
contains four pairs of hot spots (points for which kF and
kF + Q are both on the FS). The hot spots are located near
(0,π ) and other symmetry-related points. At each hot spot,
fermionic self-energy at a QCP has a non-FL form �(ω) ∝ ωa

with a ≈ 1/2, down to the lowest frequencies.3,14,26,27 The
pairing of these hot fermions, the relative role of quasiparticles
with non-FL and FL forms of the self-energy, and the interplay

between the pairing and the bond-order instabilities near a QCP
are intriguing phenomena which are not fully understood yet,
but for which a strong progress has been made theoretically in
the last few years.14,15,19

The present work is devoted to the analysis of supercon-
ductivity at the antiferromagnetic QCP, but in the special case
when Q coincides with 2kF along the diagonals in the Brillouin
zone (see Fig. 2).8 In this situation, there are only two pairs
of hot spots, located along the two diagonals of the Brillouin
zone, and for each pair Fermi velocities at kF and kF + Q are
strictly antiparallel. This case is applicable to electron-doped
cuprates Nd2−xCexCu3O7 and Pr2−xCexCu3O7.29 The FS of
these materials near the onset of spin density wave (SDW)
order has four pairs of hot spots located close enough to zone
diagonals. This makes our model a good starting point. As Tc

only increases as hot spots move apart (see below), our result
places the lower boundary on Tc in these materials.

The phase diagram of electron-doped cuprates is somewhat
better understood than that of hole-doped materials in the
sense that the pseudogap physics of these materials is most
likely due to magnetic precursors.28–33 This in turn implies
that magnetic fluctuations are strong and well may be relevant
to superconductivity. An earlier random phase approximation
(RPA) study has found34 that the electron doping, at which
magnetic order emerges, is close to the one at which hot
spots merge along zone diagonals. At larger electron doping,
there are no hot spots and no magnetism. At smaller dopings,
magnetic order emerges and, simultaneously, each pair of
diagonal hot spots splits into two pairs which move away
from diagonals in two different directions.

The quantum-critical pairing near a 2kF QCP has been
earlier considered by one of us in Refs. 35 and 36. It was
found that there is a sizable attraction in the dx2−y2 channel,
despite that at 2kF QCP the strongest interaction connects the
points where dx2−y2 gap vanishes. This result stands. However,
the value of Tc has to be reconsidered because the analysis
in Refs. 35 and 36 used for the normal state self-energy
at the hot spots the non-FL form �(ω) = ω3/4, which was
obtained in Ref. 35 and in earlier work8 by neglecting umklapp
processes. Recent study37 has found that umklapp processes
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severely reduce the self-energy, such that quasiparticles remain
coherent even at a QCP. The imaginary part of the self-energy
at the QCP scales as ω3/2 ln ω, i.e., the Fermi liquid is
noncanonical in the notations of Ref. 38, but, still, Im� � ω

at small frequency, and the Fermi-liquid criteria of long-lived
quasiparticles near the FS remains valid. Whether the ω3/2

self-energy is responsible for the observed T 1.6 behavior of
resistivity in overdoped La2−xCexCuO4 (Ref. 39) remains to
be seen.

In this paper, we reconsider the problem of the pairing at
the 2kF QCP using the correct form of the self-energy. We
show that the pairing is a FL phenomenon, i.e., it is fully
determined by the coherent component of the quasiparticle
Green’s function and depends on the quasiparticle Z factor
and the effective mass. Moreover, when spin-fermion coupling
is small compared to the Fermi energy, the pairing can be
analyzed within the weak coupling, BCS-type analysis. Our
goal is to go one step beyond the BCS theory and compute Tc

exactly, with the numerical prefactor.
The calculation we present here is similar in spirit to

the one done in early days of BCS superconductivity for a
model of fermions with a constant attractive interaction,40

but is more involved, as in our case the pairing interaction
contains the propagator of low-energy collective bosons which
strongly depends on the transferred momentum and the
transferred frequency. We show that these two dependencies
make calculations somewhat tricky, but still doable.

We consider the low-energy model of fermions located near
Brillouin zone diagonals and assume that fermions interact by
exchanging near-critical soft collective fluctuations in the spin
channel (the spin-fermion model). The model contains two
parameters: the overall energy scale ḡ, which is the effective
fermion-fermion interaction mediated by spin fluctuations,
and the dimensionless coupling λ, which determines mass
renormalization and the renormalization of the quasiparticle
Z factor.3,14 In our case, the coupling λ is one-third power of
the ratio of ḡ and the effective Fermi energy of quasiparticles
near Brillouin zone diagonal:

λ =
(

ḡ

4πEF

)1/3

. (1)

We approximate the fermionic dispersion near Brillouin zone
diagonals by εk = vF (kx + κk2

y/2), where kx and ky are the
directions along and transverse to zone diagonals, measured
relative to a hot spot, vF is the Fermi velocity along zone
diagonal, and κ is the curvature of the FS. In terms of these
parameters EF = vF /(2κ).

In the normal state we found that the quasiparticle residue
Z, the Fermi velocity vF , and the curvature κ differ from
free-fermion values by corrections of order λ:

Z = 1 − 0.7λ, v∗
F = vF (1 + 0.05λ), κ∗ = κ(1 − 1.45λ).

(2)

Observe that the renormalizations of Z and v∗
F do not satisfy

ZvF /v∗
F = 1, which holds in Eliashberg-type theories (ET’s)

of electron-phonon18 and electron-electon3,12 interactions. A
similar result was obtained in the calculation of self-energy in
the AFM state.25

The reason for the discrepancy with ET’s is quite fundamen-
tal: in ET’s the self-energy �(k,ωm) ≈ iλωm depends only on
frequency and comes from intermediate fermions with ener-
gies comparable to ωm, other corrections are relatively small
in Eliashberg parameter [(ωD/EF )1/2 for electron-phonon
interaction]. In our case, Eliashberg parameter is of order one,
and there are two contributions to �(k,ωm) of comparable
strength. One comes from intermediate fermions with energies
comparable to ωm and scales as ωm, i.e., depends only on
frequency. The other comes from intermediate fermions with
energies much larger than ωm, and scales as iωm + vF (k −
kF ). Because the two contributions are of the same order,
∂�/∂(iωm) and (1/vF )∂�/∂k are comparable. As a result, the
renormalizations of Z and of Fermi velocity are comparable in
strength (both are of order λ), but the prefactors are different.

We used normal state results as an input for the pairing
problem and computed superconducting Tc at the QCP. We
found

Tc = 0.0013
ḡ

λ
e− C

λ , C = 0.6874. (3)

The exponential dependence on λ and the overall factor ḡ/λ

can be obtained within logarithmical BCS-type treatment.
However, to obtain the overall numerical factor in (3), we
had to go beyond the logarithmical approximation and use
the fact that the boson-mediated interaction is dynamical and
decays at large frequencies. This part of our analysis is similar
to the calculation of Tc in ETs.12,18 However, as we said, the
similarity is only partial because the renormalized Green’s
function in our case is different from the one in ET. In another
distinction from ET, in our case we need to include into
consideration nonladder diagrams which account for Kohn-
Luttinger-type renormalization of the pairing interaction.41

These diagrams do not affect the exponent but contribute
O(1) to the numerical prefactor in Tc. In ET theories, the
contribution from Kohn-Luttinger renormalizations is small in
the Eliashberg parameter.

We plot Tc/ḡ as a function of λ in Fig. 1. We see that Tc

increases with λ at small λ, passes through a broad maximum
at λ ∼ 0.5, and slowly decreases at larger λ. The actual value of
λ can be extracted from the data. The energy ḡ can be deduced
from optical measurements in the magnetically ordered Mott-
Heisenberg state at half-filling42 where ḡ coincides with
the optical gap. The data yield ḡ ∼ 1.6–1.7 eV, which is
essentially the same as in hole-doped cuprates (this scale
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FIG. 1. (Color online) The critical temperature Tc/ḡ as a function
of the coupling λ.
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is close to the charge-transfer energy U in the effective
Hubbard model). The Fermi velocity vF and the curvature κ

can be extracted from the ARPES measurements of optimally
doped Nd2−xCexCu3O7.43 The fit yields vF = 0.87 eV, κ =
0.31, and the effective Fermi energy EF = vF /(2κ) ∼ 1.4 eV.
Substituting into (2) we obtain λ ∼ 0.46. For such λ, Z ≈ 0.7,
i.e., weak coupling approximation is reasonably well justified.
Using λ = 0.46 and ḡ = 1.7 eV, we obtained Tc = 0.0006ḡ ∼
12 K. This value is actually the lower theoretical boundary
on Tc by two reasons. One is theoretical: we found that Tc

gets enhanced if we keep the fermionic bandwidth (the upper
limit of the low-energy theory) finite. The second is practical:
in optimally doped Nd2−xCexCu3O4 and Pr2−xCexCu3O4 hot
spots are located close to but still at some distance from zone
diagonals.29 When they are far apart, Tc is much higher19,45 and
it is natural to expect that Tc gets higher when hot spots split.

Another feature of real materials, which may affect Tc

a bit, is the observation33 that SDW antiferromagnetism
and superconductivity in Nd2−xCexCu3O4+δ may be actually
separated by weak first-order transition rather than coexist,44

in which case the magnetic correlation length remains large
but finite at optimal doping. Still, the value which we
found theoretically is in quite reasonable agreement with
the experimental Tc ∼ 10–25 K in Nd2−xCexCu3O4 and in
Pr2−xCexCu3O4 (Refs. 46 and 47). Also, our λ = 0.46 is close
to the position of the broad maximum of Tc(λ) in Fig. 1, hence
Tc only slightly increases or decreases if the actual λ differs
somewhat from our estimate.

The paper is organized as follows. In the next section we
introduce the spin-fermion model as the minimal model to
describe interacting fermions near the 2kF spin-density-wave
instability. In Sec. III, we present one-loop normal state
calculations, which include umklapp scattering. We obtain the
spin polarization operator, which accounts for the dynamics of
collective excitations, and use it to obtain fermionic self-energy
to first order in λ. In Sec. IV, we solve for Tc in one-loop
(ladder) approximation. We show that Tc is exponentially small
in λ and find the prefactor to one-loop order. In Sec. V, we
analyze two-loop corrections to Tc and show that they change
the numerical prefactor for Tc by a finite amount. We argue
that higher-loop corrections are irrelevant as they only change
Tc by a factor 1 + O(λ). Combining one-loop and two-loop
results, we obtain the full expression for Tc at weak coupling
[Eq. (63)]. We also discuss in Sec. V the effect on Tc from
lowering the upper energy cutoff 
 of the theory. When 
 is of
order bandwidth, W , Tc is essentially independent on 
 as long
as Tc � W . However, if, by some reasons, 
 is smaller than
W , Tc gets larger, and its increase becomes substantial when

 < ḡ1/3W 2/3. We compare our results with the experiments
in Sec. VI and summarize our results in Sec. VII.

II. MODEL

We consider fermions on a square lattice at a density larger
than one electron per cite (electron doping) and use tight-
binding form of electron dispersion with hopping to first and
second neighbors. We choose doping at which free-fermion
FS touches the magnetic Brillouin zone along the diagonals,
as shown in Fig. 2. We assume, following earlier works,34 that
at around this doping the system develops a spin-density-wave

1 2

3 4

k

k y
x

FIG. 2. Fermi surface at a particular electron doping when the
Fermi surface touches the magnetic Brillouin zone along the zone di-
agonals. The four diagonal Fermi surface points (hot spots) are labeled
by numbers. We assume that this doping is close to the one at which
antiferromagnetic instability emerges at momentum Q = (π,π ).

(SDW) order with momentum Q = (π,π ). For convenience,
throughout the paper we will use a rotated reference frame
with (kx,ky) shown in Fig. 2. In this frame, the SDW ordering
momentum is (0,

√
2π ) or (

√
2π,0).

We analyze the physics near the Q = 2kF antiferromag-
netic QCP within the semiphenomenological spin-fermion
model.3,8,12,14,15,35,37 The model assumes that antiferromag-
netic correlations develop already at high energies, comparable
to bandwidth, and mediate interactions between low-energy
fermions. In the context of superconductivity, spin-mediated
interaction then plays the same role of a pairing glue as
phonons do in conventional superconductors. The static part
of the spin-fluctuation propagator comes from high energies
and should be treated as an input for low-energy theory.
However, the dynamical part of the propagator should be
self-consistently obtained within the model as it comes entirely
from low-energy fermions.

The Lagrangian of the model is given by3,14,15

S = −
∫ 


k

G−1
0 (k) ψ

†
k,αψk,α + 1

2

∫ 


q

χ−1
0 (q) Sq · S−q

+ g

∫ 


k,q

ψ
†
k+q,ασαβψk,β · S−q, (4)

where
∫ 


k
stands for the integral over d dimensional k (up to

some upper cutoff 
) and the sum runs over fermionic and
bosonic Matsubara frequencies. The G0 (k) = G0(k,ωm) =
1/(iωm − εk) is the bare fermion propagator and χ0 (q + Q) =
χ0/(q2 + ξ−2) is the static propagator of collective bosons, in
which ξ−1 measures the distance to the QCP, and q is measured
with respect to Q. At the QCP, ξ−1 = 0. The fermion-boson
coupling g and χ0 appear in theory only in combination
ḡ = g2χ0, which has the dimension of energy.

The interaction between fermions and collective spin
bosons gives rise to fermionic self-energy �(k,ωm),
which modifies fermionic propagator to G−1(k,ωm) =
G−1

0 (k,ωm) + �(k,ωm), and bosonic self-energy which mod-
ifies bosonic propagator to χ−1(q + Q,�m) = (q2 + ξ−2 +
�(q + Q,�m))/χ0. We focus on the hot regions on the FS,
which are most relevant to the pairing when ḡ is smaller
than the cutoff 
. In our case, there are four hot regions
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around Brillouin zone diagonals, which we labeled 1 to 4
in Fig. 2. The physics in one hot region is determined by
the interaction with another hot region, separated by Q. This
creates two “pairs”: (1, 4) and (2, 3). However, the pairs can not
be fully separated because Q and −Q differ by inverse lattice
vector, hence umklapp processes are allowed.37 As a result, the
interaction between fermions in regions 1 and 4 is mediated
by χ (q + Q,�m) whose polarization operator �(q + Q,�m)
has contribution from fermions in the same regions 1 and 4,
but also from fermions in the regions 2 and 3.

We define fermion momenta relative to their corresponding
hot spots. The dispersion of a fermion is linear in transverse
momentum (the one along the Brillouin zone diagonal)
and quadratic in the momentum transverse to the diagonal.
Specifically, the dispersion relation in region 1 is

εk = −vF

(
kx + κ

k2
y

2

)
, (5)

where κ is the curvature of the FS.

III. NORMAL STATE ANALYSIS

The spin polarization operator �(q + Q,�m) is the dynam-
ical part of the particle-hole bubble with external momentum
near Q. The dressed dynamical spin fluctuations give rise to
fermionic self-energy �(k,ωm), which in turn affects the form
of �(q + Q,�m). This mutual dependence generally implies
that �(k,ωm) and �(q + Q,�m) form a set of two coupled
equations.

When hot spots are far from zone diagonals and Fermi
velocities at kF and kF + Q are not antiparallel (like in
hole-doped cuprates), the two equations decouple because the
bosonic polarization operator has the Landau damping form
�(q + Q,�m) = γ |�m|, and the prefactor γ does not depend
on fermionic self-energy as long as the latter predominantly
depends on frequency. Evaluating fermionic � with the
Landau overdamped χ (q + Q,�m) one can in turn verify3,14

that � predominantly depends on frequency near a QCP,
i.e., equations for �(k,ωm) ≈ �(ωm) and �(q + Q,�m) do
indeed decouple. This decoupling allows one to compute the
Landau damping using free-fermion propagator, even when
�(ωm) is not small, and use the dynamical χ (q + Q,�) with
Landau damping term in the calculations of the fermionic
self-energy.51 In our case, the dynamical part of χ is not
Landau damping because Fermi velocities at kF and kF + Q
are strictly antiparallel, and �(q + Q,�m) does depend on
fermionic self-energy.36 This generally requires full self-
consistent analysis of the coupled set of nonlinear equations
for �(k,ωm) and �(q + Q,�m). Fortunately, in our case the
system preserves a FL behavior even at the QCP, and for
ḡ < W , which we assume to hold, calculations can be done
perturbatively rather than self-consistently.

Below we will obtain lowest-order (one-loop) expressions
for the polarization bubble and fermionic self-energy and use
them to compute Tc in the ladder approximation. We then dis-
cuss how these expressions are affected by two-loop diagrams.

A. One-loop bosonic and fermionic self-energies

The one-loop Feynman diagram for the polarization op-
erator is shown in Fig. 3. The polarization operator contains

FIG. 3. The one-loop polarization bubble. Labels i and j denote
fermions at different hot spots. The full expression is the sum of direct
and umklapp processes (1,4), (4,1), (2,3), (3,2).

contributions from direct and umklapp scattering between hot
spots separated by either Q or −Q [the combinations of (i,j )
of internal fermions can be (1,4),(4,1),(2,3), and (3,2)]. For
external momenta near Q = (π,π ), the processes (1,4) and
(4,1) are direct and (2,3) and (3,2) are umklapp. Only direct
processes have been considered in Refs. 8 and 35, but, as was
pointed out in Ref. 37, all four processes should be included
into �. The authors of Ref. 37 obtained

�(q + Q,�) = �(0)(qx,qy,�) + �(0)(−qx,qy,�)

+�(0)(qy,qx,�) + �(0)(−qy,qx,�), (6)

where8,35

�(0)(qx,qy,�) = ḡ

π

√
2v3

F κ

√√
�2 + E2

q + Eq, (7)

and

Eq = vF

(
qx − κ

q2
y

4

)
. (8)

The full dynamical spin susceptibility is

χ (q + Q,�) = χ0

q2 + �(q + Q,�)
. (9)

We now use χ (q,�) from (9) and calculate one-loop self-
energy of an electron. We will see that relevant q2 and �(q +
Q,�) are of the same order, i.e., the spin plolarization operator
evaluated at one-loop order is not a small perturbation of the
bare static χ0(q + Q). Higher-loop terms in �(q + Q,�) are,
however, small in λ and can be treated perturbatively. The one
loop self-energy is presented diagrammatically in Fig. 4.

Specifically, close to the hot spot, labeled by 1, the
analytical expression is

�(k,ωm)

= − 3ḡ

8π3

∫
dq d�m

i(ωm + �m) − εk+q+Q

1

q2 + �(q + Q,�m)
,

(10)

where, as before, the momenta k and k + q are taken close
to hot spots 1 at (−kF ,0), and 4 at (kF ,0), and the dispersion

FIG. 4. One-loop electron self-energy.
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εk+Q is

εk+Q = −vF

(
− kx + κ

k2
y

2

)
= ε−k. (11)

The coefficient 3 comes from summation over the x, y, and z

components of the spin susceptibility.
For definiteness, we consider the self-energy right at

the QCP, when ξ−1 = 0. We assume and then verify that
FL behavior is preserved at the QCP, i.e., at small ωm,
�(0,ωm) = iλωm and �(kx,0) ∝ vF kx , �(ky,0) ∝ k2

y . We will
need both frequency- and momentum-dependent components
of the self-energy for the calculation of Tc.

To compute �, it is convenient to subtract from �(k,ωm)
its expression at k = 0 and ωm = 0 as the latter vanishes by
symmetry for our approximate form of the dispersion εk . This
subtraction can actually be done even if one does not approxi-
mate εk , as, in the most general case, �(0,0) accounts only for
the renormalization of the chemical potential by fermions with
energies above 
, which we have to neglect anyway to avoid
double counting as such renormalization is already included
into εk . After the subtraction, the self-energy becomes

�(k,ωm) = 3ḡ

8π3

∫
dq d�m

1

q2 + �(q + Q,�m)

× iωm − [ε−(q+k) − ε−q]

(i�m − ε−q)[i(ωm + �m) − ε−(q+k)]
. (12)

It is tempting to set ωm and k to zero in the denominator of
(12) but this would lead to an incorrect result as the integrand
in (12) contains two close poles, and the contribution from
the region between the poles is generally of order one.3 To
obtain the correct self-energy one has to explicitly integrate
over internal frequency and momenta without setting ωm and
k to zero. The order of integration does not matter because
the integral is convergent in the ultraviolet limit. We choose
to integrate over qx first as this will allow us to make a
comparison with hole-doped cuprates.

The integral in (12) above can be simplified if we introduce
the dimensionless small parameter

λ ≡
(

ḡκ

2πvF

)1/3

=
(

ḡ

4πEF

)1/3

(13)

and rescale

� → ḡ�̃

πλ
, q → ḡq̃

vF πλ
, k → ḡk̃

vF πλ
,

(14)

�m → ḡ�̃m

πλ
, ωm → ḡω̃m

πλ
.

In the new variables,

εq,k = ḡ

πλ
ε̃q̃.k̃, q2 =

(
ḡ

πvF λ

)2

q̃2,

�(q + Q,�m) =
(

ḡ

πvF λ

)2

[�̃(0)(q̃x,q̃y,�̃m)

+ �̃(0)(−q̃x,q̃y,�̃m) + �̃(0)(q̃y,q̃x,�̃m)

+ �̃(0)(−q̃y,q̃x,�̃m)], (15)

where

ε̃q̃ = −q̃x − λ2q̃2
y ,

�̃(0)(q̃x,q̃y,�̃m) = 1

2

√√
�̃2

m + Ẽ2
q̃ + Ẽq̃ , (16)

Ẽq̃ = q̃x − λ2q̃2
y

2
.

Substituting these expressions into (12) we find that the
rescaled self-energy is the function of a single parameter λ:

�̃(k̃,ωm)

= 3λ

8π2

∫
dq̃xdq̃yd�̃m

q̃2 + ∑
a=±1 �̃

(0)
a (q̃,�̃m)

× iω̃m − k̃x + λ2
(
k̃2
y + 2k̃y q̃y

)
(i�̃m − q̃x)

[
i(�̃m + ω̃m) − q̃x − k̃x + λ2

(
k̃2
y + 2k̃y q̃y

)] ,

(17)

where �̃(0)
a (q̃,�̃m) = 1

2

√
(�̃2

m + q̃2
x )1/2 + aq̃x +

1
2

√
(�̃2

m + q̃2
y )1/2 + aq̃y . In (17) we shifted q̃x by λ2q̃2

y

and dropped all irrelevant λ2 terms. We, however, keep k̃2
y

term as it accounts for the renormalization of the FS curvature.
The integrand in (17), viewed as a function of q̃x , contains

two closely located poles coming from fermionic Green’s
functions, and the poles and branch cuts coming from spin
susceptibility. The two contributions can be separated as the
first one comes from small q̃x of order ω̃m (and �̃m ∼ ω̃m),
while the one from poles and branch cuts in χ (q,�m) comes
from q̃x of order one. We label the first contribution as �̃1 and
the second as �̃2.

To separate the two contributions it is convenient to divide
the magnetic susceptibility into two parts as

1

q̃2 + ∑
a=±1 �̃

(0)
a (q̃,�̃m)

= 1

q̃2
y + ∑

a=±1 �̃
(0)
a (q̃x = 0,q̃y,�̃m)

+
[

1

q̃2 +∑
a=±1 �̃

(0)
a (q̃,�̃m)

− 1

q̃2
y + ∑

a=±1 �̃
(0)
a (qx = 0,qy,�̃m)

]
.

(18)

The pole contribution �̃1 comes from the first term in the right-hand side of (18), the branch cut contribution �̃2 comes from the
second term.

The expression for �̃1 is

�1(k,ωm) = 3λ

8π2

∫
dq̃y

∫
d�̃m

∫
dq̃x

iω̃m − k̃x + λ2
(
k̃2
y + 2k̃y q̃y

)
(i�̃m − q̃x)

[
i(�̃m + ω̃m)− q̃x − k̃x + λ2

(
k̃2
y + 2k̃y q̃y

)] 1

q̃2
y + ∑

a=±1 �̃
(0)
a (q̃x = 0,q̃y,�̃m)

.

(19)
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The evaluation of �̃1 is straightforward: the integral over
dq̃x comes from the region where the two poles are in
different half-planes of complex q̃x . This happens when �̃m

is sandwiched between −ω̃m and 0. Then both q̃x and �̃m

are small, and one can safely set �̃m = 0 in the polarization
operator. The remaining integration is straightforward, and
restoring to original variables we obtain

�1 = ic1λωm, (20)

where

c1 = 3

2π

∫ ∞

0
dq̃y

1

q̃2
y + √

q̃y/2
= 24/3

31/2
= 1.45. (21)

We call this part a “nonperturbative” contribution because it
comes from internal �̃m and q̃x comparable to external ω̃m,
i.e., one can not obtain this term by expanding in ω̃m.

Observe that the nonperturbative contribution only depends
on ω̃m, but not on k. If this would be the full self-energy, then
the effective mass m∗ and quasiparticle residue Z would be
simply related as Zm∗/m = 1 as in ET.

We see from (17) that the nonperturbative contribution to
the self-energy remains finite at the QCP and, moreover, is
small as long as λ is small. The nondivergence of d�1/dωm at
the QCP is the consequence of including umklapp processes
into �, along with direct processes. Out of four terms in �(0)

a ,
the ones with aq̃x under the square root are direct processes
and the ones with aq̃y are umklapp processes. When q̃x =
�̃m = 0, the direct component of �̃(0)

a vanishes, and if we
would keep only this term, we would obtain that the integral
over qy in (21) diverges as

∫
dq̃y/q̃

2
y and has to be cut by

external ωm. In this situation, the nonperturbative self-energy
would scale as ω

3/4
m (Refs. 8 and 35). Umklapp processes add

another contribution to �̃(0)
a , which behaves as

√
2|q̃y |, and

the presence of such term makes the integral in (21) infrared
convergent.37

The second contribution to self-energy, �̃2, comes from
poles and branch cuts in the bosonic propagator. We dub the
contribution as “perturbative” because typical internal q̃x and
�̃m for this term are much larger than external ω̃m and k̃, hence
one can safely expand in external momentum and frequency.
We have

�̃2(k̃,ω̃m) = 3λ

8π2

∫
dq̃y

∫
d�̃m

∫
dq̃x

iω̃m − k̃x + λ2
(
k̃2
y + 2k̃y q̃y

)
(i�̃m − q̃x)

[
i(�̃m + ω̃m) − q̃x − k̃x + λ2

(
k̃2
y + 2k̃y q̃y

)]
×

[
1

q̃2 + ∑
a=±1 �̃

(0)
a (q̃,�̃m)

− 1

q̃2
y + ∑

a=±1 �̃
(0)
a (qx = 0,qy,�̃m)

]
. (22)

Expanding in ω̃m, k̃x , and k̃y we obtain

�̃2(k̃,ω̃m) = 3λ

8π2

∫
dq̃y

∫
d�̃m

∫
dq̃x

[
iω̃m − k̃x + λ2k̃2

y

(i�̃m + q̃x)2
− 4λ4q̃2

y k̃
2
y

(i�̃m + q̃x)3

]

×
[

1

q̃2 + ∑
a=±1 �̃

(0)
a (q̃,�̃m)

− 1

q̃2
y + ∑

a=±1 �̃
(0)
a (qx = 0,qy,�̃m)

]
. (23)

One can easily make sure that the three-dimensional (3D) integral converges in the infrared and ultraviolet limits, hence all
three integrals can be taken from minus to plus infinity. The term with 1/(i�̃m + q̃x)3 vanishes after integration over q̃x and �̃m

because it is odd in these variables, but the term with 1/(i�̃m + q̃x)2 yields a finite contribution. Restoring to original variables,
we obtain

�2 = c2λ

[
iωm − vF

(
kx − κ

k2
y

2

)]
, (24)

where

c2 = 3

8π2

∫
dq̃yd�̃m

∫
dq̃x

(i�̃m + q̃x)2

[
1

q̃2 + ∑
a=±1 �̃

(0)
a (q̃,�̃m)

− 1

q̃2
y + ∑

a=±1 �̃
(0)
a (q̃y,�̃m)

]
. (25)

The numerical evaluation of the integral yields

c2 = −0.75. (26)

Combining �1 and �2, we finally obtain that in hot region 1,

�(k,ωm) = 0.7λiωm + 0.75λvF

(
kx − κ

k2
y

2

)
. (27)

Obviously, ∂�/∂ω, (1/vF )∂�/∂kx , and (1/vF )∂�/∂k2
y are of

the same order, and all three components of the self-energy
have to be kept.

Substituting �(k,ωm) into the Green’s function
G−1(k,ωm) = iωm − εk + �(kx,ωm) we find that at hot
region 1,

G(k,ωm) = Z

iωm + v∗
F

(
kx + κ∗ k2

y

2

) , (28)
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where, to first order in λ,

Z = 1 − 0.7λ, v∗
F = vF

m

m∗ = 1 + 0.05λ,

(29)
κ∗ = κ(1 − 1.45λ).

We see that the dominant effect of the self-energy is the
renormalization of the quasiparticle residue Z and the renor-
malization of the curvature κ . The renormalization of the Fermi
velocity is much smaller.

The imaginary part of the self-energy has been calculated
in Ref. 37. At low frequencies it scales as ω3/2 ln ω. The
frequency dependence is stronger than in a “conventional”
FL, but still, Im�(k,ω) � ω/Z at small enough frequencies,
hence quasiparticles near the FS remain well defined.

IV. PAIRING PROBLEM

The straightforward way to analyze whether a fermionic
system becomes superconducting below some Tc is
to introduce an infinitesimally small pairing vertex
�

(0)
αβ(k)ψα(k)ψβ(−k), where k stands for a three-component

vector (k,ωm), renormalize it by the pairing interaction, and
verify whether the pairing susceptibility diverges at some
T . The divergence of susceptibility at some T = Tc implies
that, below this temperature, the system is unstable against
a spontaneous generation of a nonzero �αβ(k), even if we
set �

(0)
αβ(k) = 0. For spin-singlet superconductivity, the spin

dependence of the pairing vertex is �αβ(k) = iσ
y

αβ�(k).
To obtain Tc with logarithmic accuracy at weak coupling

(small λ), one can restrict with only ladder diagrams for �(k).
Each additional ladder insertion contains aλ ln 
/T , where
a = O(1). Ladder series are geometrical, and summing them
up one obtains Tc ∼ 
e−a/λ. More efforts are required, how-
ever, to get the prefactor. Which diagrams have to be included
depends on what theory is applicable. In Eliashberg-type
theories, all nonladder diagrams have additional smallness (in
ωD/EF for electron-phonon interaction) and can be neglected.
In this situation, one still can restrict with ladder diagrams, but
has to solve for the full dynamical �(k) beyond logarithmical
accuracy, and also include fermionic self-energy to order λ.

As an example, consider momentary Eliashberg theory for
the pairing by a single Einstein phonon. The attractive electron-
phonon interaction depends on transferred frequency � as
λ/[1 + (�/ωD)2]. At small λ, the normal state self-energy is
� = iλωm, and the frequency dependence of the pairing vertex
can be approximated as �(k) = �(k,ω) = �0/[1 + (ω/ωD)2]
(see Appendix A). Summing up ladder series, one then
obtains,48,50 up to corrections O(λ),

Tc = 1.13e−1/2ωDe− 1+λ
λ = 0.25ωDe− 1

λ . (30)

This result, rather than frequently cited BCS expression
Tc = 1.13ωDe− 1

λ , is the correct Tc for weak electron-phonon
interaction.

In our case, the Eliashberg parameter is of order one, and we
have to include on equal footing (a) ladder diagrams, which
have to be taken beyond logarithmic accuracy by including
the frequency dependence of the interaction, (b) the renor-
malization of quasiparticle Z, vF , and κ , (c) vertex correction
to the spin polarization bubble �(q + Q,�m), and (d) Kohn-

Luttinger-type exchange renormalization of the pairing inter-
action, which in our case includes vertex corrections to spin-
mediated pairing interaction and exchange diagram with two
crossed spin-fluctuation propagators. To order O(λ), which we
will need to get the prefactor in Tc, these four contributions add
up and can be evaluated independently. On the other hand we
do not need to substract from the gap equation the contribution
with kF = 0, as it was done in Ref. 40, and add the substracted
part to the renormalization of the coupling ḡ into the scattering
amplitude. Such contributions come from energies above the
upper cutoff of our low-energy theory 
 and are already
incorporated into the spin-fermion coupling ḡ, which, by
construction, incorporates all renormalizations from fermions
with energies larger than 
. In momentum space, the scale 


roughly corresponds to |k − kF | ∼ kF , but can be smaller.

A. Ladder diagrams

We begin with ladder diagrams. We consider spin-singlet
pairing between fermions with k and −k, located in opposite
hot regions along the same diagonal (see Fig. 5). Because the
pairing vertex is a spin singlet, �αβ(k) = iσ

y

αβ�(k). We denote
by �0(k) and �Q(k) the pairing vertices with momenta near k
and k + Q, respectively, and treat k as a small deviation from
the corresponding hot spot. Each ladder diagram renormalizes
the pairing vertex by

∫
q
G(q)G(−q)χ (k − q + Q), where∑

q = T
∑

ω′
m

∫
d2q/(2π )2 and Q = (Q,0) in 3D notations.

The ladder diagrams are readily summed up and at T = Tc

give rise to the integral equation for �(k) in the form

�0(k) = −3g2
∑

q

�Q(q)G(q)G(−q)χ (k − q + Q), (31)

where χ is given by Eq. (9). The overall factor 3 comes from the
convolutions of Pauli matrices at each vertex σ

y

α′β ′σ
i
αα′σ

i
ββ ′ =

−3σ
y

αβ , and the overall minus sign reflects the repulsive
nature of the interaction. Superconducting instability is then
possible only when �0(k) = −�Q(k). The spin-singlet nature
of pairing requires �(k) to be an even function of the actual 2D
momentum, which in our notations implies that �0(k,ωm) =
�Q(−k,ωm). Combined with �0(k,ωm) = −�Q(k,ωm), this
requires �0(−k,ωm) = −�0(k,ωm) and the same for �Q.
Obviously then, the pairing amplitude passes through zero
along the diagonals, i.e., the pairing symmetry is d wave.
For simplicity, below we replace �0(k) by �(k) and �Q(k) by
−�(k) and treat �(k) as an odd function of momentum (which,
we remind, is counted from the corresponding hot spot along
the diagonal). With this substitution, there will be no minus
sign in the right-hand side of the gap equation.

FIG. 5. Ladder diagrams for the pairing vertex. The wavy line
denotes the interaction mediated by spin fluctuations.
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To simplify the calculation, we introduce the same set of
rescaled dimensionless momenta and frequencies as before
[Eq. (14)], and also rescale the temperature:

q → ḡq̃

vF πλ
, ωm → ḡω̃m

πλ
, T̃ = πT λ

ḡ
. (32)

In the new variables we have, instead of (31),

�(k̃,ω̃m)

= 3λ

4π
T̃

∑
ω̃′

m

∫
dq̃

ω̃′2
m + q̃2

x

χ (0)(k̃ − q̃,ω̃m − ω̃′
m)�(q̃,ω̃′

m),

(33)

where

χ (0)(k̃ − q̃,ω̃m − ω̃′
m)

= 1

(k̃ − q̃)2 + ∑
a=±1 �̃

(0)
a (k̃ − q̃,ω̃m − ω̃′

m)
. (34)

As we did before, we have shifted q̃x by λ2q̃2
y in (33) and

dropped λ2 terms in the spin susceptibility χ (0). To simplify
the presentation, below we will drop the tilde from the
intermediate momentum and frequencies.

We focus our attention on the pairing between fermions
in regions 1 and 4. The corresponding pairing vertex is
an odd function of ky (the momentum component along
the FS at a hot spot). For small ky , we approximate the
pairing vertex by �(k,ω′

m) = ky�(kx,ω
′
m). The only other

place in (33) where the dependence on ky is present is the
spin susceptibility. However, it depends only on the relative
momentum transfer k − q and is an even function of the
latter. In this situation, the integration over qy gives the result
proportional to ky , consistent with our approximation that
�(k,ωm) = ky�(kx,ωm). In explicit form, we have

�(kx,ωm)

= 3λ

4π
T̃

∑
ω′

m

∫
dqxχ

(0)(kx − qx,ωm − ω′
m)

ω′2
m + q2

x

�(qx,ω
′
m), (35)

where

χ (0)(kx − qx,ωm − ω′
m)

=
∫

dky

k2
y + (kx − qx)2 + ∑

a=±1 �̃
(0)
a (kx − qx,ky,ωm − ω′

m)
.

(36)

The function χ (0)(kx − qx,ωm − ω′
m) plays the role of the

pairing kernel. Like for electron-phonon systems, it tends to a
finite value when kx − qx and ωm − ω′

m vanish:

χ (0) ≡
∫ ∞

−∞

dky

k2
y + √|ky |/2

= 210/3π

33/2
= 6.09. (37)

To obtain the exponential term in Tc, we can just pull
this constant out of T̃

∑
ω′

m

∫
dqx and evaluate the rest to

logarithmical accuracy. We obtain

Tc ∝ e
− 4π

3λχ(0) = e− 0.6874
λ . (38)

To find the contribution from the ladder diagram to the
prefactor, we use the same strategy as for the electron-phonon
case (see Appendix A) and write

χ (0)(kx − qx,ωm − ω′
m) =χ (0)(kx,ωm) + δχ (0)(kx,qx ; ωm,ω′

m),

(39)

where δχ (0)(kx,0; ωm,0) = 0. Substituting into Eq. (35), we
obtain

�(kx,ωm) = 3λ

4π
T̃

∑
ω′

m

∫
dqx

1

ω′2
m + q2

x

[χ (0)(kx,ωm)

+ δχ (0)(kx,qx ; ωm,ω′
m)]�(ω′

m,qx). (40)

Of the two terms in the last line, the first one contains λ ln T̃ ∼
O(1), while the second one [with δχ (0)(kx,qx ; ωm,ω′

m)] is
convergent in the infrared limit and is of order of λ. The
structure on the right-hand side is reproduced on the left-hand
side if we take the pairing vertex in the form

�(kx,ωm) = �0[χ (0)(kx,ωm) + λδ�(kx,ωm)]. (41)

Substituting this form back into Eq. (35) for �, we obtain

χ (0)(kx,ωm) + λδ�(kx,ωm)

= 3λ

4π
T̃

∑
ω′

m

∫
dqx

χ (0)(kx,ωm) + δχ (0)(kx,qx ; ωm,ω′
m)

q2
x + ω′2

m

[χ (0)(qx,ω
′
m) + λδ�(qx,ω

′
m)]

= 3λ2

4π
T̃

∑
ω′

m

∫
dqx

χ (0)(kx,ωm)

q2
x + ω′2

m

δ�(qx,ω
′
m) + 3λ

4π
T̃

∑
ω′

m

∫
dqx

χ (0)(qx,ω
′
m)χ (0)(kx − qx,ωm − ω′

m)

q2
x + ω′2

m

+ O(λ2). (42)

To order λ we then have

δ�(kx,ωm) = χ (0)(kx,ωm) [P + R(kx,ωm)] , (43)

where

P = 3λ

4π
T̃

∑
ω′

m

∫
dqx

δ�(qx,ω
′
m)

q2
x + ω

′2
m

, (44)

R(kx,ωm) = 3

4π
T̃

∑
ω′

m

∫
dqx

χ (0)(qx,ω
′
m)χ (0)(kx − qx,ωm −ω′

m)

χ (0)(kx,ωm)
(
q2

x + ω′2
m

) − 1

λ
. (45)
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Substituting Eq. (43) into the right-hand side of Eq. (44) we
obtain [

1 − 3λ

4π
T̃

∑
ω′

m

∫
dqx

χ (0)(qx,ω
′
m)

q2
x + ω′2

m

]
P

= 3λ

4π
T̃

∑
ω′

m

∫
dqx

χ (0)(qx,ω
′
m)

q2
x + ω

′2
m

R(qx,ω
′
m). (46)

We now use the fact that P = O(1), while the expression
in the brackets of the left-hand side is of order O(λ). The
left-hand side of (46) is then of O(λ). The right-hand side is
R(0,0)[1 + O(λ)]. Obviously then R(0,0) = O(λ), i.e.,

3λχ (0)

4π
T̃

∑
ω′

m

∫
dqx

[χ (0)(qx,ω
′
m)/χ (0)]2(

q2
x + ω′2

m

) = 1 + O(λ2). (47)

Evaluating the integral over qx and the sum over Matsubara
frequencies, we obtain

4π

3χ (0)
= λ ln

0.00874

T̃c

+ O(λ2) (48)

or, in original notations, Tc = Tc1 from ladder diagrams is

Tc1 = 0.00249
ḡ

λ
e− 0.6874

λ . (49)

B. Effect of fermionic self-energy

The self-energy corrections to ladder diagrams can be easily
incorporated because in the FL regime their only role is to
renormalize the quasiparticle Z, the Fermi velocity vF , and
the FS curvature κ . All three renormalizations can be absorbed
into the renormalization of λ:

λ =
(

ḡκ

2πvF

)1/3

→
(

ḡZ2κ∗

2πv∗
F

)1/3

= λ(1 − 0.95λ). (50)

Substituting this renormalization into Eq. (49) we obtain

Tc2 = 0.00130
ḡ

λ
e− 0.6874

λ . (51)

If Eliashberg theory was applicable to our problem, this
would be the full result for Tc. However, as we already
discussed, in our case the Eliashberg parameter is of order one,
and other renormalizations also play a role. Specifically, there
are two extra contributions: from vertex corrections to the po-
larization operator and from Kohn-Luttinger renormalization
of the irreducible pairing interaction. The two contributions
add up and we consider them separately.

C. Correction to Tc due to the renormalization of the
polarization operator

The exponential factor in the expressions for Tc1 and Tc2 is
proportional to the integral

χ (0) =
∫

dqyχ (qx = 0,qy,ωm = 0)

=
∫

dqy

1

q2
y + ∑

a=±1 �̃
(0)
a (0,qy,0)

. (52)

In evaluating this integral, we used the free-fermion form of
the polarization operator, in which case

∑
a=±1 �̃(0)

a (0,qy,0) =

FIG. 6. Ladder diagrams with the effective interaction which
includes vertex correction to the polarization bubble.√|qy |/2 and χ (0) = 6.09. However, to get the prefactor in Tc,
we need to know the exponential factor with accuracy O(λ).
Self-energy contributions to �̃(0)

a (0,qy,0) are incorporated into
the renormalization of λ in (50) and are accounted for in
Eq. (51). However, the vertex correction to �̃(0)

a (0,qy,0) also
contributes the term of order λ, and this term has to be included.

The effective pairing interaction with vertex correction
to the polarization bubble included is shown in Fig. 6.
For a generic q and �m, the computation of the vertex
renormalization is rather messy.36 For our purposes, however,
we will only need the vertex correction for a static polarization
bubble at q = (0,qy), and only for the umklapp process (i.e.,
in our case, the contribution to � from virtual fermions in hot
regions 3 and 2). We present the computation of the vertex
correction to � in Appendix B and here state the result: this
renormalization changes χ (0) by an O(λ) term:

χ (0) → χ (0)(1 − 0.042λ). (53)

Including this renormalization into the expression for Tc

[Eq. (49)], we find

Tc3 = 0.00126
ḡ

λ
e− 0.6874

λ . (54)

D. Kohn-Luttinger-type corrections to effective interaction

Finally, we consider the effect on Tc from Kohn-Luttinger-
type second-order corrections to the effective pairing interac-
tion. We show the corresponding diagrams in Fig. 7. Compared
to the original Kohn-Luttinger work,41 we have dropped one
diagram since in our case it is already included into χ (0)(k).

Similar to what we did before with the dynamical part of
the interaction in ladder series, we analyze the equation for the
pairing vertex using the full χ which we split into the original
and the Kohn-Luttinger terms. We have

�(k,ωm) = 3λ

4π
T̃

∑
ω′

m

∫
dq

ω′2
m + q2

x

χ (k,ωm; q,ω′
m)�(q,ω′

m),

(55)

where

χ (k,ωm; q,ω′
m) = χ (0)(kx − qx,ky − qy,ωm − ω′

m)

+ λχ (1)(kx,ky,ωm; qx,qy,ω
′
m); (56)

χ (0)(k − q), defined in Eq. (34), accounts for the first graph in
Fig. 7, and λχ (1)(k,q) accounts for the other three terms.

The first term in χ (k,q) depends on the momentum transfer
ky − qy . For this reason we could shift, in the right-hand side
of (50), the integration over qy by the integral over qy − ky

and obtain the pairing vertex as a linear function of ky . This
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FIG. 7. Kohn-Luttinger diagrams for the irreducible pairing interaction. The diagram with internal particle-hole bubble is already included
into χ (0)(k) and has to be dropped to avoid double counting. Each of the remaining three Kohn-Luttinger diagrams gives contribution of order
λ.

simple scaling with ky does not extend to Kohn-Luttinger
terms because χ (1)(k,q) depends separately on k and on q.
Accordingly, we write

�(kx,ky,ωm) = �0[kyχ
(0)(kx,ωm) + λδ�(kx,ky,ωm)]. (57)

Because we are interested in O(λ) terms, we can safely neglect
the difference between continuous and discrete Matsubara
frequencies and treat ωm as continuous variable.

Plugging (57) back to the pairing equation and formally
setting kx = ωm = 0, we obtain

kyχ
(0) + λδ�(0,ky,0) = 3λ

4π
T̃

∑∫
dqx

(ω′
m)2 + q2

x

ky(χ (0)(qx,ω
′
m))2

+ 3λ2

4π
T̃

∑ ∫
dqx

(ω′
m)2 + q2

x

∫
dqyχ

(1)(0,ky,0; qx,qy,ω
′
m)qyχ

(0)(qx,ω
′
m)

+ 3λ2

4π
T̃

∑ ∫
dqx

(ω′
m)2 + q2

x

∫
dqyχ

(0)(qx,ky − qy,ω
′
m)δ�(qx,qy,ω

′
m). (58)

Evaluating the integrals, we obtain

kyχ
(0) + λδ�(0,ky,0) = ky

3λ

4π
χ (0)2 ln

0.008 74

T̃
+ 3λ2

4π
χ (0) ln

a

T̃

∫
dqyχ

(1)(0,ky,0; 0,qy,0)qy

+ 3λ2

4π
ln

b

T̃

∫
dqyχ

(0)(0,ky − qy,0)δ�(0,qy,0) + O(λ2), (59)

where a and b are constants of order one.
Simplifying the notations and rearranging, we re-express

(59) as

4π

3λχ (0)
= ln

0.008 74

T̃
+ A(ky) + C(ky)

ky(χ (0))2
+ O(λ2), (60)

where we defined

A(ky) =
∫

dqy

[
χ (0)(ky − qy)

χ (0)
δ�(0,qy,0)

]
− δ�(0,ky,0),

(61)
C(ky) =

∫
dqyqyχ

(1)(0,ky,0; 0,qy,0),

and χ (0)(ky − qy) = 1/[(ky − qy)2 + √|ky − qy |/2]. One can
easily make sure that A(0) = C(0) = 0, hence [A(ky) +
ξ (1)(ky)]/ky is not singular when ky vanishes. However,
Eq. (59) sets a more stringent requirement: A(ky) + C(ky)
must be equal to Bky(χ (0))2, where B is a constant. Then
Tc = Tc3e

B , where Tc3 is given by Eq. (54).
The A(ky) in Eq. (61) contains δ�(0,ky,0) and the integral

over qy of δ�(0,yy,0), weighted with a kernel. The condition

A(ky) + C(ky) = Bky(χ (0))2 (62)

then sets the integral equation on δ�(0,ky,0). We solve this
equation in Appendix C and obtain B in the form B =
C(−
)/(χ (0))2, where 
 is the dimensionless momentum
cutoff along the FS. The value of B depends on the interplay
between λ and 1/
.

For a generic FS, the momentum cutoff 
 is of order kF ,
in which case λ
 ∼ (W/ḡ)1/3 � 1, where W is the fermionic
bandwidth. In this situation, the pairing interaction dies off at
momenta ky , which are parametrically smaller than the cutoff,
and and C(−
) is small in 1/(λ
). Then B is also small in
1/(λ
), hence eB ≈ 1, i.e., the correction to Tc from Kohn-
Luttinger diagrams can be neglected. In this situation, the fully
renormalized Tc coincides with Tc3 and is given by

Tc = 0.001 26
ḡ

λ
e− 0.6874

λ . (63)

Equation (63) is the main result of this paper.
If, by some reasons, 
 is numerically much smaller than kF ,

such that λ
 is actually a small number, the renormalization
of Tc due to Kohn-Luttinger diagrams becomes relevant. We
present the calculation of B for this case in Appendix C.
We find that, at small λ
, B is logarithmically singular:
B = (10/3) ln 1/(λ
) + · · · where the ellipsis stand for terms
O(1). As a result, Tc is enhanced by the factor (1/λ
)10/3
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compared to Eq. (63). The outcome is that Eq. (63) provides
the lower boundary for Tc: the actual Tc gets enhanced by
Kohn-Luttinger contributions. How strong the enhancement
is depends on the actual band structure, which sets the value
of 
.

E. Comparison with the experiments on
electron-doped cuprates

We now compare our theoretical Tc [Eq. (63)] with
the data for near-optimally doped Nd2−xCexCu3O4 and
Pr2−xCexCu3O4, in which doping creates extra electrons. The
parameters of the quasiparticle dispersion, vF and κ , can be ex-
tracted from the ARPES measurements on Nd2−xCexCu3O4.43

We found vF = 0.87 eV and κ = 0.31 (in units where the
lattice constant a = 1). Similar parameters have been obtained
in Ref. 24. The only other input parameter for the theory
is the strength of spin-fermion coupling ḡ. For hole-doped
cuprates, the fits to ARPES and NMR data in the normal state
yielded ḡ � 2 eV (Ref. 3). This ḡ is consistent with the value
of the charge-transfer gap in the effective Hubbard model in
the Mott-Heisenberg regime at half-filling52 as calculations
in the ordered state of the spin-fermion model53 place the
gap to be exactly ḡ; quantum corrections cancel out. This
consistency is not an anticipated result as ḡ extracted from
the optics is the coupling at high energies, comparable to
EF , while the one used in the comparison with ARPES
and NMR is the coupling at low energies (below our 
),
where, strictly speaking, the spin-fermion model is only valid.
The (rough) agreement between the two likely implies that
renormalizations between EF and 
 do reduce ḡ, but only
by a small fraction. For electron-doped cuprates, the detailed
fits of �(k,ω) in the spin-fermion model to the self-energy,
extracted from ARPES data, have not been done yet, but optical
measurements42 show that the charge-transfer gap is about
1.7 eV. Assuming that the situation in electron-doped cuprates
is the same as in hole-doped cuprates, i.e., that spin-fermion
couplings, extracted from ARPES and optics, are not far each
other, we just take ḡ to be equal to this 1.7 eV.

Using the numbers for ḡ, vF , and κ , we obtain λ ∼ 0.46,
which implies that weak coupling analysis should be appli-
cable. Substituting λ = 0.46 and ḡ ≈ 20 000 K, we find Tc ∼
0.0006ḡ ∼ 12 K. This is reasonably close to the experimental
Tc = 20–24 K in optimally doped Nd2−xCexCu3O4,46,47 par-
ticularly given that our theoretical Tc [Eq. (63)] is the lower
boundary for the actual Tc because (i) as we found above, Tc

goes up once we include corrections due to a finite upper cutoff
of the theory, and (ii) in real situation, hot spots at optimal
doping are still located at some distance from each other, in
which case the value of Tc should move a bit towards the
one when hot spots are well separated, and the latter is much
higher: when hot spots are near (0,π ) and symmetry-related
points Tc ∼ 0.04ḡ.19,45

The transition temperature in the similar range of 10–20 K
has been found in FLEX calculations,24 and the agreement
between our and FLEX results in an encouraging sign. The
authors of Refs. 24 and 54 considered the model with a
static interaction V , extracted V by fitting the value of
the magnetization in the antiferromagnetically ordered state,
and used BCS formula for Tc. Amazingly, their Tc is quite

similar to the one we obtained. The two-particle self-consistent
approach, applied to the Hubbard model with nearest-neighbor
hopping only and values of the interaction U typical of
electron-doped systems, yields a much higher optimal Tc ∼
200 K (Refs. 4 and 24). However, given the sensitivity of Tc to
the specifics of the FS,55 the value of Tc in this approach has
to be reanalyzed using the model for the hopping consistent
with the measured FS.

V. SUMMARY

In this work, we revisited the issue of normal state
renormalizations and superconducting Tc in electron-doped
cuprates near optimal doping. We used the spin-fermion model
to model electronic interactions and assumed that the doping
at which magnetic order with Q = (π,π ) sets in is close to the
one at which the Fermi surface touches the magnetic Brillouin
zone boundary along the zone diagonals (this case is often
labeled as Q = 2kF ).

Quantum-critical fluctuations and the pairing instability
in the Q = 2kF case have been studied before.8,35 However,
recent work37 has shown that earlier analysis did not include
umklapp processes and, as a result, severely overestimated
the strength of quantum-critical fluctuations. Once umklapp
processes are properly accounted for, the real part of the
self-energy at a QCP scales as ω and the imaginary part behaves
as ω3/2 ln ω, i.e., fermionic coherence is preserved at the lowest
energies.

The goal of this work was to revisit the calculation of Tc.
We found that the argument35 that the dx2−y2 superconductivity
survives when hot spots merge along Brillouin zone diagonals
holds. However, the value of Tc has to be reconsidered. The
calculation of Tc requires one to know the renormalization
of the quasiparticle propagator in the normal state, and in
the first part of the paper we computed the real part of the
fermionic self-energy (which was not considered in Ref. 37).
We found that Eliashberg approximation is not valid because
the Eliashberg parameter is of order one, and the only way to
proceed with calculations is to perform a direct perturbative
loop expansion. We found that Re �(k,ω) is a regular function
of momentum and frequency, and the renormalizations of
the quasiparticle residue Z, Fermi velocity vF , and the FS
curvature κ hold on powers of the single dimensionless
parameter λ. We treated λ as a small parameter and obtained
Z, vF , and κ to order O(λ).

We then used normal state results as an input and computed
superconducting Tc by solving the (2 + 1)-dimensional gap
equation in momentum and frequency. To logarithmical accu-
racy, the solution of the linearized gap equation is similar to that
in BCS theory, and Tc ∝ e−a/λ, where in our case a = 0.6874.
We, however, computed Tc with the prefactor, which required
us to go one step beyond BCS approximation and include the
frequency dependence of the interaction, the renormalizations
of Z, vF , and κ , vertex corrections to particle-hole polarization
bubble, and Kohn-Luttinger (nonladder) corrections to the
irreducible pairing interaction. Using the parameters extracted
from the data on optimally electron-doped cuprates, we found
Tc � 10 K, which is in a reasonably good agreement with the
experimental values. The agreement is particularly striking
because our result is the lower boundary of the actual Tc.
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One issue brought about by our work in comparison with
earlier works on the Hubbard model4,24,28,55 is the origin
of the difference between hole- and electron-doped cuprates.
The reasoning displayed in Refs. 4, 28, 24, 55, and 56 is
that the interaction U is somewhat smaller in electron-doped
cuprates than in hole-doped cuprates such that in electron-
doped materials correlations are relevant, but Mott physics
does not develop. This is certainly a valid point as, e.g.,
the magnetic TN is smaller in half-filled Pr2−xCexCu3O4,and
Pr2−xCexCu3O4 than in undoped La and Y based materials).
Our results, however, point on a complementary reason for the
difference between near-optimally hole and electron-doped
cuprates. Namely, even if interaction (our ḡ) is the same,
there is still a substantial difference between the magnitude
of fermionic self-energy and of superconducting Tc due to the
difference in the geometry of the electronic FS.
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APPENDIX A: Tc AT WEAK COUPLING IN A PHONON
SUPERCONDUCTOR

A portion of our calculation of Tc is similar to the calculation
of Tc in the weak-coupling limit of the Eliashberg theory for a
phonon superconductor for the case when a phonon propagator
can be approximated by a single Einstein mode:

χph(�m) = χ0

�2
m + ω2

D

. (A1)

In Eliashberg theory, Tc is the temperature at which the
linearized equation for the pairing vertex �(�m) has a nonzero
solution. The equation for �(�m) is well known18,48–50 and in
rescaled variables T̄ = T/ωD , ω̄m = ωm/ωD = πT̄ (2m + 1)
reads as

�(�̄m) = πT̄ λ∗ ∑
m

�(ω̄m)

|ω̄m| χ (ω̄m,�̄m), (A2)

where χ (ω̄m,�̄m) ≡ 1
1+(ω̄m−�̄m)2 and λ∗ = λ/(1 + λ) [λ is

dimensionless effective electron-phonon coupling and the
factor (1 + λ) comes from mass renormalization]. The formula
for Tc in Eliashberg theory at weak coupling has been discussed
several times in the past.48–50 However, until now, there is
some confusion about the interplay between the weak coupling
limit of the Eliashberg theory and the BCS theory.18 Within
BCS theory (extended to include 1 + λ mass renormalization),
the pairing vertex is approximated by a constant and the
dependence on the external �̄m in the bosonic propagator is
neglected. The equation for Tc then reduces to

1 = λ∗ ∑
m

1

|2m + 1|
1

1 + π2T̄ 2(2m + 1)2
. (A3)

The sum in the right-hand side converges at the largest m and
is expressed in terms of digamma functions. At small T̄ it

reduces to ln 1.13/T̄ . From (A4) we then obtain, in original
notations,

T BCS
c = 1.13ωDe− 1+λ

λ . (A4)

The point made in Refs. 48–50 is that this expression is not
the correct Tc in the small λ limit of the Eliashberg theory. The
correct formula, obtained first in Ref. 48 (see also Refs. 49
and 50), is

Tc = 1.13e−1/2ωDe− 1+λ
λ = 0.69ωDe− 1+λ

λ . (A5)

The reason for the discrepancy between Eqs. (A4) and (A5) is
that in Eliashberg theory the numerical prefactor in Tc comes
from fermions with energies of order ωD [ω̃m = O(1)], and
for such fermions the dependence of the pairing vertex �(ω̄m)
on ω̄m can not be neglected.

The computational procedure presented in Ref. 48 and in
subsequent work50 uses the iteration method and is somewhat
involved. Below we present an alternative computation pro-
cedure to obtain Eq. (A5). We use the same procedure in the
calculations of Tc for our case of electron-doped cuprates. We
reexpress χ (ω̄m,�̄m) ≡ 1

1+(ω̄m−�̄m)2 in Eq. (A2) as

χ (ω̄m,�̄m) ≡ χ (�̄m) + δχ (ω̄m,�̄m),

χ (�̄m) = 1

1 + �̄2
m

,

δχ (ω̄m,�̄m) = ω̄m

1 + �̄2
m

2�̄m − ω̄m

1 + (ω̄m − �̄m)2
. (A6)

Plugging this expression back to Eq. (A2), we find that the
first term in Eq. (A6) gives λ∗ ln T̄ ∼ 1, while the second term
is free of logarithm and is of order λ∗. We then search for the
solution of Eq. (A2) in the form

�(�̄m) = �0[χ (�̄m) + λ∗δ�(�̄m)] + O(λ∗2), (A7)

where δ�(�̄m) is assumed to be independent of λ∗ up to
corrections of order λ∗. Substituting Eq. (A7) into Eq. (A2) and
neglecting nonlogarithmical terms of order (λ∗)2, we obtain

δ�(�̄m) = χ (�̄m)[P + R(�̄m)], (A8)

where

P = λ∗πTc

∑ δ�(ω̄m)

|ω̄m| , (A9)

R(�̄m) = πTc

χ (�̄m)

∑ 1

|ω̄m|χ (ω̄m)χ (ω̄m,�̄m) − 1

λ∗ . (A10)

Observe that Eq. (A8) is not an integral equation on δ�(�̄m)
because the integral term P does not depend on �̄m.

Constructing P in the right-hand side of Eq. (A8), we obtain[
1 − λ∗πT̄c

∑ χ (ω̄m)

|ω̄m|
]

P = λ∗πT̄c

∑ χ (ω̄m)

|ω̄m| R(ω̄m).

(A11)

Because 1 − λ∗πT̄c

∑ 1
|ω̄m|χ (ω̄m) = O(λ∗) and P is at most

of order O(1), the left-hand side of Eq. (A11) is O(λ∗). On the
other hand, the right-hand side of Eq. (A11) becomes

λ∗πT̄c

∑ 1

|ω̄m|χ (ω̄m)R(ω̄m) = R(0)[1 + O(λ∗)]. (A12)
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Matching both sides, we find that

R(0) = O(λ∗), (A13)

hence

λ∗πTc

∑ 1

|ω̄m|
1(

1 + ω̄2
m

)2 = 1 + O(λ∗2). (A14)

Evaluating the sum (it is expressed in terms of digamma
functions) and taking the limit T̄ � 1, we reproduce Eq. (A5).

Another way to obtain this result is to formally set �̄m = 0
in Eq. (A8), which gives δ�(0) = P + R(0). At the same time,
from Eq. (A9) we have P = δ�(0) + O(λ∗). Matching the two
expressions, we reproduce R(0) = O(λ∗).

APPENDIX B: EVALUATION OF THE CONTRIBUTION TO
Tc FROM VERTEX CORRECTIONS TO THE

POLARIZATION BUBBLE

In this appendix we present the evaluation of the con-
tribution to Tc from vertex correction to the polarization

FIG. 8. Vertex correction to polarization bubble. Labels i and j

denote fermions at different hot spots. The full expression is the sum
of direct and umklapp processes (1,4), (4,1), (2,3), (3,2).

bubble �(1)(q + Q,�m). The diagram for �(1)(q + Q,�m) is
shown in Fig. 8. As we discussed, vertex correction to the
polarization bubble contributes to Tc by renormalizing χ (0).
For our purposes, one can easily make sure that we only need
to include the renormalization of the spin susceptibility and
at transferred momentum q = (0,qy). For momentum along
the y axis, the contribution from umklapp process dominates
because in direct process qy dependence is suppressed by λ.
We denote the contribution from umklapp process at (qx =
0,qy,�m = 0) as �(1)

um(0,qy,0). We have

�(1)
um(0,qy,0) = −2ḡ2

∫
dk1dωm1

(2π )3

∫
dk2dωm2

(2π )3

1

(k1 − k2)2 + � (k1 − k2,ωm1 − ωm2)

× 1

iωm1 − ε̄k1

1

iωm1 − ε̄−k1+q

1

iωm2 − ε̄k2

1

iωm2 − ε̄−k2+q

+ (q → −q) , (B1)

where

ε̄k = vF

(
ky − κ

k2
x

2

)
, (B2)

where the coefficient (−2) comes from Pauli matrix algebra. Using a set of rescaling variables similar to the one introduced in
Eq. (14) in the main text, we obtain

�(1)
um(0,qy,0) = λ

(
ḡ

πvF λ

)2

�̃(1)
um(0,q̃y,0), (B3)

where

�̃(1)
um(0,q̃y,0) = −4π2

∫
du dx dy

(2π )3

∫
dU dX dY

(2π )3

1

X2 + Y 2 + ∑
a �̃

(0)
a (X,Y,U )

× 1

−i
(
u − U

2

) + (
y − Y

2 + q̃y

2

) − x2

1

i
(
u − U

2

) + (
y − Y

2 − q̃y

2

) + x2

× 1

i
(
u + U

2

) + (
y + Y

2 + q̃y

2

) + x2

1

−i
(
u + U

2

) + (
y + Y

2 − q̃y

2

) − x2
. (B4)

Equation (B4) is a 6D integral, for which numerical schemes designed to evaluate multidimensional integrals, such as Monte
Carlo, do not yield satisfactory results. Fortunately, the integration over u, x, and y, which are rescaled frequency and two
momentum components in the fermionic loop, can be done analytically. The remaining integration over U,X,Y , can be done
numerically to a good precision.

To perform the integration, we first write

�̃(1)
um(0,q̃y,0) = −4π2I (q̃y), (B5)
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where

I (q̃y) =
∫

dU dX dY

(2π )3

∫
du dx dy

(2π )3

1

X2 + Y 2 + ∑
a �̃

(0)
a (X,Y,U )

× 1

−i
(
u − U

2

) + (
y − Y

2 + q̃y

2

) − x2︸ ︷︷ ︸
(1)

1

i
(
u − U

2

) + (
y − Y

2 − q̃y

2

) + x2︸ ︷︷ ︸
(2)

× 1

i
(
u + U

2

) + (
y + Y

2 + q̃y

2

) + x2︸ ︷︷ ︸
(3)

1

−i
(
u + U

2

) + (
y + Y

2 − q̃y

2

) − x2︸ ︷︷ ︸
(4)

. (B6)

We use the residue theorem for the integration over dy. There are four poles, from terms labeled (1), (2), (3), and (4). We split I

into two parts, I (q̃y) = I1(q̃y) + I2(q̃y). I1 comes from the range where the poles in (1) and (4) are in the same half-plane, while
I2 comes from the range where the poles in (2) and (4) are in the same half-plane.

For I1 we obtain

I1(q̃y) = 2πi

∫
dU dX dY

(2π )3

∫
|u|> |U |

2

du sgn(u)
∫

dx

(2π )3

1

X2 + Y 2 + ∑
a �̃

(0)
a (X,Y,U )

× 1

2x2 + Y + 2iu

1

2x2 − q̃y + 2i
(
u − U

2

) 1

−iU + Y − q̃y

+ (q̃y → −q̃y). (B7)

Rearranging the second line and combining the integrals over positive and negative u, we obtain

I1(q̃y) =
∫

dU dX dY

16π5

1

X2 + Y 2 + ∑
a �̃

(0)
a (X,Y,U )

∫ ∞

|U |
2

du

∫ ∞

−∞
dx

× Im

{[
1

2x2 + Y + 2iu
− 1

2x2 − q̃y + 2i
(
u − U

2

)
]

1

Y 2 − (q̃y + iU )2

}
+ (q̃y → −q̃y). (B8)

We next perform the integration over x and over u using the same steps as we did in the calculation of the one-loop polarization
bubble in the main text. Carrying out the integrations, we obtain

I1(q̃y) = −
∫

dU dX dY

16π4
√

2

1

X2 + Y 2 + ∑
a �̃

(0)
a (X,Y,U )

× Re

[
(
√

Y + i|U | − √−q̃y − iU + i|U |) 1

Y 2 − (q̃y + iU )2

]
+ (q̃y → −q̃y). (B9)

Folding the integration over U to positive U , we rewrite (B9) as

I1(q̃y) =
∫ ∞

0
dU

∫
dX dY

16π4
√

2

1

X2 + Y 2 + ∑
a �̃

(0)
a (X,Y,U )

× Re

[
(−2

√
Y + iU + √−q̃y + √

q̃y + 2iU )
1

Y 2 − (q̃y + iU )2

]
+ (q̃y → −q̃y). (B10)

Similarly, for I2 we obtain

I2(q̃y) = 2πi

∫ ∞

−∞
dU sgn(U )

∫
dX dY

(2π )3

∫ |U |
2

− |U |
2

du

∫
dx

(2π )3

1

X2 + Y 2 + ∑
a �̃

(0)
a (X,Y,U )

× 1

2x2 − Y + 2iu

1

2x2 − q̃y + 2i
(
u − U

2

) 1

iU + Y + q̃y

+ (q̃y → −q̃y). (B11)

Rearranging the second line, folding the integration over U to positive U , and integrating over x and u we obtain

I2(q̃y) =
∫ ∞

0
dU

∫
dX dY

16π4
√

2

1

X2 + Y 2 + ∑
a �̃

(0)
a (X,Y,U )

× Re

[
(
√

Y + iU − √
Y − iU − √−q̃y + √−q̃y − 2iU )

1

Y 2 − (q̃y + iU )2

]
+ (q̃y → −q̃y). (B12)
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Combining I1 and I2 and substituting into (B5), we obtain

�̃(1)
um(0,q̃y,0) = −

∫ ∞

0
dU

∫
dXdY

4π2
√

2

1

X2 + Y 2 + ∑
a �̃

(0)
a (X,Y,U )

× Re

[
(−√

Y − iU − √
Y + iU + √−q̃y − 2iU + √

q̃y + 2iU )
1

Y 2 − (q̃y + iU )2

]
+ (q̃y → −q̃y). (B13)

The integration over U,X,Y has been done numerically.
Just as we did in the calculation of the one-loop polarization
operator, we subtract from �̃(1)

um(0,q̃y,0) its value at zero mo-
mentum �̃(1)

um(0,0,0) to make the integral infrared convergent.
The term we subtract only shifts the position of the QCP and
is not of interest to us. After the subtraction, the integration in
(B13) can be extended to an infinite range.

We plot �̃(1)
um(0,q̃y,0) − �̃(1)

um(0,0,0) in Fig. 9. We see that
numerically �̃(1)

um(0,q̃y,0) − �̃(1)
um(0,0,0) is small even when

q̃y = 1.
The O(λ) correction to χ (0), which we need for the calcu-

lation of the right prefactor for Tc, is related to �̃(1)
um(0,q̃y,0) −

�̃(1)
um(0,0,0) as

χ (0) → χ (0) − λ

∫ ∞

−∞
dz

�̃(1)
um(0,z,0) − �̃(1)

um(0,0,0)

(z2 + √|z|/2)2
. (B14)

Using the numerical results for �̃(1)
um(0,q̃y,0) − �̃(1)

um(0,0,0),
we found that the renormalization of χ (0) by the vertex
correction in the polarization operator is

χ (0) → χ (0)(1 − 0.042λ). (B15)

We cited this result in Eq. (53) in the main text.

APPENDIX C: CONTRIBUTION TO Tc FROM
KOHN-LUTTINGER DIAGRAMS AT FINITE

MOMENTUM CUTOFF

We found in the main text that Kohn-Luttinger diagrams
renormalize the transition temperature Tc to

Tc = Tc3 exp B, (C1)

where Tc3, given by Eq. (54), is the transition temperature
without Kohn-Luttinger contributions, and B is the prefactor

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

q̃y

Π̃
(1

)
u

m

FIG. 9. (Color online) The dependence of �̃(1)
um(0,q̃y,0) −

�̃(1)
um(0,0,0) on q̃y .

for the ky term in the integral equation

A(ky) + C(ky) = Bky(χ (0))2, (C2)

where A and C are given by

A(ky) =
∫ 


−


dqy

[
χ (0)(qy)

χ (0)
δ�(ky + qy)

]
− δ�(ky),

(C3)

C(ky) =
∫ 


−


dqyqyχ
(1)(ky,qy),

and we remind that χ (0)(qy) = 1/(q2
y + √|qy |/2), χ (0) is the

number (=6.09), and χ (1)(ky,qy) accounts for the contributions
from Kohn-Luttinger diagrams. We also used shorthand
notations δ�(ky) ≡ δ�(kx = 0,ky,ωm = 0) and χ (1)(ky,qy) ≡
χ (1)(kx = 0,ky,ωm = 0; qx = 0,qy,ω

′
m = 0) and we explicitly

restricted the momentum integration to |qy | < 
, where 
 is
the upper momentum cutoff for the low-energy theory.

To obtain B, we take the first and second derivatives of
Eq. (C2):

A′(ky) + C ′(ky) = B(χ (0))2, (C4)

A′′(ky) + C ′′(ky) = 0. (C5)

Integrating Eq. (C5) from its lower limit −
 to ky , we find

A′(ky) + C ′(ky) = A′(−
) + C ′(−
). (C6)

Hence

B(χ (0))2 = A′(−
) + C ′(−
). (C7)

Now, let us explicitly write

A′(−
) =
∫ 


−


dqy

χ (0)(qy)

χ (0)
[δ�′(qy − 
) − δ�′(−
)].

(C8)

Typical values of qy are set by χ (0)(qy) and are order O(1).
Because 
 � 1 by construction, δ�′(qy − 
) − δ�′(−
) =
O(1/
), i.e., A′(−
) is small and can be neglected. Then

B(χ (0))2 = C ′(−
) =
∫ 


−


dqyqy

∂χ (1)(ky,qy)

∂ky

∣∣∣∣
ky=−


. (C9)

We now need the explicit expression for χ (1)(ky,qy).
Evaluating explicitly the three Kohn-Luttinger contributions in
Fig. 7, we obtain, for zero external frequency and x component
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of momenta χ (1)(ky,qy) = 2χ (1)
a (ky,qy) + χ

(1)
b (ky,qy), where

χ (1)
a (ky,qy ; λ) = − 1

8π2

∫
du dx dy

iu − x − λ2(ky − y)2

1

iu + x − λ2(qy − y)2

× 1

x2 + y2 + ∑
a=±1 �̃

(0)
a (x,y,u)

1

(ky − qy)2 + √|ky − qy |/2
(C10)

and

χ
(1)
b (ky,qy ; λ) = − 3

8π2

∫
du dx dy

iu − x − λ2(ky + y)2

1

iu + x − λ2(qy − y)2

× 1

x2 + y2 + ∑
a=±1 �̃

(0)
a (x,y,u)

1

x2 + (y + ky − qy)2 + ∑
a=±1 �̃

(0)
a (x,y + ky − qy,u)

. (C11)

The difference in prefactors comes from different structures
in Pauli matrices convolution and is trivial to verify. In these
two integrals the λ2 terms in the denominator, together with
external momenta ky and qy , serve as an infrared cutoff.

One can easily make sure that the magnitude of C ′(−
)
depends on the value λ2
2. One can show that, if the momen-
tum cutoff along the FS is of order kF , λ2
2 ∼ (W/ḡ)2/3 � 1,
where W is the fermionic bandwidth. In this case we find that
B(χ (0))2 = C ′(−
) � 1. Then B � 1, and the renormaliza-
tion due to Kohn-Luttinger-type diagrams are small.

If, however, the momentum cutoff 
 is much smaller such
that λ
 is actually a small number, the integral for C ′(−
) in
(C9) contains ln 1

λ

. Collecting the contributions from (C10)

and (C11), we obtain at λ
 � 1

C ′(−
) = 10

3
(χ (0))2 ln

1

λ

+ O(1). (C12)

Using Eqs. (C9) and (C1), we find that Tc in this case will be
enhanced by a factor of exp B ∼ (λ
)−10/3.
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