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Quantum Monte Carlo study of spin-polarized deuterium
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The ground-state properties of spin-polarized deuterium (D↓) at zero temperature are obtained by means of
diffusion Monte Carlo calculations within the fixed-node approximation. Three D↓ species have been investigated
(D↓1, D↓2, D↓3), corresponding respectively to one, two, and three equally occupied nuclear-spin states. The
influence of the backflow correlations on the ground-state energy of the systems is explored. The equations
of state of liquid D↓2 and D↓3 are obtained and compared with the ones obtained in previous approximate
predictions. The density and pressure at which D↓1 experiences a gas-liquid transition at T = 0 are obtained.
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I. INTRODUCTION

As the simplest element in nature, hydrogen has been in-
vestigated theoretically and experimentally from the very first
beginnings of quantum theory. Since hydrogen appears in three
isotopic forms (hydrogen, deuterium, and tritium), it offers
even more interesting scientific investigation possibilities. The
interest of the scientific community in the study of electron
spin-polarized hydrogen (H↓) and its isotopes, spin-polarized
deuterium (D↓) and spin-polarized tritium (T↓), began after
Kolos and Wolniewicz (KW) calculated very precisely the
triplet pair potential b3�+

u in 1965.1 The enthusiasm for the
study of electron spin-polarized hydrogen and its isotopes
originated from the expectations to explore even more extreme
quantum matter than helium isotopes.2–4 Such expectations
were grounded on the extremely weak attraction of the triplet
pair potential b3�+

u through which two H↓ (D↓ or T↓)
atoms interact and on their even lighter masses compared
to helium isotopes. In addition, it was shown by Freed5 in
1980 that, within the Born-Oppenheimer approximation in
the spin-aligned electronic state, hydrogen nuclei behave as
effective bosons, as well as tritium nuclei.

Stwalley and Nosanow3 had proposed in 1976 H↓ as the
most promising candidate for achieving a Bose-Einstein con-
densate (BEC). This theoretical prediction was an important
impulse for the experimentalists because production of cold
samples always represented a huge experimental challenge.
The extensive H↓ study started in Amsterdam in 1980 when
Silvera and Walraven managed to stabilize a very dilute gas
of spin-polarized hydrogen.6,7 A long experimental journey
preceded the final realization of a BEC state in H↓. In 1998,
Fried et al.8 managed to form a BEC state of H↓ using
an experimental setup with a wall-free confinement and a
low evaporation rate. All spin-polarized hydrogen isotopes
are usually a mixture of hyperfine states, which is important
for confinement and stabilization of the system. In Ref. 9,
Greytak et al. concluded that it is not possible to confine in a
static magnetic trap the lowest two states, a and b (high-field
seeking states, Fig. 1 in Ref. 9), due to the impossibility of
having a maximum in the magnitude of the magnetic field in a
source-free region. Thus, stable states have to be sought among
the c and d states (low-field seeking states, Fig. 1 in Ref. 9),
which in pure magnetic traps have a local minimum in the field.
In the experiments described in Ref. 9, the doubly polarized

d state was used, usually designated as H ↑ ↑-- , in which both
electron and nuclear spins are polarized in the direction of the
magnetic field. The second, crossed arrow refers specifically
to the nuclear spin.

Those very important experimental achievements were
accompanied by new theoretical work. Recently, the ground-
state properties of H↓ have been investigated using the
diffusion Monte Carlo (DMC) method.10 By means of accurate
microscopic calculations it has been confirmed that H↓ does
not form a liquid phase at zero temperature, and in addition the
gas-solid phase transition was also examined. The ground-state
properties calculated with DMC are obtained using the triplet
pair potential b3�+

u , recently recalculated and extended to
larger interparticle distances by Jamieson et al. (JDW).11 The
DMC results are in good agreement with the conclusions
previously obtained with different variational methods by
other authors3,12–14 concerning the gas phase of bulk H↓. In
all of the theoretical studies, hyperfine interaction has not
been considered, and no magnetic field has been included,
so both H↓ and H↑ refer to the same system. Nuclear spins
are not explicitly labeled, and different hyperfine states are
degenerate in that approach. The same approach has been taken
in all theoretical studies of bulk properties of other hydrogen
isotopes as well.

The ground-state properties of tritium T↓ have also been
microscopically studied. Due to its larger mass and the fact
that T↓ atoms obey Bose statistics, it was predicted using
variational theory that T↓ forms a liquid at T = 0.4,12,15 Those
predictions have been recently confirmed using the DMC
method,16 and the densities at which the liquid-solid phase
transition occurs at T = 0 have been also determined. As in
the case of spin-polarized hydrogen,10 the DMC simulations
used the JDW interatomic potential. On the other hand, Blume
et al.17 pointed to T↓ as a possible new BEC gas in an optical
dipole trap because of its very broad Feshbach resonance,
which can be used to tune the interaction potential.

From the experimental point of view, the exploration of
D↓ started almost simultaneously with H↓ experiments.18 In
the same group in which a very dilute gas of spin-polarized
hydrogen was stabilized,6,7 D↓ was also the subject of
experimentation. Contrary to the stabilization of H↓, it was
not possible to achieve stable D↓ due to its adsorption on the
4He surface and its posterior recombination to form D2. The
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maximum of the achieved D↓ density in that experiment was at
least two orders of magnitude lower than the one achieved for
H↓. Even though D↓ was then not experimentally stabilized,
a lot of theoretical work was dedicated to this remarkable
quantum system.

Having in mind that D↓ is a Fermi system with nuclear
spin 1 and given the fact that different D↓ species are possible
depending on how D↓ atoms are distributed with respect to
the available nuclear-spin states (−1, 0, + 1), the ground-
state properties of this exciting system were studied in the
past.19–24 According to the best of our knowledge, microscopic
DMC calculations for spin-polarized deuterium have not been
performed yet, thus leaving the determination of the equation
of state for D↓ only at the variational level.

Previously, it was shown that when all three nuclear-spin
states are equally occupied, D↓3, the ground state is a liquid.20

The ground state of the system in which two nuclear-spin
states are equally occupied, D↓2, was studied by Panoff
and Clark using variational Monte Carlo (VMC).22 They
used an improved wave function which included optimal
Jastrow, triplet, and backflow correlations. The negative energy
per particle obtained at equilibrium density ρ0 = 0.004 Å−3

revealed that D↓2 also forms a self-bound liquid in the ground
state.

From the theoretical side, special attention was dedicated
to D↓1 because, as emphasized in Ref. 24, it has the best
chance of experimental realization due to its predicted gas
nature. Important theoretical results regarding the lifetime
of magnetically trapped D↓ gas were given in the works of
Koelman et al.25,26 The population dynamics of the hyperfine
levels of atomic deuterium, presented in Fig. 1 of Ref. 25, was
investigated as a function of the applied magnetic field. It was
shown25,26 that a mixture of the low-field-seeking hyperfine
δ, ε, and ζ states, confined in a static minimum-B-field
trap, will decay rapidly, due to spin exchange, towards the
doubly polarized gas D ↑↑-- of only ζ -state atoms. It was
also shown that D ↑↑-- stability should grow with decreasing
temperature. In that way D ↑ ↑-- was characterized as the most
stable B-field-trappable spin-polarized system. Since in the
theoretical studies of D↓1 magnetic field is not considered,
the direction of the spins is not specified, so the obtained
results refer to both D ↑ ↑-- and D ↓ ↓-- . However, after the
results of Koelman et al.25,26 it became clear that D ↑ ↑--
is the version of D↓1 (Ref. 27) which is the most likely
to be experimentally achieved. In 1995 Hayden and Hardy
studied extensively atomic hydrogen and deuterium mixtures
confined by liquid-helium-coated walls.28 The technique used
in their experiments enabled obtaining the information about
the two atomic densities simultaneously. In addition, recently,
magnetic trapping of the low-field-seeking deuterium atoms
after multistage Zeeman deceleration was achieved,29 opening
prospects for the experimental study of this system.

The nature of the ground state of D↓1 was not fully resolved
in Ref. 22 because of the obtained positive variational energy
per particle, even when the refinements to the ground-state trial
wave function were included in the description of the system.
Therefore, they could not predict with certainty the zero-
temperature phase of D↓1 and concluded that D↓1 may remain
in the gaseous state down to absolute zero, leaving open the
possibility that D↓1 could liquefy under a very slight pressure.

Their results have been qualitatively confirmed recently by
Skjetne and Østgaard with the Silvera interaction potential.23

In our recent VMC study of bulk D↓1 we investigated the
influence of the interaction potential on the D↓1 equation of
state, and we discussed the liquid-gas coexistence region.30

Our variational calculations showed that a gas-liquid transition
occurs at extremely low density of the gas (∼10−5 Å−3) and
very low pressure (∼0.0008 bar).

In the present work, we present results obtained using the
diffusion Monte Carlo method for the three spin-polarized
deuterium species, D↓1, D↓2, and D↓3, at zero temperature.
The sign problem due to their Fermi statistics is treated within
the fixed-node (FN) approximation. This approximation is one
of the most accurate theoretical methods for the prediction of
the ground-state properties of Fermi systems, especially in
cases in which the nodal surface of the trial wave function is
very close to the exact one. Interaction between D↓ atoms is
modeled using the newest JDW triplet pair potential b3�+

u .
This interaction is then smoothly connected to the long-range
behavior stated in Ref. 31. In addition to the microscopic
results of the energetic and structural properties of the D↓1,
D↓2, and D↓3 bulk systems at T = 0, we comment also on
the influence of the backflow correlations on the ground-state
energy at the DMC level. The obtained equilibrium densities
for D↓3 and D↓2 liquids are compared with those determined
in previous approximate descriptions. The gas-liquid phase
transition of D↓1 at T = 0 is explored using the DMC
method.

In Sec. II, the DMC method and the trial wave function
used for importance sampling are briefly described. The results
obtained for the three spin-polarized deuterium species, D↓1,
D↓2, and D↓3, including the equations of state as well as their
structural properties, are presented in Sec. III. Finally, the main
conclusions of this work are summarized in Sec. IV.

II. METHOD

The aim of the diffusion Monte Carlo method is to solve
stochastically the Schrödinger equation written in imaginary
time,

−h̄
∂�(R,t)

∂t
= (H − Er)�(R,t) , (1)

for an N -particle Hamiltonian

H = − h̄2

2m

N∑
i=1

∇2
i +

N∑
i<j

V (rij ) . (2)

The constant Er in Eq. (1) acts as a reference energy, and R ≡
(r1, . . . ,rN ) is known as a walker, which collectively denotes
the particle positions within the Monte Carlo methodology.
Introducing importance sampling, the Schrödinger equation
is rewritten in terms of the mixed distribution 	(R,t) =
�(R,t)ψ(R), where ψ(R) is a trial wave function. In the
diffusion process, the mixed distribution 	(R,t) is represented
by a set of walkers. The lowest-energy eigenfunction, not
orthogonal to ψ(R), survives in the limit t → ∞, and then the
sampling of the ground state for an N -body bosonic system
is effectively achieved. Because of the sign problem which
exists in the case of Fermi systems, �(R,t)ψ(R) is not always
positive. To satisfy the condition �(R,t)ψ(R) � 0 one relies
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on the fixed-node approximation in which �(R,t) and ψ(R)
have to change sign together, i.e., share the same nodes. Having
this in mind, the fixed-node energy obtained in the t → ∞
limit is an upper bound to the exact ground-state energy.

The trial wave function used in the present simulations
is the Jastrow-Slater model ψ(R) = ψAψJ = ψA

∏N
i<j f (rij ),

where ψJ is the Jastrow part of the trial wave function which
describes the dynamical correlations induced by V (rij ) and
ψA is the antisymmetric wave function which introduces the
statistics of Fermi particles. The Schiff-Verlet (SV)32 form

f (rij ) = exp

[
−1

2

(
b

rij

)5
]

, (3)

with variational parameter b, is used to model the two-body
correlations. The antisymmetric part of the trial wave function
ψA is modeled with a Slater determinant in the case of D↓1 and
the product of two and three Slater determinants in the case of
D↓2 and D↓3, respectively. Single-particle plane-wave orbitals
are used in the Slater determinant, ϕαi

(rj ) = exp(i kαi
rj ),

which correspond to the exact wave function of the Fermi
sea.

As usual for bulk system simulations with a finite number
of particles, a size-dependence analysis has to be performed.
We added to our DMC results the standard tail corrections, i.e.,
corrections coming from the finite size (L) of the simulation
box,

(E/N)t(ρ) = 2πρ

∫ ∞

L/2
dr r2V (r)

−h̄2

m
2πρ

∫ ∞

L/2
dr r2

(
2

r
u′(r) + u′′(r)

)
, (4)

assuming g(r) = 1 for r > L/2, with u(r) = −0.5(b/r)5. We
also add the Fermi correction for the ground-state energy of
the system. The Fermi correction is obtained as the difference
between the ground-state energy per particle of a free Fermi
gas [ 3

5
h̄2

2m
( 6π2ρ

ν
)

2
3 ], with ν being the spin degeneracy, and the

result obtained by summing the discrete contributions of wave
vectors ( h̄2k2

2m
) used in our finite N -particle simulation.

As shown in Ref. 30, it is enough to use 33 particles to
simulate bulk D↓1. The same values of the optimal variational
parameter b reported in Ref. 30 are used in the present diffusion
Monte Carlo calculations of D↓1 for the investigated density
range, from 0.00009 to 0.00634 Å−3. In the case of D↓2 and
a density range from 0.00282 to 0.00634 Å−3, the optimal
value of parameter b slightly increases from 3.89 to 3.97 Å.
The detailed size-dependence analysis for D↓2 at density ρ =
0.00493 Å−3 is given in Table I. As shown in Table I, the
minimum value of the Fermi correction is produced for the
66-particle system, and thus we decided to use this number of
particles in our study.

In the case of D↓3 and N = 57 the value b = 3.93 Å
minimizes the energy per particle at density ρ = 0.00352 Å−3.
This value coincides with the one used by Panoff and Clark in
their VMC study.22 To check whether this value of parameter b

does really optimize the energy, we have performed additional
optimizations with 99 particles. In the density range from
0.00282 to 0.00634 Å−3 the optimal value of parameter b does
not change significantly. Detailed size-dependence analysis

TABLE I. Energy per particle of D↓2 (in K) as a function of
the number of atoms included in the simulation for the density ρ =
0.00493 Å−3. Results are obtained with the VMC method and the
JDW interatomic potential.11 The numbers in parentheses are the
statistical errors.

E/N E/N Fermi E/N

N VMC tail correction total

38 0.81(1) −0.305 0.079 0.58(1)
54 0.84(1) −0.223 0.075 0.69(1)
66 0.84(1) −0.188 0.01 0.66(1)
114 0.83(1) −0.119 −0.031 0.68(1)

in the case of density ρ = 0.00282 Å−3 is given in Table II.
The minimum value of the Fermi correction is obtained for
N = 99 particles, which we decided to use in the D↓3 DMC
calculations.

Since the results of the FN approximation depend on the
quality of the trial wave function ψ , we improved the trial wave
function by introducing momentum-dependent correlations
in the antisymmetric trial wave function. These backflow
correlations have been modeled in a similar way as in the
work by Panoff and Clark,22 but omitting the long-range term
(λ′

B/r3), i.e., in the following way:

r̃j = rj + λB

∑
k 	=j

exp

[
−

(
rjk − rB

ωB

)2
]

(rj − rk), (5)

where λB , rB , and ωB are variational parameters.
At the variational Monte Carlo level the introduction of

backflow correlations in the case of D↓1 could not improve
the results because the optimization led to λB → 0 and the
decrease of the energy was practically zero. The variational
parameters that minimized the energy per particle of bulk
D↓2 are λB = 0.14, rB = 2.33 Å, and ωB = 1.68 Å, while
those of bulk D↓3 are λB = 0.56, rB = 1.28 Å, and ωB =
2.53 Å. For the three species we have minimized the
variational parameters of the backflow correlations at density
0.00352 Å−3, a value which is close to the equilibrium
density obtained with VMC when backflow correlations are
not included in the wave function.

For all three spin-polarized deuterium species we used a
DMC method accurate to second order in the time step �t .33

In order to reduce any systematic bias coming from the time
step and the mean number of walkers used in simulations, we
investigated carefully possible dependences. Typical values of

TABLE II. Energy per particle for D↓3 as a function of the
number of atoms included in the simulation (in K) at the density
ρ = 0.00282 Å−3. Results are obtained with the VMC method and
the JDW interatomic potential.11 The numbers in parentheses are the
statistical errors.

E/N E/N Fermi E/N

N VMC tail correction total

57 0.071(9) −0.077 0.041 0.035(9)
99 0.101(9) −0.047 0.005 0.060(9)
171 0.081(5) −0.028 −0.017 0.036(5)
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the number of walkers and the time step are 400 and 1 × 10−4

to 3 × 10−4 K−1, respectively.

III. RESULTS

A. D↓1

Bulk D↓1 is studied in the density range from 0.00003 to
0.00634 Å−3; the DMC energies are plotted in Fig. 1. Since
at the VMC level the introduction of backflow correlations
in the case of D↓1 could not improve the results, we tried
additional minimizations of the backflow parameters at the
DMC level. For ρ = 0.00423 Å−3, which is a density close
to the value at which the energy shows a minimum, we
performed additional DMC calculations in which we changed
the backflow parameters λB , rB , and ωB . In that way, we tried to
explore the quality of the nodes of our trial wave function. This
search showed that the energy per particle slightly decreases if
the DMC calculations are performed with values λB = 0.14,
rB = 2.43 Å, and ωB = 1.52 Å. The decrease of the energy
is practically negligible in the region of low density, while for
larger densities the decrease in energy increases to ∼13%.

We fitted our DMC results in the density range from
0.00282 to 0.00634 Å−3 using the polynomial form (e ≡
E/N )

e(ρ) = e0 + B

(
ρ − ρ0

ρ0

)2

+ C

(
ρ − ρ0

ρ0

)3

, (6)

with ρ0 and e0 being, respectively, the density and the energy
per particle at the minimum. For several densities, we report
the total and kinetic energy per particle in Table III. The kinetic
energy is calculated as the difference between the total energy
and the pure estimation of the potential energy.34 In this way,
the bias coming from the choice of the trial wave function used
in the simulations is removed.

The pressure and the speed of sound can be determined
from their thermodynamic definitions and the DMC equation
of state. The pressure of the system is given by

P (ρ) = ρ2

(
∂e

∂ρ

)
, (7)

 0.15

 0.3

 0.45

 0.6

0  0.002  0.004  0.006

E
/N

 (
K

)

ρ  (Å−3)

D↓1

FIG. 1. (Color online) Energy per particle of D↓1 without
backflow correlations (solid triangles) and with backflow correlations
(solid circles) as a function of the density ρ. The error bars of the
DMC energies are smaller than the size of the symbols.

TABLE III. Results for liquid D↓1 at different densities ρ, with
backflow correlations included in the model: energy per particle E/N ,
kinetic energy per particle T/N , pressure P , and speed of sound c.
Numbers in parentheses are the statistical errors.

ρ (Å−3) E/N (K) T/N (K) P (bars) c (m/s)

0.00423 0.109(1) 5.75(1) 0.01(1) 106(4)
0.00493 0.157(2) 6.94(1) 0.42(2) 157(6)
0.00563 0.288(2) 8.27(1) 1.21(6) 210(11)
0.00634 0.553(2) 9.75(1) 2.57(13) 267(17)

and the speed of sound is given by

c2(ρ) = 1

m

(
∂P

∂ρ

)
. (8)

In Table III we also report for several densities the pressure
and the speed of sound.

When the backflow correlations were not included in
the model, the fitting resulted in the best set of parameters
e0 = 0.1246(4) K, B = 1.263(7) K, C = 0.83(1) K, and ρ0 =
0.004169(3) Å−3, and when the backflow correlations were
included, the results were e0 = 0.1086(8) K, B = 1.31(2) K,
C = 0.8(1) K, and ρ0 = 0.00420(3) Å−3. The backflow
correlations move ρ0 to slightly higher values and lower e0

around 13%. The comparison of our result [e0 = 0.1086(8) K
and ρ0 = 0.00420(3) Å−3] with the best variational result of
Panoff and Clark reported in Ref. 22 [e0 = 0.26(1) K and
ρ0 = 0.004 Å−3] reveals also that DMC displaces ρ0 to a
higher density and lowers the energy per particle.

As is expected, the decrease of the energy due to the
diffusion process in the DMC method is more significant
than the one caused by improving the trial wave function
with backflow correlations. This is especially true in a fully
polarized phase as D↓1 because no s-wave scattering is
allowed.36

The results for the energy per particle that we present within
this work for D↓1 are in the liquid-gas coexistence region.2

In the literature, the liquid-gas coexistence region is defined
as the region in which a first-order gas-liquid phase transition
is possible at absolute zero. In order to construct a common
tangent to the liquid and the gas equations of state, i.e., the
double-tangent Maxwell construction, we plot in Fig. 2 our
results as a function of 1/ρ, i.e., the volume per particle
of the system. To proceed with the double-tangent Maxwell
construction we included the universal equation of state of a
Fermi gas in the region of very small densities.35 As one can see
in Fig. 2, DMC energies at densities ρ < 10−4 Å−3 reproduce
well this low-density expansion, plotted as a dashed line. The
presented results indicate that the gaseous state is the ground
state of D↓1 and that D↓1 liquefies by applying just a very
slight pressure at T = 0. A first-order gas-liquid transition
occurs at gas density ρ = 1.48 × 10−5 Å−3 [liquid density
ρ = 0.00421(1) Å−3] and at an extremely low pressure, p ∼
9 × 10−5 bar. With our former variational results,30 we
predicted the transition at the gas density ρ = 5.4 × 10−5 Å−3

[liquid density ρ = 0.00398(1) Å−3] and higher pressure, p ∼
8 × 10−4 bar. Both results of the transition imply that just the
application of an extremely low pressure is enough to liquefy
the gas.
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FIG. 2. (Color online) Energy per particle of D↓1 as a function
of 1/ρ in logarithmic scale. The dashed line represents the universal
equation of state of a Fermi gas in the region of very small densities.35

Our conclusion regarding the liquid-gas coexistence region
would be unaffected by the inclusion of a three-body interac-
tion potential.37 This interaction potential was used by Blume
et al.17 in the study of the ground-state properties of small
spin-polarized tritium clusters. In that work, Blume et al.17

showed that the inclusion of the three-body potential in the
Hamiltonian results in a small increase of the ground-state
energy of the clusters.

The ground-state structure properties of D↓1 are studied
by calculating the two-body radial distribution function g(r)
and its Fourier transform, the static structure factor S(k). In
Figs. 3 and 4, we show the DMC results obtained at different
densities using the method of pure estimators.34 As expected,
the main peak of g(r) shifts to shorter distances, and its
strength increases with the density. The more pronounced
structure weakly emerges for the largest density included
in the investigation, where a weak indication of the second
peak formation can be recognized. The inset shows g(r)
for the density ρ = 5.2 × 10−4 Å−3 and the free Fermi gas
distribution function (dashed line). Although the agreement

0

 0.4

 0.8

 1.2

3 6 9

g 
(r

)

r (Å)

0

 0.6

 1.2

0  10  20
0

 0.6

 1.2

0  10  20

FIG. 3. (Color online) Two-body radial distribution functions of
D↓1. From bottom to top in the height of the main peak, the results
correspond to densities 0.00493 Å−3 (solid line), 0.00563 Å−3 (dashed
line), and 0.00634 Å−3 (dotted line). The inset shows g(r) in the case
of extremely low density ρ = 5.2 × 10−4 Å−3 (solid line) and the
free Fermi gas distribution function (dashed line).

0

 0.4

 0.8

 1.2

0 1 2 3 4 5

s 
(k

)

k (Å−1)

0

 0.6

 1.2

0 2 4
0

 0.6

 1.2

0 2 4

FIG. 4. (Color online) Static structure function of D↓1. From
bottom to top in the height of the main peak, the results correspond
to densities 0.00493 Å−3 (dotted line), 0.00563 Å−3 (dashed line),
and 0.00634 Å−3 (solid line). The inset shows S(k) in the case of the
extremely low density ρ = 5.2 × 10−4 Å−3 (solid line) and the free
Fermi gas structure function (dashed line).

between the two presented functions is not perfect, the DMC
structural description of the very dilute regime of the system
approaches the free Fermi gas except at very short distances,
where the effect of the core of the interaction is evident.

A similar conclusion about the structure of the system can
be derived from the results of the static structure function S(k)
that we report in Fig. 4. The reported results are the Fourier
transforms of the g(r) functions except in the region of very
small k, where we used results obtained directly from the
calculations,

S(k) = 1

N

〈	0|ρk ρ−k|	0〉
〈	0|	0〉 , (9)

with

ρk =
N∑

i=1

eik·ri . (10)

In the very dilute regime, shown in the inset, the obtained S(k)
reproduces very well the expected S(k) behavior of the free
Fermi gas structure function.

B. D↓2

Bulk D↓2 is studied in the density range from 0.00282 to
0.00634 Å−3. In Table IV, we report the total and kinetic
energies per particle for several densities. For all studied
densities the DMC energies are plotted in Fig. 5. The same
analytical form (6) that we used to fit the liquid part of the
D↓1 data is used here to interpolate the equation of state

TABLE IV. Results for liquid D↓2 at different densities ρ, with
backflow correlations included in the model: energy per particle E/N ,
kinetic energy per particle T/N , pressure P , and speed of sound c.
Numbers in parentheses are the statistical errors.

ρ (Å−3) E/N (K) T/N (K) P (bars) c (m/s)

0.00352 −0.040(3) 4.51(2) −0.06(1) 70(3)
0.00493 0.054(3) 6.84(2) 0.63(2) 167(7)
0.00634 0.552(6) 9.68(4) 2.9(2) 276(15)
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FIG. 5. (Color online) Energy per particle of liquid D↓2 without
backflow correlations (solid triangles) and with backflow correlations
(solid circles) as a function of the density ρ. The solid and dashed
lines correspond to fits to the DMC energies using Eq. (6). The error
bars of the DMC energies are smaller than the size of the symbols.

of liquid D↓2. When the backflow correlations were not
included, the fitting resulted with the best set of parameters
e0 = −0.015(3) K, B = 0.84(4) K, C = 0.52(9) K, and ρ0 =
0.00367(2) Å−3, and the equation of state (6) is shown as
a solid line on top of the DMC data in Fig. 5. When the
backflow correlations were included in the model, the fitting
resulted with the best set of parameters e0 = −0.043(2) K,
B = 0.96(2) K, C = 0.56(6) K, and ρ0 = 0.00381(5) Å−3,
shown as a dashed line on top of the DMC data in Fig. 5. In
both cases the statistical uncertainties for the obtained fitting
parameters are given as numbers in parentheses.

With the diffusion Monte Carlo method it is possible to
obtain negative energies per particle for bulk D↓2 even without
backflow correlations. We could not obtain negative energies
per particle using the VMC method and a simple model of the
trial wave function in which only the SV type of correlation is
included, similar to what the authors in Ref. 22 noted. In the
same work, Panoff and Clark reported ρ0 = 0.004 Å−3 and
e0 = −0.08(1) K when the trial wave function was improved
with optimal Jastrow, triplet, and backflow correlations. Their
reported result for the equilibrium energy per particle is lower
than our best result, e0 = −0.043(2) K. However, they used
N = 54 particles and did not take into account the Fermi
correction (Table I) that amounts to ∼0.07 K. Including this
correction, their VMC energy becomes ∼−0.01 K, clearly
higher than our DMC result.

Concerning our results, one can see that the inclusion
of backflow correlations moves the equilibrium density to
a slightly higher value [from ρ0 = 0.00367(2) Å−3 to ρ0 =
0.00381(5) Å−3] and expectedly lowers the equilibrium energy
per particle [from e0 = −0.015(3) K to e0 = −0.043(2) K].
The value obtained in our DMC calculations for the equilib-
rium density ρ0 = 0.00381(5) Å−3 expressed in units of σ−3

is ρ0 = 0.191σ−3 (σH = 3.6892 Å), which is slightly lower
than the one obtained in the VMC calculations of Panoff and
Clark,22 ρ0 = 0.2σ−3.

Since liquid D↓2 resembles unpolarized liquid 3He, it is
useful to compare the equilibrium densities of both systems.
Our result for the equilibrium density of liquid D↓2, as well
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FIG. 6. (Color online) Pressure and speed of sound of D↓2 (solid
lines) and D↓3 (dashed lines) as a function of the density. Left (right)
scale corresponds to pressure (speed of sound).

as the result of Panoff and Clark, reveals a lower equilibrium
density compared to the one obtained in liquid 3He, ρ0 =
0.274σ−3 (σHe = 2.556 Å). A smaller difference was obtained
in the comparison of the equilibrium densities of Bose liquid
T↓ and liquid 4He. Namely, the equilibrium density of liquid
T↓ in terms of σH is ρ0 = 0.375σ−3, and the equilibrium
density of liquid 4He in terms of σHe is ρ0 = 0.365σ−3.

The extracted values for the pressure P and the speed
of sound c for several investigated densities are included in
Table IV. In addition, using Eqs. (7) and (8) we obtained
the functions P (ρ) and c(ρ), which we show in Fig. 6.
The speed of sound becomes zero in liquid D↓2 at the
density ρs = 0.002813 Å−3 = 0.141σ−3 and at a very small
negative pressure, Ps = −0.11(1) bar. In terms of σH , the
spinodal density in liquid D↓2 is lower than in liquid 3He
(ρs = 0.202σ−3) and is even closer to the equilibrium density
than in liquid 3He.

The two-body radial distribution function is also obtained
with pure estimators for liquid D↓2. We plot the DMC
results for g(r) of atoms having the same spin orientation
in Fig. 7 and of atoms having different spin orientations in
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r (Å)

FIG. 7. (Color online) Two-body radial distribution functions of
liquid D↓2 for atoms with the same spin orientation. The results
correspond to densities 0.00352 Å−3 (solid line), 0.00493 Å−3 (dashed
line), and 0.00634 Å−3 (dotted line).
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FIG. 8. (Color online) Two-body radial distribution functions of
liquid D↓2 for atoms having different spin orientations. From bottom
to top in the height of the main peak, the results correspond to densities
0.00352 Å−3 (solid line), 0.00493 Å−3 (dashed line), and 0.00634 Å−3

(dotted line).

Fig. 8. In both cases, when ρ increases, the structure starts
to become more pronounced, as can be seen in larger peaks
and smaller first-neighbor distances. On the other hand, the
comparison between the two-body radial distribution functions
in Figs. 7 and 8 reflects the spin-dependent difference which
is a consequence of the Fermi statistics. Since, between atoms
having the same spin, orientation repulsion is more effective,
due to the Pauli principle, the main peak in Fig. 7 at the
density ρ = 0.00352 Å−3 is practically not observed, while
for the same density the main peak can be clearly localized
in Fig. 8. Also, due to the effective attraction between atoms
having different spin orientations, the main peak at the density
ρ = 0.00634 Å−3 in Fig. 8 is significantly higher [g(r) > 1.2]
than the main peak at the same density in Fig. 7 [g(r) < 1.2].
A second peak emerging at larger r can be recognized at
ρ = 0.00634 Å−3 for the cases with the same and different
spin orientations of atoms. For the same densities, we report
in Fig. 9 the corresponding results for the total S(k). Similar
to D↓1 bulk, the main peak increases as the density increases.
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FIG. 9. (Color online) Static structure function of D↓2. From
bottom to top in the height of the main peak, the results correspond to
densities 0.00352 Å−3 (dotted line), 0.00493 Å−3 (dashed line), and
0.00634 Å−3 (solid line).
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FIG. 10. (Color online) Two-body radial distribution functions of
3He (r in σHe) and D↓2 (r in σH ) liquids at the equilibrium densities.

In order to compare 3He and D↓2 liquids from the structural
perspective we have calculated the two-body radial distribution
functions at the equilibrium densities of 3He and D↓2. The
FN-DMC calculation of liquid 3He has been carried out using
the HFD-B(HE) Aziz potential38 and N = 66 atoms. We plot
both distribution functions in Fig. 10, where r is expressed
in terms of σHe and σH . It is clear from the present results
that the two liquids show different structure. The main peak is
significantly higher in the case of liquid 3He. Also, formation
of the second peak can be recognized in the case of liquid
3He, while the second peak practically does not emerge in the
case of liquid D↓2. The obtained behavior is evidence of the
stronger interaction between 3He atoms.

C. D↓3

Liquid D↓3 is studied in the density range from 0.00282 to
0.00634 Å−3, and in Table V we report for several densities
the total and kinetic energies per particle. The DMC energies
are plotted in Fig. 11, and the equation of state is modeled
by the analytical form (6). When backflow correlations are
not included in the trial wave function, the fitting gives a
best set of parameters: e0 = −0.181(2) K, B = 0.87(4) K,
C = 0.52(7) K, and ρ0 = 0.00372(2) Å−3. The equation of
state (6) is plotted as a solid line on top of the DMC data. When
backflow correlations are incorporated, the best obtained
set of parameters is e0 = −0.229(1) K, B = 1.01(2) K,
C = 0.64(5) K, and ρ0 = 0.00389(2) Å−3. The corresponding
equation of state (6) is shown as a dashed line on top of the

TABLE V. Results for liquid D↓3 at different densities ρ, with
backflow correlations included in the model: energy per particle E/N ,
kinetic energy per particle T/N , pressure P , and speed of sound c.
Numbers in parentheses are the statistical errors.

ρ (Å−3) E/N (K) T/N (K) P (bars) c (m/s)

0.00352 −0.220(2) 4.34(2) −0.08(1) 65(3)
0.00493 −0.143(4) 6.60(4) 0.58(2) 164(5)
0.00634 0.327(6) 9.34(4) 2.9(1) 274(11)
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FIG. 11. (Color online) Energy per particle of liquid D↓3 without
(solid triangles) and with (solid circles) backflow correlations as a
function of the density ρ. The solid and dashed lines correspond to
fits to the DMC energies using Eq. (6). The error bars of the DMC
energies are smaller than the size of the symbols.

DMC data. In both cases, the statistical uncertainties for the
obtained fitting parameters are given as number in parentheses.

Our DMC results show that the ground state of D↓3 is a
liquid, even when backflow correlations are not incorporated
in the trial wave function. Panoff and Clark22 reported negative
VMC energies per particle for D↓3 in the case in which only
the two-body correlations are used to model the trial wave
function, indicating in that way that the ground state of the
system is a liquid. We reproduced their VMC results using 57
atoms and the same variational parameter b they used for the
SV correlations, and we noticed that their conclusion about
D↓3 ground state changes if the Fermi correction is added
to the VMC results. In the density range from 0.00282 to
0.00634 Å−3, the Fermi correction for N = 57 atoms increases
from 0.04 to 0.07 K. Adding this correction to the VMC results,
the energies become positive in the density range mentioned
above, and one cannot predict a liquid phase for D↓3.

If we compare our DMC results in which the backflow
correlations are absent with those in which the backflow
correlations are included, it is clear that including the backflow
correlations in the model shifts the equilibrium density to
a slightly higher value [from ρ0 = 0.00372(2) Å−3 to ρ0 =
0.00389(2) Å−3] and lowers the equilibrium energy [from
e0 = −0.181(2) K to e0 = −0.229(1) K], as was already
noticed for D↓2. In addition, the equilibrium density of D↓3

is always slightly higher than the equilibrium density of D↓2.
The result reported for the D↓3 equilibrium density in Ref. 22
is slightly higher (ρ0 = 0.004 Å−3) than the one we obtained
with the DMC method.

Even though the energy per particle at the equilibrium
density e0 = −0.229(1) K of D↓3 is lower than the one of
D↓2 [e0 = −0.043(2) K], it is still a small value, defining D↓3

as a weakly self-bound liquid, and also unique in the sense that
it does not possess its helium analog.

As in the case of D↓2, we used Eqs. (7) and (8) to calculate
the functions P (ρ) and c(ρ) for liquid D↓3. The extracted
values for the pressure P and the speed of sound c for several
densities are included in Table V, while functions P (ρ) and
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FIG. 12. (Color online) Two-body radial distribution function for
D↓1, D↓2, and D↓3 at the density 0.00493 Å−3 for atoms having the
same spin orientation.

c(ρ) for liquid D↓3 are added to Fig. 6, next to the results
obtained for liquid D↓2. In liquid D↓3, the speed of sound
becomes zero at the density ρs = 0.002903 Å−3 = 0.146σ−3

and at a small negative pressure Ps = −0.12(1) bar. It is
evident already from Fig. 6 that there is a small difference
between the spinodal densities in D↓2 and D↓3 liquids, even
though the spinodal pressures are rather similar. In addition,
very similar values of the pressure and the speed of sound
in D↓2 and D↓3 liquids are revealed from Fig. 6, as well as
from Tables IV and V in the remaining region of investigated
densities.

The two-body distribution functions of D↓3 have also been
calculated, and it is interesting to compare g(r) of the three
D↓ species for atoms having the same spin orientation, as well
as in D↓2 and D↓3 for atoms having different spin orientation.
At the density 0.00493 Å−3 we show the spin-dependent g(r)
in Figs. 12 and 13. The increase of the degeneration obviously
produces the effect of “density reduction” in the case of g(r)
of atoms having the same spin orientation (Fig. 12). A similar
effect is not noticed in the case of g(r) of atoms having different
spin orientation (Fig. 13).
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FIG. 13. (Color online) Two-body radial distribution function for
D↓2 and D↓3 at the density 0.00493 Å−3 for atoms having different
spin orientation.
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IV. CONCLUSIONS

The ground-state properties of the three spin-polarized
deuterium species (D↓1, D↓2, D↓3) have been accurately
determined using the DMC method within the fixed-node
approximation. The accuracy of the DMC method and precise
knowledge of the D↓-D↓ interatomic potential allowed for
a nearly exact determination of the main properties of these
systems. The best obtained results for the energy per particle
for all three D↓ species are summarized in Fig. 14. The energy
ordering for the three D↓ species, close to the equilibrium den-
sities, was found to be (E/N)D↓1 > (E/N)D↓2 > (E/N)D↓3

due to the degeneracy, as was already pointed out in previous
variational descriptions of the systems. Interestingly, our
results show that the equations of state of D↓1 and D↓2 cross at
pressure P = 2.8(2) bars, pointing to a possible ferromagnetic
transition from D↓2 to D↓1.

Our study confirms previous variational predictions for
the self-bound quantum liquids D↓2 [ρ0 = 0.00381(5) Å−3]
and D↓3 [ρ0 = 0.00389(2) Å−3]. The spinodal densities are
determined for both liquids. We also discuss the ground state
of D↓1 and predict the gas density and the pressure at which
D↓1 liquefies at T = 0, i.e., the conditions at which the system
undergoes a first-order gas-liquid phase transition.

Spin-polarized atomic deuterium is a paradigmatic example
of the relevance of quantum effects, mainly of the quantum
statistics, on the nature of condensed matter at very low
temperatures. The interatomic potential does not distinguish
between the three D↓ species because it is dominated by the
electronic structure. However, the occupation of the nuclear-
spin states is able of producing different physical phases due to
the relative weight of the Fermi statistical correlations. When
the Pauli principle becomes more important, in the D↓1 case,
the system is no longer a liquid at zero pressure as happens in
D↓2 and D↓3, but it is a gas. No such effect is observed in liquid
3He in which the complete spin polarization does not change its
liquid character. It could be that atomic deuterium is the only
physical system in which this spin-degeneracy mechanism
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FIG. 14. (Color online) Energy per particle of D↓1 (solid
squares), D↓2 (solid circles), and D↓3 (solid triangles) as a function of
the density ρ, with backflow correlations included in the model. The
lines correspond to fits to the DMC energies using Eq. (6). The error
bars of the DMC energies are smaller than the size of the symbols.

is able to modify zero-temperature phase diagrams. We hope
our work will stimulate further research of these extremely
quantum effects, from both theoretical and experimental sides.
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