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We employ the Klemm-Clem transformations to map the equations of motion for the Green functions of a
clean superconductor with a general ellipsoidal Fermi surface (FS) characterized by the effective masses m1,m2,
and m3 in the presence of an arbitrarily directed magnetic induction B = B(sin θ cos φ, sin θ sin φ, cos θ ) onto
those of a spherical FS. We then obtain the transformed gap equation for a transformed pairing interaction

Ṽ ( ˆ̃k, ˆ̃k
′
) appropriate for any orbital order parameter symmetry. We use these results to calculate the upper critical

induction Bc2(θ,φ) for an orthorhombic ferromagnetic superconductor with transition temperatures TCurie > Tc.
We assume the FS is split by strong spin-orbit coupling, with a single parallel-spin (↑↑) pairing interaction of
the p-wave polar state form locked onto the ê3 crystal axis normal to the spontaneous magnetization M0 ⊥ ê3

due to the ferromagnetism. The orbital harmonic oscillator eigenvalues are modified according to B → Bα,
where α(θ,φ) =

√
m3/m

√
cos2 θ + γ −2(φ) sin2 θ , γ 2(φ) = m3/(m1 cos2 φ + m2 sin2 φ) and m = (m1m2m3)1/3.

At fixed φ, the order parameter anisotropy causes Bc2 to exhibit a novel θ dependence, which for γ 2(φ) > 3
becomes a double peak at 0◦ < θ∗ < 90◦ and at 180◦ − θ∗, providing a sensitive bulk test of the order parameter
orbital symmetry in both phases of URhGe and in similar compounds still to be discovered.
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I. INTRODUCTION

Recent discoveries of materials with coexistent supercon-
ductivity and ferromagnetism and of superconducting doped
topological insulators have renewed interest in parallel-spin
triplet superconductivity, the simplest cases having p-wave
orbital symmetry.1–32 Ferromagnetic superconductors have
the ferromagnetic transition temperature TCurie exceeding the
superconducting transition temperature Tc. In ferromagnetic
superconductors, one can measure the temperature T and
orientation dependence of the upper critical field Hc2, at which
the superconductivity is destroyed by the applied magnetic
field H in combination with the ferromagnetic spontaneous
magnetization M0. However, in such materials, it is more
convenient to calculate the upper critical magnetic induction
Bc2, which arises from the complicated interplay of ferro-
magnetic and diamagnetic superconducting components in the
single function B = μ0 H + M, where M(H) is the field-
dependent magnetization. One can probe the bulk properties
of the superconductivity by measuring the T and differently
oriented H dependencies of Bc2 (Refs. 10–12,17–19,23).
Ambient pressure measurements of the bulk probe Bc2 and
of local probes such as muon depolarization experiments of
orthorhombic UCoGe (Refs. 1 and 2) and URhGe (Refs. 3–7)
showed that the superconductivity exists completely within
the ferromagnetic T range and that the same electrons are re-
sponsible for the superconductivity and the ferromagnetism.2,9

In some nonferromagnetic p-wave superconductors, such as
the purported doped topological insulators, although M0 = 0,
there can still be complications due to competing surface and
bulk properties. The variety of possible p-wave states can still
be characterized in those materials by bulk measurements of
Hc2(T ) for a variety of H orientations.

The orbital symmetry of the superconducting order param-
eter usually can be classified by its nodes both in the order

parameter and in the resulting superconducting energy gap. For
p-wave superconductors free of long-range ferromagnetism,
one may have a nodeless gap, such as for the isotropic
Balian-Werthamer (BW) state of 3He (Ref. 33), or a gap with
either planar nodes (polar state), or point nodes (axial state),
where it vanishes on the Fermi surface (FS). The symmetries
of these three basic order parameters are depicted in Fig. 1.
Each of these states possesses unique T and Ĥ orientational
dependencies of Hc2(T ), which are useful in identifying the
orbital symmetries experimentally. It was shown theoretically
by Scharnberg and Klemm that for p-wave superconductors
with an isotropic equal-spin pairing interaction of the form
V3D(k̂,k̂

′
) = V0 k̂ · k̂

′
, which leads to an isotropic BW state

for H = 0 with an isotropic gap function as sketched in
Fig. 1(a), Hc2(T ) is always given by that of the polar
state, Hc2,polar(T ) (Ref. 10), in which H always points in
an antinodal order parameter direction. This is analogous
to the interaction of H with spins through the rotationally
invariant Heisenberg interaction with an isotropic g tensor.
To avoid confusion with the various order parameter states,
we hereby designate Hc2,p antinodal(T ) ≡ Hc2,polar(T ). Except
for the p-wave chiral Anderson-Brinkman-Morel (ABM)
states,34 when H lies along the antinodal direction, Hc2(T ) =
Hc2,p antinodal(T ), even though the state symmetry may be very
different than that of the polar state. Hc2,p antinodal(T ) has a much
straighter T dependence than any other p-wave or s-wave
state in pure three-dimensional materials with a spherical (or
ellipsoidal, as shown here) FS.10 Although one might question
the notion of an isotropic p-wave pairing interaction in a
layered superconductor,35 the apparent presence of a rather
isotropic gap in the doped topological insulator, CuxBi2Se3

(Ref. 31), led the de Visser group to investigate Hc2(T )
both ‖ and ⊥ to the Bi2Se3 layers, and they found good
agreement with the appropriately scaled Hc2,p antinodal(T ) in
both directions.10,32
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FIG. 1. (Color online) Sketches of the three basic types of p-wave gap functions �(k̂). (a) The nonchiral BW, or isotropic gap 2|�0|
p-wave state, for which Hc2(T ) is given by Hc2,p antinodal(T ) for all H directions (Ref. 10). (b) The ABM and SK states. When these states have
their antinodal planes locked onto a uniaxial crystal plane, breaking the planar antinodal axial rotational symmetry, the chiral ABM states have
complex order parameters �0,±(k̂x ± ik̂y) with distinct Hc2,ABM nodal(T ) and Hc2,ABM antinodal(T ) for H along the nodal axis and antinodal planar
directions, respectively (Refs. 10 and 34). The SK state with order parameter

∑
σ=± �0,σ (k̂x + iσ k̂y) is more complicated. For H along the

nodal axis, the SK state is chiral with Hc2,SK nodal(T ) (Ref. 10). For H in the antinodal plane, the SK state is nonchiral with Hc2,p antinodal(T )
(Ref. 34). See text. (c) The nonchiral polar/CBS state. This state with order parameter �0kz has its antinodal axis locked onto a crystal axis
(e.g., the ẑ axis), breaking the point antinodal axial rotational symmetry. For H parallel and perpendicular to the antinodal axis, Hc2(T ) is,
respectively, Hc2,p antinodal(T ) and the distinct planar nodal form, Hc2,planar nodal(T ) (Ref. 11).

Scharnberg and Klemm also investigated the effects of two
pairing states perpendicular to H within the framework of
the rotationally symmetric V3D(k̂,k̂

′
). For H‖ ẑ, there are two

order parameter components, which are usually written as
�±(k̂) = �±,0(k̂x ± ik̂y), both components of which nomi-
nally share the same Tc. These are the two chiral manifestations
of the ABM state of 3He (Refs. 36 and 37), in which only
parallel-spin pairing with one spin state is involved. These
ABM states with H = 0 have a gap function with a nodal
point, as sketched in Fig. 1(b). Scharnberg and Klemm also
investigated Hc2(T ) for the special case of H along the nodal
point direction normal to the pairing plane of these chiral
ABM states, and found that Hc2,ABM nodal(T ) for either of these
ABM states exhibited a T dependence that rose even more
slowly with decreasing T than did Hc2,s(T ) for a pure, isotropic
s-wave superconductor on a spherical (or ellipsoidal, as shown
here) FS in the absence of Pauli-limiting effects.10

However, Scharnberg and Klemm then investigated the
effects of the two combined chiral ABM pairing states
perpendicular to H . In effect, they calculated Hc2(T ) for the
two-component Scharnberg-Klemm (SK) state consisting of
a linear mixture of the two chiral ABM states, �SK(k̂) =∑

σ=± �0,σ (k̂x + iσ k̂y) (Ref. 10). The SK state is a chiral
state except for the special cases when |�0,+| = |�0,−| =
�0, for which it is nonchiral. For those special cases,
one may write �SK(k̂) = �0

∑
σ=± eiψσ (k̂x + iσ k̂y), which

may be rewritten as �SK(k̂) = 2�0e
iφ+ sin θk cos(φk + φ−),

where φ± = (ψ+ ± ψ−)/2 is independent of k̂. Except for
the overall constant phase φ+, �SK(k̂) is therefore a real
function of k̂ and hence nonchiral whenever |�0,+| = |�0,−|.
The magnetic analog of this degenerate, two-component state
is the anisotropic XY model of spin-spin interactions, in
which there is an easy plane normal to a hard axis for
spin-spin interactions with H in that plane, but the interactions
within the easy plane can be either isotropic or anisotropic,
depending upon the field direction. Although they originally
denoted this as the “generalized ABM state”,10 this state

came to be known as the SK state.11,23,38 For H‖ ẑ, the
chiral SK state has Hc2,SK nodal(T ). However, for H ⊥ ẑ, the
SK state is nonchiral just below Hc2,p antinodal(T ) (Ref. 34).
The precise form of Hc2(θ,T ) for the SK state with uniaxial
effective mass anisotropy and its interesting signatures of a
chiral to nonchiral transition at intermediate θ values will
be presented elsewhere.34 Although not mentioned in the
original paper,10 the SK and ABM states might be favored
in superconductors with uniaxial symmetry such as certain
layered superconductors,35 for which V2D(k̂,k̂

′
) = V0(k̂x k̂

′
x +

k̂y k̂
′
y) could lock onto the layers, breaking the axial rotational

degree of freedom of the antinodal plane. Sr2RuO4 has often
been mentioned as a likely candidate for either the single
parallel-spin chiral ABM state or the dual parallel-spin SK
state, which is either chiral or nonchiral, depending upon
the direction of H , although many of the authors were
apparently unaware of the proper designation of the latter
state they described.24,25 For the ABM state, when H is
parallel to the antinodal plane, Hc2(T ) is given by the new
form Hc2,ABM antinodal(T ) (Ref. 34). Neither the ABM nor the
SK state appears to be consistent with the experiments of
Hc2,‖(T ) parallel to the layers of Sr2RuO4 (Refs. 26–28),
which show that Hc2,‖(T ) is strongly Pauli limited.30,35 Recent
scanning tunneling microscopy results on that material were
also inconsistent with gap nodes.29 Regardless of whether
Sr2RuO4 or some other as yet undiscovered material will be the
first manifestation of the SK or ABM states, Hc2(θ )(T ) at an
arbitrary angle θ with respect to the fixed nodal point direction
of the SK or ABM states with the normal state electrons on a
general ellipsoidal FS will be presented elsewhere.34

Finally, the case of particular interest in this paper is that of
an anisotropic p-wave pairing interaction with equal-spin pair-
ing along only one direction, the one-dimensional (1D) analog
of V3D(k̂,k̂

′
), or V1D(k̂,k̂

′
) = V0k̂zk̂

′
z (Ref. 11). This state,

�0kz, has come to be known as the polar/CBS state, for a polar
state of completely broken rotational symmetry, analogous
to the Ising interaction representing the dominant easy-axis
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component of the highly anisotropic three-dimensional (3D)
Heisenberg spin-spin interaction. A sketch of the polar/CBS
gap function is given in Fig. 1(c). As for the ABM or
SK superconducting states in a crystal, the pairing is fixed
to the crystal lattice, but in this case, to one crystal axis
direction only. The largest intrinsic anisotropy due solely to
the order parameter arises between the field applied parallel
and perpendicular to this single pairing direction. If the field is
along the pairing or antinodal direction, as in the 3D case,
one obtains Hc2,p antinodal(T ) (Ref. 10). However, when the
field is applied in the planar nodal direction perpendicular
to the pairing, then Hc2(T ) has a distinctly different form,
Hc2,planar nodal(T ), similar to but not identical to Hc2,s(T )
(Ref. 11). Summarizing the various cases evaluated prior to
this work, we have for all T with pairing on spherical FSs10,11,34

Hc2,p antinodal > Hc2,SK nodal > Hc2,ABM antinodal

> Hc2,s > Hc2,planar nodal > Hc2,ABM nodal. (1)

The angular dependence of either Hc2(T ) or Bc2(T ) for the
1D polar/CBS state case is important to aid experimentalists
in determining its realization in materials such as URhGe.
These new results are the focus of this paper. Since URhGe,
the existing material for which this polar/CBS state has
been strongly supported by experiment,4 has an orthorhombic
crystal structure,9,14–16 its FS can be approximated as a general
ellipsoid. Although the critical field data of UCoGe are
more suggestive of an SK or ABM state at low H values,
its crystal structure is also orthorhombic.9 Hence, we have
derived the prescription for including general ellipsoidal FS
anisotropies into microscopic calculations of Bc2(T ) for a
general anisotropic pairing interaction V (k̂,k̂

′
), and with the

magnetic induction B in a general direction. The details of
the derivation are presented in the Appendix. In this paper, we
used this procedure to calculate the full angular dependence
of Bc2(θ,φ,T ) for the polar/CBS state of a ferromagnetic
superconductor dominated by a single parallel-spin state, and
our results are presented.

In the extraordinary case of URhGe, Bc2(T ) measurements
on a sample with a residual resistance ratio (RRR) = 21 were
fit to the Scharnberg-Klemm theory of the p-wave polar/CBS
state along all three crystallographic directions, with equal spin
pairing along the a-axis direction and weak ferromagnetism
along the c-axis direction in the low-field regime, using the
resistively measured slopes of Bc2 along the a-, b-, and c-axis
directions just below the ferromagnetic demagnetization jumps
at Tc as the only fitting parameters.4 The measured Bc2,a(T )
fit the predicted Hc2,p antinodal(T ) behavior, but Bc2,b(T ) and
Bc2,c(T ) fit the qualitatively different Hc2,planar nodal(T ) curve,11

with a constant ratio Bc2,b(T )/Bc2,c(T ) consistent with
T -independent FS anisotropy. Bc2(0) in all three crystal direc-
tions violated the Pauli limit BP ∼ 1.85Tc T/K for a singlet-
spin s-wave superconductor,4 indicating that URhGe is very
unlikely to be an s- or d-wave superconductor. Consequently,
these data provided strong evidence that the superconducting
order parameter is likely to have the simplest parallel-spin
p-wave orbital form d̂ka consistent with ferromagnetism in the
bc plane of an orthorhombic crystal, where the pair-spin vector
d̂ = (b̂ + i ĉ)/

√
2, and the p-wave pairing interaction fixed to

the crystal a-axis direction for all M(H) ⊥ â directions and

the two possible parallel-spin states indicated by b̂ = |↑↑〉 and
ĉ = |↓↓〉 (Ref. 13).

Subsequent measurements on a URhGe sample with
RRR = 50 (Ref. 5) observed an anomalous high H‖b̂
reentrant superconducting phase,5 further supporting the idea
of a p-wave parallel spin state. But the low-field regime
Bc2(θ,φ = 0◦) within the ab plane was consistent with
ordinary FS anisotropy, at least within the experimental
resolution.5 At first sight, these results appear to be in
contradiction with the earlier measurements of Bc2 in URhGe
(Ref. 4).

Note that these results are different than those obtained
from hexagonal UPt3, which has antiferromagnetic domains
with the magnetic ordering along the a-axis direction, and for
H ⊥ ĉ, the resulting Hc2,⊥c(T ) is consistent with that of the
p-wave polar state.11,20,21 For H‖ĉ, the Hc2,‖c(T ) measure-
ments of Shivaram et al. and the calculations of Choi and
Sauls fit that of the polar state with Pauli pair breaking
for the antiparallel spin triplet state.19–21 UPt3 has three
superconducting phases, and appears to contain some amount
of all three triplet spin states.19,21,22

II. MODEL

In this paper, we calculate Bc2(θ,φ,T ) for a ferromag-
netic superconductor with TCurie > Tc and p-wave polar/CBS
symmetry. Since all three low-field Bc2(T ) curves for the
RRR = 21 crystal of URhGe have different slopes at Tc, the
simplest possible FS to consider is an ellipsoidal one, with
ε(k) = ∑3

i=1 k2
i /(2mi), having three different single particle

effective masses m1, m2, and m3, appropriate for orthorhombic
symmetry. We calculate Bc2 within the ab plane for the
RRR = 21 and 50 URhGe crystals, and predict that under some
conditions, a nonmonotonic Bc2(θ,φ) curve with a double
peak at 0◦ < θ∗ < 90◦ and 180◦ − θ∗ at fixed φ could arise,
providing a definitive bulk test of the orbital symmetry of the
order parameter. Our method is applicable to superconductors
of any order parameter symmetry.

For our Bc2 calculations, we assume the strong spin-orbit
interaction splits the FS into two FSs, each with only one spin
state ↑ or ↓, and neglect the ↓ FS, as if the material were nearly
a half metal. We further assume weak coupling for a clean
homogeneous type-II parallel-spin ↑ p-wave superconductor
with effective Hamiltonian,10,11

H =
∑

k

a
†
k,↑[ε(k − eA) − μ↑(B)]ak,↑

+ 1

2

∑
k,k′

a
†
k′,↑a

†
k,↑V↑↑(k̂,k̂

′
)ak,↑ak′,↑, (2)

V↑↑(k̂,k̂
′
) = 3V↑↑,0k̂a k̂

′
a d̂ · d̂

∗ = 3V↑↑,0k̂a k̂
′
a, (3)

where e is the electronic charge, d̂ is the vector representing
the |↑↑〉 pair spin states on the ↑ FS with chemical potential
μ↑(B) = μ − gμBB/2 including the Zeeman interaction,
where μB is the Bohr magneton, g = 2 is assumed to be
isotropic, and unit wave vectors are defined on the ellipsoidal
↑ FS to be

k̂i ≡
√

2mi

α(θ,φ)

∂

∂ki

√
ε(k)

∣∣∣∣
ε(k)=μ↑(B)

, (4)
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where

α(θ,φ) = [m1 sin2 θ cos2 φ + m2 sin2 θ sin2 φ+ m3 cos2 θ ]1/2,

(5)

mi = mi/m, m = (m1m2m3)1/3, and we set h̄ = kB = 1. The
ellipsoidal ↑ FS is assumed to be the best approximation to
that FS piece most relevant for the superconductivity that can
lead to analytic solutions of Bc2 (Refs. 14–16). The orbital
symmetry of the equal-spin pairing interaction is that of a
p wave locked onto the â ≡ ê3 axis of an orthorhombic
crystal with M0‖ĉ on an ellipsoidal FS containing single-
particle effective masses mi along the orthogonal êi directions,
respectively.13 The presence of α(θ,φ) in Eq. (4) is necessary
to ensure that the transformed unit wave vectors are normal to
the transformed spherical ↑ FS, and that Tc does not depend
upon the direction of B when B = 0. Here α(θ,φ) contains
the same effective mass directional dependencies as does the
anisotropic Ginzburg-Landau (AGL) model,35,39 although the
mi in this model differ in principle from the analogous AGL
model values, and can also be different on the two spin-orbit
split FSs. Since in this paper we only treat the ↑ FS, we drop
the spin subscripts to simplify the notation.

The spins are quantized along B = B(sin θ cos φ,

sin θ sin φ, cos θ ) = ∇ × A = μ0 H + M, including M0 for
the ferromagnetic superconductor,4 which we assume is
nonvanishing at and below Tc. We neglect additional spin-orbit
coupling effects that may tie the spin quantization axes to
the wave vector directions, since we are only interested in
parallel-spin pair states, for which the effects of spin-orbit
coupling on the Zeeman energy do not significantly affect Bc2.

III. MEAN-FIELD ANALYTIC SOLUTION OF THE MODEL

We begin with the mean-field equations of motion for the
finite T Green function matrix components in the presence of
B (Ref. 10), generalized to an ellipsoidal FS,⎡
⎣iωn −

3∑
j=1

1

2mj

(∇j /i− eAj (r))2 + μσ (B)

⎤
⎦Gσσ ′(r,r ′,ωn)

+
∑

ρ

∫
d3ξ�σρ(r,ξ )F †

ρσ ′(ξ ,r ′,ωn) = δσσ ′δ3(r − r ′),

(6)⎡
⎣−iωn −

3∑
j=1

1

2mj

(i∇j − eAj (r))2+ μσ (B)

⎤
⎦F

†
σσ ′(r,r ′,ωn)

−
∑

ρ

∫
d3ξ�∗

σρ(r,ξ )Gρσ ′(ξ ,r ′,ωn) = 0, (7)

where

�σσ ′(r,r ′) = δσσ ′Vσσ (r − r ′)Fσσ (r,r ′,0+) (8)

is the mean-field order parameter in position and imaginary
time (τ ) space and the ωn are the fermion Matsubara
frequencies, the Fourier series transform variables of τ . Here
and in the Appendix, we have kept the spin subscripts merely to
keep track of the various Green function matrix element factors

for future reference, but we are presently only considering the
|↑↑〉 spin state.

To study the full angle dependence of Bc2(θ,φ), we
implement the Maxwell equation-preserving Klemm-Clem
(KC) transformations,35,39 which are exact in the AGL model,
and were subsequently applied to a microscopic calcula-
tion of Bc2 in d-wave superconductors with m1 = m2 < m3

(Ref. 40). Here we use them to calculate the effects of a
general ellipsoidal FS on Bc2 for a p-wave superconduc-
tor in the polar/CBS state, for which the order parameter
anisotropy has a much stronger effect upon Bc2(θ,φ) than
in those d-wave cases.40 The first KC transformation is an
anisotropic scale transformation that changes the ellipsoidal
FS into a spherical FS.35,39 This also changes B to B′ =
B ′(sin θ ′ cos φ′, sin θ ′ sin φ′, cos θ ′), where θ ′ and φ′ are given
in the Appendix. Then one rotates B̂

′
to the crystal z′ axis.

Finally, one applies an isotropic scale transformation involving
α(θ,φ) (Refs. 35 and 39).

After imposing gauge invariance, making use of the
Helfand-Werthamer procedure based upon a Feynman
theorem,41 and Fourier transformation of the KC-transformed
real-space to KC-transformed momentum-space variables, we
obtain the single parallel-spin (↑↑) linearized gap equation.
The details of these calculations, including corrections of typos
in the literature, are given in the Appendix.10,41 We thus obtain,

�̃(R̃, ˆ̃k) = T
∑
ωn

N (0)

2

∫
d�k̃

′ Ṽ ( ˆ̃k,
ˆ̃k
′
)

×
∫ ∞

0
dξk̃

′e−2ξk̃′ |ωn|e−iξk̃′vF
ˆ̃k
′·�̃(R̃)�̃(R̃,

ˆ̃k
′
), (9)

where �̃ is the transformed �↑↑ amplitude without the gauge
phases, N (0) = mkF /(2π2) is the density of states per spin at
the chemical potential μ↑(B̃3) for an effectively isotropic metal
with a geometric mean mass m, effective Fermi wave vector
kF =

√
2mμ↑(B̃3), effective Fermi velocity vF = kF /m, and

�̃(R̃) = −iα∇̃R̃ + 2e Ã(R̃), (10)

where α(θ,φ) is given by Eq. (5). We also define the anisotropy
function

γ 2(φ) = m3

m1 cos2 φ + m2 sin2 φ
, (11)

so that α = √
m3

√
cos2 θ + γ −2(φ) sin2 θ . The KC transfor-

mations also modify the effective pairing interaction to become

Ṽ ( ˆ̃k, ˆ̃k
′
) = 3V0( ˆ̃k3 cos θ ′ − ˆ̃k2 sin θ ′)( ˆ̃k

′
3 cos θ ′ − ˆ̃k

′
2 sin θ ′),

(12)

where cos θ ′ = √
m3 cos θ/α, For an isotropic g tensor,

B̃3 = B as the KC transformations do not modify μ↑(B).
The transformations have two overall effects. First, B →

Bα(θ,φ) due to the transformed eigenvalues obtained from the
transformed harmonic oscillator operator �̃(R̃) in Eq. (10),
modifying the slope of Bc2 at Tc due to effective mass
anisotropy, even for an s-wave superconductor.35,39–42 Second,

the rotation changes V (k̂,k̂
′
) to Ṽ ( ˆ̃k,

ˆ̃k
′
), given by Eq. (12).

This differently alters Bc2(θ,φ,T ) from that of its slope at Tc.
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We then expand �(R̃, ˆ̃k) in terms of vortex harmonic
oscillator states just below Bc2 (Refs. 10 and 11),

�(R̃, ˆ̃k) = ( ˆ̃k3 cos θ ′ − ˆ̃k2 sin θ ′)
∞∑

n=0

an|n(R̃)〉, (13)

and obtain a general recursion relation for the expansion
coefficients an,

�nan = 1
2 sin2 θ ′(βnan+2 + βn−2an−2), (14)

�n = − ln t + cos2 θ ′α(p)
n + sin2 θ ′α(a)

n , (15)

α(p,a)
n = πT

∑
ωn

∫ π

0
dθk̃

′ sin θk̃
′

(
3 cos2 θk̃

′ ,
3

2
sin2 θk̃

′

)

×
∫ ∞

0
dξk̃

′e−2ξk̃′ |ωn|e−ηk̃′ /2Ln(ηk̃
′), (16)

βn = πT
∑
ωn

∫ π

0
dθk̃

′
3

2
sin3θk̃

′

∫ ∞

0
dξk̃

′e−2ξk̃′ |ωn|

×e−ηk̃′ /2(−ηk̃
′)L(2)

n (ηk̃
′ )[(n + 1)(n + 2)]−1/2, (17)

where

ηk̃
′ = eBα(θ,φ)v2

F ξ 2
k̃

′ sin2 θk̃
′ , (18)

t = T/Tc, Tc = (2eCω0/π ) exp[−1/N(0)V0], ω0 is a char-
acteristic pairing cutoff frequency, C ≈ 0.5772 is Euler’s
constant, and Ln(z) and L(2)

n (z) are a Laguerre and an
associated Laguerre polynomial, respectively.

The recursion relation for the an differs from that obtained
previously for the polar/CBS state for B in the nodal planar
direction11 only by the general θ ′ and by B → Bα(θ,φ).
Solving it iteratively, Bc2(θ,φ,t) is implicitly obtained from
the continued-fraction equation

�0 −
1
4 sin4θ ′β2

0

�2 − 1
4 sin4θ ′β2

2

�4···
= 0. (19)

Usually, four or five iterations yield sufficient accuracy to
detect the unusual effects described in the following.

IV. NUMERICAL RESULTS AND FITS TO EXPERIMENT

In Fig. 2(a), the reduced (dimensionless) magnetic in-
duction bc2 = 2eBc2v

2
F /(2πTc)2 is plotted versus t for a

spherical FS [γ 2(φ) = 1] and θ values increasing from 0◦ [at
which bc2(t) = bc2,p antinodal(t)10,11] to 90◦ [at which bc2(t) =
bc2,planar nodal(t)11] from top to bottom in increments of 10◦
(Ref. 11). bc2(θ,t) decreases monotonically with increasing θ ,
but is less sensitive to θ for θ ∼ 0◦ and especially for θ ∼ 90◦
than for ordinary FS anisotropy. As θ increases from 0◦ to
90◦, −dbc2(θ,t)/dt |t=1 decreases monotonically by an overall
factor of 1/

√
3. Since this slope variation is indistinguishable

from that which could arise from FS anisotropy, the same
curves are rescaled by −dbc2/dt |t=1 in Fig. 2(b). Order
parameter anisotropy effects are easiest to identify for t � 1
(Refs. 11 and 12).

FIG. 2. (a) Plots of the dimensionless bc2(θ,t) = 2eBc2v
2
F /

(2πTc)2 for the polar/CBS p-wave state on a spherical Fermi
surface with θ increasing from 0◦ [top, antinodal direction,
with bc2,p antinodal(t)] to 90◦ [bottom, planar nodal direction, with
bc2,planar nodal(t)] in increments of 10◦. See text. (b) The same curves
in Fig. 2(a) normalized by −dbc2/dt |t=1.

At fixed t , bc2(θ,φ,t) for a polar/CBS p-wave supercon-
ductor with an ellipsoidal FS only depends upon α(θ,φ)
and sin2 θ ′, bc2(π − θ,φ,t) = bc2(θ,φ,t), γ 2(φ) defined by
Eq. (11) contains the entire φ dependence of bc2 (Refs. 35
and 39), and −dbc2(θ,φ,t)/dt

∣∣
t=1 ∝ [3 sin2 θ/γ 2(φ) +

cos2 θ ]−1/2 (Ref. 11), suggesting γ 2(φ) = 3 signals a crossover
from order parameter to FS anisotropy as t → 1−.

In Fig. 3, we plotted bc2(θ,t)/bc2(0,t) for a variety of fixed
γ 2(φ) values at t = 0, 1

2 . At lower t and as γ 2(φ) increases from
0.1 to 3, there is an increasing difference between bc2(θ,t) and
the effective anisotropic mass form,

beff
c2 (θ ) = [

cos2 θ
/
b2

c2(0◦) + sin2 θ
/
b2

c2(90◦)
]−1/2

(20)

fitted at each t , where the fits are indicated by the dashed
curves. Anomalous peaks at 0◦ < θ∗ < 90◦ for γ 2(φ) > 3
are indicated by the arrows. For γ 2(φ) = 10, t = 1/2, bc2(θ )
only has a conventional maximum at θ = 90◦. The anomalous

FIG. 3. (Color online) Calculated bc2(θ,t)/bc2(0,t) (solid) and
fitted beff

c2 (θ,t)/bc2(0,t), Eq. (20), (dashed) curves at constant γ 2(φ)
values. The arrows indicate peak maxima at θ∗ points. (a) t = 0 (b)
t = 1/2. The inset is an enlargement of the 80◦ � θ � 90◦ region of
the γ 2(φ) = 5.9 curve, with the indicated vertical scale points 1.2545
and 1.2549.
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FIG. 4. (Color online) Calculated bc2(θ,t)/bc2(0,0) (solid) and
fitted beff

c2 (θ,t)/bc2(0,0), Eq. (20), (dashed) curves, for B ⊥ ĉ at
various t values for the Fermi surface effective mass values obtained
from experiment. (a) URhGe sample with RRR = 21 (Ref. 4).
(b) URhGe sample with RRR = 50 (Ref. 5).

bc2(θ ) is due to competing order parameter and FS anisotropy
effects.

We extracted the FS effective masses from the RRR = 21
URhGe crystal data.4 In Fig. 4(a) we present the calculated
bc2(θ,t)/bc2(0,0) in the ab plane (with B ⊥ ĉ) for different
t values as functions of θ . The dashed lines represent fits to
the corresponding fitted curves using Eq. (20). Order parameter
anisotropy effects in bc2(θ ) are significant for t � 1, but not for
t ∼ 1. Since the FS anisotropy is weaker in the ab plane than in
the ac plane, our results differ substantially in this plane from
those of Eq. (20). As noted above, in the bc plane (θ = 90◦),
bc2(φ) ∝ γ (φ) since their bc2,b(t) and bc2,c(t) data both fit the
planar nodal polar/CBS state bc2,planar nodal(t) (Ref. 4).

We also calculated bc2(θ,φ,t) for the RRR = 50 URhGe
sample.5 In Fig. 4(b), the calculated bc2(θ,t)/bc2(0,0) and
correspondingly fitted curves are plotted in the ab plane as
a function of θ for various t , including t = 0.16, the lowest
measurement value.5 As in Fig. 4(a), the dashed curves are
corresponding fits to Eq. (20).

In Fig. 5, we plotted log10[γ 2(φ)] versus θ∗, the anomalous
peak angle in bc2(θ,t). Anomalous peaks appear for λ(t) >

γ 2(φ) > 3, where λ(t) increases very rapidly with decreasing
t for t < 0.15, as shown in inset (a). Inset (b) details the
anomalous peak in bc2(θ,0) for γ 2(φ) = 104.

Conventional peaks in beff
c2 (θ ) occur only at either θ = 0◦

or θ = 90◦, but anomalous peaks only occur for 0◦ < θ∗ <

90◦. However, since bc2(θ,φ,t) = bc2(180◦ − θ,φ,t), a second
anomalous peak at 180◦ − θ∗ is reflection-symmetric in shape
about 90◦ to that of the first one. When θ∗ is close to 90◦,
the magnitude of each anomalous peak is very small, but
accurate measurements of this double peak could provide
a definitive bulk test of the orbital symmetry of the order
parameter.

V. DISCUSSION

The disappearing Shubnikov de Haas (SdH) oscillations
with increasing B in URhGe were claimed to be due to

FIG. 5. (Color online) Logarithmic plot of γ 2(φ) as a function of
θ∗, the peak angle in bc2(θ,t), at the indicated t values. Inset (a): Plot
of the 0◦ < θ∗ < 90◦ region versus log10[γ 2(φ)] and t . Inset (b): Plot
of bc2(θ,0)/bc2(0,0) versus θ near to θ∗ for γ 2(φ) = 104. The vertical
scale runs from 46.5 to 47.

a topological Lifshitz FS transition and a vanishing vF (B)
(Refs. 6 and 7), whereas the same effect in UCoGe was claimed
to be due to changes in the effective mass m(B) (Ref. 8).
Anomalously anisotropic magnetization M(H) measurements
of the T derivative γ (H) of the specific heat in URhGe were
claimed to support the latter interpretation.9 From the SdH
measurements,6 a strong H‖b̂ was also claimed to increase
the pairing interaction strength V0 and decrease the effective
vF (B) (Ref. 6) of the heavy-electron ellipsoidal FS responsible
for the pairing.14–16 We note that it could also be interpreted
in terms of changes in {mi(B)}, and that Bc2 and Hc2 differ
greatly for these field strengths due to the large M0‖ĉ (Ref. 7).
More importantly, if the order parameter in the reentrant phase
maintains the polar/CBS form,13 dramatic further increases
in V0 and potentially in γ 2(φ) would be expected as the
metamagnetic transition is approached,6 and the angle between
B and H would decrease dramatically,7 yielding an anomalous
peak in bc2(θ,t) as shown in Fig. 3. Further experiments on
URhGe to measure M(H) at Tc(H) are necessary to compare
with the calculated Bc2(θ,φ). Allowing V0 → V0(B) might
help to fit the reentrant phase. We have calculated γ (B)
self-consistently for an ellipsoidal FS in the presence of
M0. These results make the analysis more complicated, but
interesting. However, the derivation is lengthy, and will be
published separately, along with modifications to the present
fits to the URhGe Bc2 data.43

If Sr2RuO4 were either a chiral (or nonchiral, depending
upon the direction of H) SK or a chiral ABM px ± ipy

parallel-spin state locked onto the layers as widely purported,24

for H parallel to the layers Hc2,‖(T ) would be proportional
to either the rather linear Hc2,p antinodal(T ) or the less linear
Hc2,ABM antinodal(T ) (Refs. 10 and 34), respectively. The former
is shown as the top curve of Fig. 2(a), which differs very
substantially from the experimental curves,26–28 and the latter
also deviates substantially,34 although not as much, from the
Sr2RuO4 parallel Hc2(T ) data that bend strongly downwards
with decreasing T , precisely as expected for ordinary Pauli
limiting,27,30,35 and entirely consistent with scanning tunneling
microscopy results.29 This is in striking contrast to Bc2(T )
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measurements on URhGe and UCoGe, which violate the Pauli
limit by factors of 20 or more,3,5,9 presenting very strong
evidence for parallel-spin states. Fits of Hc2(θ,T ) to different
candidate Sr2RuO4 order parameter forms and reanalyses of
the Knight shift measurements are sorely needed.24,25,44

A variational approximation to our procedure was em-
ployed to fit the similarly extremely Pauli-limited in-plane
Hc2(90◦,φ,t � 1) of CeCu2Si2, in which a dxy order parameter
was surprisingly claimed to best explain the weak (≈0.5%)
azimuthal anisotropy observed.45 However, that very weak
azimuthal anisotropy observed in this extremely Pauli-limited
situation could also be explained by a 0.5% anisotropy in
the g tensor. Further measurements and a more accurate
calculation of Hc2(θ,φ,t) at intermediate θ values, where it
is not dominated by Pauli-limiting effects, could provide a
more definitive test of the order parameter symmetry.

Detailed Hc2(θ,φ,t) calculations for the proposed f -wave
forms of the C phase of UPt3 could provide supporting
information for that scenario.22 Including the intrinsic effective
mass anisotropy from an ellisoidal FS of the appropriate
symmetry could aid in the correct identification of the order
parameter symmetry in those and many other cases. In all three
of these cases, the inclusion of the KC-transformed Zeeman
terms with an antiparallel-spin triplet or singlet spin state
would first need to be made.

VI. SUMMARY AND CONCLUSION

From analytic expressions for parallel-spin, p-wave super-
conductors with completely broken symmetry, we calculated
Bc2(θ,φ,t) with general ellipsoidal Fermi surface anisotropy.
For fixed m3/(m1 cos2 φ + m2 sin2 φ) > 3, the competing ef-
fects of order parameter and Fermi surface anisotropy lead
to an anomalous double peak in Bc2(θ ) that can provide
a definitive test of order parameter symmetry in URhGe
and related compounds. Our method is generalizable to any
order parameter symmetry, provided that the Zeeman terms
are properly transformed for antiparallel spin pairing. It is
straightforward to generalize these calculations to include
pairing on two spin-orbit split bands.
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APPENDIX

Here we present the details of the KC transformations on the
Green functions and the resulting derivation of the microscopic
gap equation,39 and correct some typos in the literature.10 Here
we assume the charge of an electron is −e. The combined
anisotropic scale transformation, rotation, and isotropic scale

transformation may be written as

xμ = 1

α
√

mμ

∑
ν

λνμx̃ν, (A1)

∂

∂xμ

= α
√

mμ

∑
ν

λνμ

∂

∂x̃ν

, (A2)

Bμ = α√
mμ

∑
ν

λνμB̃ν = α√
mμ

λ3μB̃3, (A3)

Aμ = √
mμ

∑
ν

λνμÃν, (A4)

where

λ =

⎛
⎜⎝

sin φ′ − cos φ′ 0

cos θ ′ cos φ′ cos θ ′ sin φ′ − sin θ ′

sin θ ′ cos φ′ sin θ ′ sin φ′ cos θ ′

⎞
⎟⎠ (A5)

and ∑
μ

λνμλν ′μ = δνν ′ . (A6)

Note that λ13 = 0, mμ = mμ/m, m = (m1m2m3)1/3, and α =
α(θ,φ) is given by Eq. (5) of the text.35,39 The transformed
angles obtained after the anisotropic scale transformation are
given by

cos θ ′ =
√

m3

α
cos θ, (A7)

sin θ ′ = α(φ)

α
sin θ, (A8)

cos φ′ =
√

m1 cos φ

α(φ)
, (A9)

sin φ′ =
√

m2 sin φ

α(φ)
, (A10)

α(φ) = α(π/2,φ) = [m1 cos2 φ + m2 sin2 φ]1/2

= m3

γ 2(φ)
. (A11)

We begin with Eqs. (6) and (7) of the text. To transform
the quadratic operators on the left-hand sides, we expand the
gradient and vector potential components with Eqs. (A2) and
(A4), and make use of the rotation identity, Eq. (A6). With
regard to the delta function in Eq. (6), it is easily seen that

δ3(r) =
∫

d3k
(2π )3

eik·r (A12)

→ α3
∫

d3 k̃
(2π )3

ei k̃·r̃ (A13)

= α3δ3(r̃). (A14)

We note that d3k → α3(m1m2m3)1/2d3 k̃ = α3d3 k̃, as the
transformed volume element is invariant under all rotations.
Note that to transform k · r in the exponent, expand the
components of r and k according to Eqs. (A1) and (A2),
and again make use of the rotation identity, Eq. (A6). Note
that the scalar product of two vectors is invariant under all
rotations.
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We then may write the transformed Eqs. (6) and (7) of the
text as[

iωn − 1

2m̃
(∇̃/i − ẽ Ã(r̃))2 + μσ (B̃3)

]
G̃σσ ′(r̃,r̃ ′,ωn)

+
∑

ρ

∫
d3ξ̃

α3
�̃σρ(r̃,ξ̃ )F̃ †

ρσ ′(ξ̃
′
,r̃ ′,ωn) = α3δσσ ′δ3(r̃ − r̃ ′),

(A15)[
−iωn − 1

2m̃
(i∇̃ − ẽ Ã(r̃))2 + μσ (B̃3)

]
F̃

†
σσ ′(r̃,r̃ ′,ωn)

−
∑

ρ

∫
d3ξ̃

α3
�̃∗

σρ(r̃,ξ̃ )G̃ρσ ′(ξ̃
′
,r̃ ′,ωn) = 0, (A16)

where

ẽ = e/α, (A17)

and

m̃ = m/α2 (A18)

are the renormalized electronic charge magnitude and mass
due to the transformations, and G̃, F̃ †, and �̃ are complicated
functions of the transformed variables since the interaction
is best determined in momentum space, as in Eq. (3). The
factors of α−3 in Eqs. (A15) and (A16) arise from the KC
transformations, leading to d3ξ → α−3(m1m2m3)−1/2d3ξ̃ =
α−3d3ξ̃ , since the volume element is rotationally invariant.

Now to make the transformed functions gauge invariant,
we require the equations of motion in the variables r̃ and r̃ ′ to
be respectively invariant under

Ã(r̃) = Ã0(r̃) + ∇̃�(r̃), (A19)

Ã(r̃ ′) = Ã0(r̃ ′) + ∇̃′
�(r̃ ′), (A20)

where Ã0 can be taken to vanish. We then may write

G̃σσ ′(r̃,r̃ ′,ωn) = G̃σσ ′(r̃,r̃ ′,ωn)eiẽ[�(r̃)−�(r̃ ′)], (A21)

F̃
†
σσ ′(r̃,r̃ ′,ωn) = F̃

†
σσ ′(r̃,r̃ ′,ωn)e−iẽ[�(r̃)+�(r̃ ′)], (A22)

G̃σσ ′(r̃,r̃ ′,−ωn) = G̃σσ ′(r̃,r̃ ′,−ωn)eiẽ[�(r̃ ′)−�(r̃)], (A23)

F̃σσ ′(r̃,r̃ ′,ωn) = F̃ σσ ′(r̃,r̃ ′,ωn)eiẽ[�(r̃)+�(r̃ ′)], (A24)

as was done long ago for isotropic superconductors.46

We then examine the bare Green functions in the absence
of any pairing. We have[

±iωn − 1

2m̃
(∇̃/i ∓ ẽ Ã(r̃))2 + μσ (B̃3)

]
G̃0

σσ ′(r̃,r̃ ′,±ωn)

= δσσ ′α3δ(r̃ − r̃ ′). (A25)

These forms are easily shown to satisfy

G̃0
σσ ′(r̃,r̃ ′, ±ωn) = G̃

0

σσ ′(r̃,r̃ ′, ±ωn)e∓iẽφ(r̃,r̃ ′), (A26)

where

φ(r̃,r̃ ′) =
∫ r̃ ′

r̃
Ã(s̃) · d s̃ = �(r̃ ′) − �(r̃), (A27)

precisely as for a spherical Fermi surface, except that e → ẽ

and m → m̃. We note that G̃
0

σσ ′(r̃,r̃ ′, ±ωn) satisfies[
± iωn + ∇̃2

2m̃
+ μσ (B̃3)

]
G̃

0

σσ ′(r̃,r̃ ′, ±ωn)

= δσσ ′α3δ3(r̃ − r̃ ′), (A28)

which can be taken to be a function of r̃ − r̃ ′, and can therefore
be Fourier transformed. Writing

δ3(r̃ − r̃ ′) =
∫

d3 k̃
(2π )3

ei k̃·(r̃−r̃ ′), (A29)

G̃
0

σσ ′(r̃ − r̃ ′,±ωn) = α3
∫

d3 k̃
(2π )3

G̃
0

σσ ′(k̃,±ωn)ei k̃·(r̃−r̃ ′),

(A30)

and using Eq. (A28), we easily obtain

G̃
0

σσ ′(k̃,±ωn) = δσσ ′

±iωn − k̃
2
/(2m̃) + μσ (B̃3)

. (A31)

To obtain G̃
0

σσ ′(r̃,r̃ ′,±ωn) in real space, one can easily perform
the same contour integral as was done long ago for isotropic
superconductors on a spherical FS,46 obtaining

G̃
0

σσ ′(r̃ − r̃ ′,±ωn)

= α3
∫

d3 k̃
(2π )3

ei k̃·(r̃−r̃ ′) δσσ ′

±iωn − k̃
2

2m̃
+ μσ (B̃3)

(A32)

= − δσσ ′m̃α3

2π |r̃ − r̃ ′|e
±ik̃F |r̃−r̃ ′|sgn(ωn)−|ωn‖r̃−r̃ ′|/ṽF , (A33)

where k̃F = kF /α, ṽF = αvF , and m̃ is given by Eq. (A18).
In deriving Eq. (A33), it is easiest to first perform the angular
integrals, and then to note that∫ ∞

0
k̃dk̃(eik̃|r̃−r̃ ′| − e−ik̃|r̃−r̃ ′|)G̃

0

σσ ′(k̃,±ωm)

=
∫ ∞

−∞
k̃dk̃eik̃|r̃−r̃ ′|G̃

0

σσ ′(k̃,±ωm) (A34)

= −
∫ ∞

−∞
k̃dk̃e−ik̃|r̃−r̃ ′|G̃

0

σσ ′(k̃,±ωm). (A35)

Then set k̃ = k̃F + k̃ − k̃F , let μσ (B̃3) = k̃2
F /(2m̃), set ξk̃ =

(k̃ − k̃F )ṽF , and neglect the term proportional to ξ 2
k̃

. Then, if
±ωn > 0, use Eq. (A34), and close the contour in the upper
half plane. If ±ωn < 0, use Eq. (A35), and close the contour in
the lower half plane. Note that the sum over the ωn is performed
after the final gap equation is evaluated, so there is a single
pole at ξk̃ = ±iωn in Eq. (A32).

Equations (6) and (7) may be rewritten as

G̃σσ ′(r̃,r̃ ′,ωn) = G̃0
σσ (r̃,r̃ ′,ωn)δσσ ′ − α−6

∫
d3ξ̃d3ξ̃

′

×
∑

ρ

G̃0
σσ (r̃,ξ̃

′
,ωn)�̃σρ(ξ̃

′
,ξ̃ )F̃ †

ρσ ′(ξ̃ ,r̃ ′,ωn),

F̃σσ ′(r̃,r̃ ′,ωn) = α−6
∫

d3ξ̃d3ξ̃
′ ∑

ρ

G̃0
σσ (r̃,ξ̃ ,ωn)

× �̃σρ(ξ̃ ,ξ̃
′
)G̃ρσ ′(r̃ ′,ξ̃

′
,−ωn). (A36)
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In real space and imaginary time, the superconducting order
parameter is defined by

�̃σσ ′(r̃,r̃ ′) = Ṽ (r̃ − r̃ ′)F̃σσ ′(r̃,r̃ ′,0+), (A37)

resulting in the gap equation in the transformed variables,

�̃σσ ′(r̃,r̃ ′) = Ṽ (r̃ − r̃ ′)α−6T
∑
ωn

∑
ρ

∫
d3ξ̃d3ξ̃

′
G̃0

σσ (r̃,ξ̃ ,ωn)

× �̃σρ(ξ̃ ,ξ̃
′
)G̃ρσ ′(r̃ ′,ξ̃

′
,−ωn). (A38)

Since the order parameter is obtained from the F̃ function, we
have to include it to ensure gauge invariance. Thus, we write

�̃σσ ′(r̃,r̃ ′) = �̃σσ ′(r̃,r̃ ′)eiẽ[�(r̃)+�(r̃′)]. (A39)

Using Eqs. (A21), (A23), and (A39), and after dividing by the
exponents in Eq. (A39), we obtain

�̃σσ ′(r̃,r̃ ′) = Ṽ (r̃ − r̃ ′)α−6T

×
∑
ωn

∑
ρ

∫
d3ξ̃d3ξ̃

′
G̃

0

σσ (r̃ − ξ̃ ,ωn)

× e2iẽφ(r̃ ′,ξ̃ ′
)�̃σρ(ξ̃ ,ξ̃

′
)G̃ρσ ′(r̃ ′,ξ̃

′
,−ωn).

(A40)

We then rewrite the order parameter and the full Green
functions in terms of their centers of mass and relative
positions, obtaining

�̃σσ ′[(r̃ + r̃ ′)/2,r̃ − r̃ ′]

= Ṽ (r̃ − r̃ ′)α−6T
∑
ωn

∑
ρ

∫
d3ξ̃d3ξ̃

′
G̃

0

σσ (r̃ − ξ̃ ,ωn)

× exp

[
2iẽ

∫ ξ̃
′

r̃ ′
Ã(s̃) · d s̃

]
�̃σρ[(ξ̃ + ξ̃

′
)/2,ξ̃ − ξ̃

′
]

× G̃ρσ ′ [(r̃ ′ + ξ̃
′
)/2,r̃ ′ − ξ̃

′
,−ωn]. (A41)

Now, we let

R̃ = (r̃ + r̃ ′)/2 (A42)

be the center of mass of the unperturbed order parameter. Thus,
we may rewrite

�̃σρ[(ξ̃ + ξ̃
′
)/2,ξ̃ − ξ̃

′
] = exp([(ξ̃ + ξ̃

′
)/2 − r̃ ′′] · ∇̃ R̃)

× �̃σρ(R̃,ξ̃ − ξ̃
′
)|r̃ ′′=R̃, (A43)

G̃ρσ ′[(r̃ ′ + ξ̃
′
)/2,r̃ ′ − ξ̃

′
,−ωn]

= exp([(r̃ ′ + ξ̃
′
)/2 − r̃ ′′′] · ∇̃ R̃)

× G̃ρσ ′ (R̃,r̃ ′ − ξ̃
′
,−ωn)|r̃ ′′′=R̃. (A44)

Note that these operations are just reformulations of the Taylor
series expansions.

We then make the approximations that R̃ = (r̃ + r̃ ′)/2 ≈ r̃ ′

and (ξ̃ + ξ̃
′
)/2 ≈ ξ̃

′
, as the center of mass of the order

parameter is close to the positions of either paired electron.
Then

e2iẽφ(r̃ ′,ξ̃ ′
)�̃σρ[(ξ̃ + ξ̃

′
)/2,ξ̃ − ξ̃

′
]

× G̃ρσ ′[(r̃ ′ + ξ̃
′
)/2,r̃ ′ − ξ̃

′
,−ωn]

≈ e2iẽφ(r̃ ′,ξ̃ ′
)e(ξ̃

′−r̃ ′)·∇̃ R̃�̃σρ(R̃,ξ̃ − ξ̃
′
)

× e
1
2 (ξ̃

′−r̃ ′)·∇̃ R̃G̃ρσ ′(R̃,r̃ ′ − ξ̃
′
,−ωn)

= e(ξ̃
′−r̃ ′)·[∇̃ R̃+2iẽ Ã(R̃)]�̃σρ(R̃,ξ̃ − ξ̃

′
)

× e
1
2 (ξ̃

′−r̃ ′)·∇̃ R̃G̃ρσ ′(R̃,r̃ ′ − ξ̃
′
,−ωn), (A45)

where we set r̃ ′ ≈ R̃ and (ξ̃ + ξ̃
′
)/2 ≈ ξ̃

′
, and made use of

the Helfand-Werthamer procedure based upon a Feynman
theorem.41 Thus, the gap equation may be written as

�̃σσ ′(R̃,r̃ − r̃ ′)

= Ṽ (r̃ − r̃ ′)α−6T
∑
ωn

∑
ρ

∫
d3ξ̃d3ξ̃

′
G̃

0

σσ (r̃ − ξ̃ ,ωn)

×ei(ξ̃
′−r̃ ′)·�̃(R̃)/α�̃σρ(R̃,ξ̃ − ξ̃

′
)e

1
2 (ξ̃

′−r̃ ′)·∇̃ R̃

× G̃ρσ ′ (R̃,r̃ ′ − ξ̃
′
,−ωn), (A46)

where �̃(R̃) is given by Eq. (10) of the text. We note that this
expression differs slightly from that obtained previously, due
to an unfortunate typo that interchanged G with G0 (Ref. 10).
To clarify that this result is correct, we put in the spin indices
to preserve the matrix multiplications correctly. This change
does not affect the behavior at Hc2, however.

We note that at (or just barely below) Hc2 (or Bc2), the order
parameter is vanishingly small, so it suffices to set

G̃ρσ ′ (R̃,r̃ ′ − ξ̃
′
,−ωn) ≈ G̃

0

ρσ ′(r̃ ′ − ξ̃
′
,−ωn), (A47)

which is independent of R̃, and hence the factor e
1
2 (ξ̃

′−r̃ ′)·∇̃ R̃

can be set equal to unity. We thus have the equation in real
space for the calculation of Bc2,

�̃σσ ′(R̃,r̃ − r̃ ′)

= Ṽ (r̃ − r̃ ′)α−6T
∑
ωn

∫
d3ξ̃d3ξ̃

′
G̃

0

σσ (r̃ − ξ̃ ,ωn)

×ei(ξ̃
′−r̃ ′)·�̃(R̃)/α�̃σσ ′(R̃,ξ̃ − ξ̃

′
)G̃

0

σ ′σ ′(r̃ ′ − ξ̃
′
,−ωn).

(A48)

We remark that the pairing interaction is best defined in
momentum space, so we have to transform this equation to
the KC-transformed momentum space, which will allow us
to properly transform the pairing interaction. Hence, we shall
include enough intermediate steps to demonstrate the correct
α dependence of the KC-transformed gap equation.

To Fourier transform the right-hand side of Eq. (A48), we
first let ξ̃ → ξ̃ + r̃ and ξ̃

′ → ξ̃
′ + r̃ ′. This means we only need

to Fourier transform �̃σρ(R̃,ξ̃ + r̃ − ξ̃
′ − r̃ ′) to obtain all of

the r̃ − r̃ ′ terms in the exponent for comparison with that in the
left-hand side of Eq. (A48). In writing the Fourier transform,
we use the same transformation d3k → α3d3 k̃ as in Eq. (A14).

024504-9
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We then obtain

�̃σσ ′(R̃,k̃) = α−3
∫

d3 k̃
′

(2π )3

∫
d3ξ̃d3ξ̃

′
ei k̃

′ ·(ξ̃−ξ̃
′
)T

×
∑
ωn

Ṽ (k̃ − k̃
′
)G̃

0

σσ (ξ̃
′
,ωn)eiξ̃ ·�̃(R̃)/α

× �̃σσ ′(R̃,k̃
′
)G̃

0

σ ′σ ′(ξ̃ ,−ωn), (A49)

where we interchanged ξ̃ and ξ̃
′

for convenience, and we
assumed the sample to exhibit inversion symmetry in the
absence of a magnetic field.

We now need to write the transformed interaction Ṽ (k̃ − k̃
′
)

explicitly. We first note that the relevant part of an un-
transformed interaction of the form V0[(k̂ − k̂

′
)2 − 2] =

−2V0 k̂ · k̂
′
, is rotationally invariant, as studied previously.10

However, if we break this symmetry, and only allow the pairing
to be in one or two dimensions, we could have the relevant
bare interaction be as described in the text, V (k̂,k̂

′
) = V0k̂3k̂

′
3,

where k̂3 is given by Eq. (4) with i = 3. Then, making the KC
transformations, we obtain

Ṽ ( ˆ̃k, ˆ̃k
′
) = 3V0( ˆ̃k3 cos θ ′ − ˆ̃k2 sin θ ′)( ˆ̃k

′
3 cos θ ′ − ˆ̃k

′
2 sin θ ′).

(A50)
This leads to

�̃σσ ′(R̃,k̃)

= α−3
∫

d3 k̃
′

(2π )3

∫
d3ξ̃d3ξ̃

′
ei k̃

′ ·(ξ̃−ξ̃
′
)T

×
∑
ωn

3V0( ˆ̃k3 cos θ ′ − ˆ̃k2 sin θ ′)( ˆ̃k
′
3 cos θ ′ − ˆ̃k

′
2 sin θ ′)

× G̃
0

σσ (ξ̃
′
,ωn)eiξ̃ ·�̃(R̃)/α�̃σσ ′(R̃,k̃

′
)G̃

0

σ ′σ ′(ξ̃ ,−ωn).

(A51)

We then may write

�̃σσ ′(R̃,k̃) = �̃σσ ′(R̃)( ˆ̃k3 cos θ ′ − ˆ̃k2 sin θ ′), (A52)

leading to

�̃σσ ′(R̃) = α−3
∫

d3 k̃
′

(2π )3

∫
d3ξ̃d3ξ̃

′
ei k̃

′ ·(ξ̃−ξ̃
′
)T

×
∑
ωn

3V0( ˆ̃k
′
3 cos θ ′ − ˆ̃k

′
2 sin θ ′)2

× G̃
0

σσ (ξ̃
′
,ωn)eiξ̃ ·�̃(R̃)/α�̃σσ ′(R̃)G̃

0

σ ′σ ′(ξ̃ ,−ωn).

(A53)

Then, we invoke the mild approximation used previously,10∫
d3 k̃

′
ei k̃

′ ·(ξ̃−ξ̃
′
) ˆ̃k

′
μ

ˆ̃k
′
ν = (2π )3 ˆ̃ξμ

ˆ̃ξνδ
3(ξ̃ − ξ̃

′
), (A54)

which also works with the transformed variables. This leads to

�̃σσ ′(R̃) = α−33V0

∫
d3ξ̃

′
( ˆ̃ξ

′
3 cos θ ′ − ˆ̃ξ

′
2 sin θ ′)2

× T
∑
ωn

G̃
0

σσ (ξ̃
′
,ωn)eiξ̃ ′·�̃(R̃)/α�̃σσ ′(R̃)

× G̃
0

σ ′σ ′(ξ̃
′
,−ωn). (A55)

We then let ξ̃
′ = αξ̃ , and obtain

�̃σσ ′(R̃) = m23V0

(2π )2

∫
d3ξ̃

ξ̃ 2
( ˆ̃ξ 3 cos θ ′ − ˆ̃ξ 2 sin θ ′)2

×T
∑
ωn

e−2|ωn|ξ̃ /vF eiξ̃ ·�̃(R̃)�̃σσ ′(R̃), (A56)

which is exactly as for an isotropic Fermi surface, except for
the transformed p-wave polar/CBS state interaction and the
modification of �̃(R̃) due to α in Eq. (10). Note that in deriving
Eq. (A56), we used Eq. (A33) with r̃ − r̃ ′ → αξ̃ . Since this
form appears to describe the interaction in real space rather
than in the correct momentum space, we rewrite this equation

including the ˆ̃k or ˆ̃k
′

dependence of the order parameter, and
also include the pairing interaction. N (0), the single-spin
density of states, can also be included in the expression by

letting ξ̃ → ξk̃
′ ˆ̃k

′
vF . We then obtain the expression in terms

of the general transformed interaction Ṽ ( ˆ̃k, ˆ̃k
′
),

�̃(R̃, ˆ̃k) = T
N (0)

2

∑
ωn

∫
d�k̃

′ Ṽ ( ˆ̃k, ˆ̃k
′
)

×
∫ ∞

0
dξk̃

′e−2ξk̃′ |ωn|e−iξk̃′vF
ˆ̃k
′ ·�̃(R̃)�̃(R̃, ˆ̃k

′
),

(A57)

where Ṽ ( ˆ̃k, ˆ̃k
′
) for the polar state with completely broken

symmetry is given by Eq. (A50), but can be generalized to
any anisotropic form. Of course, for nonparallel spin states,
the Zeeman energies leading to Pauli pairbreaking and B
at an arbitrary direction must also be included and properly
transformed for an ellipsoidal FS.

We note that B̃ = ẑB̃3. Neglecting defects and surface
pinning effects, it is valid just below Bc2 to assume straight
vortices along ˆ̃z. For a spatially constant (single-ferromagnetic
domain) B̃3, the Ã(R̃) can then be chosen to be either −B̃3

ˆ̃X Ỹ

or B̃3
ˆ̃YX̃, mapping the eigenvalue problem onto that of a

one-dimensional (1D) harmonic oscillator.
To calculate Bc2, we expand �̃(R̃, ˆ̃k) in terms of the ˆ̃k

factor in Ṽ ( ˆ̃k, ˆ̃k
′
) and the R̃ part in terms of the 1D harmonic

oscillator eigenfunctions,10,41

�̃(R̃, ˆ̃k) = ( ˆ̃k3 cos θ ′ − ˆ̃k2 sin θ ′)
∞∑

n=0

an|n(R̃)〉. (A58)

The procedure is precisely the same as for the polar, SK
and polar/CBS states,10,11 with the only differences being
the θ ′ of the transformed interaction and the modification of
the operator from �(R) → �̃(R̃), where �̃(R̃) is given by
Eq. (10) of the text. As in those previous calculations,10,11,41

one requires the matrix elements

Mn′,n = 〈n′(R̃)|eiξk̃′ vF
ˆ̃k
′ ·�̃(R̃)|n(R̃)〉, (A59)

which must then be integrated over the angles arising from
ˆ̃k
′ · R̃. We write

�̃±(R̃) = 1√
2

[�̃x(R̃) ± i�̃y(R̃)], (A60)
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and since B̃ = ˆ̃zB̃3 is along the transformed z̃ axis, we may
write

eiξk̃′vF
ˆ̃k
′ ·�̃(R̃) = e

− 1
2 eBαv2

F ξ 2
k̃′ e

i√
2
vF ξk̃′ sin θk̃′ e−iφ

k̃′
�̃+(R̃)

× e
i√
2
vF ξk̃′ sin θk̃′ e+iφ

k̃′
�̃−(R̃)

eivF ξk̃′ cos θk̃′ �̃z(R̃).

(A61)

For straight vortices, �̃z(R̃)|n(R̃)〉 = 0. Hence, we may
drop the right factor containing �̃z(R̃). Note that for

this operator ordering, �̃n+1
− (R̃)|n(R̃)〉 = 0, and so on. It

is then easiest to expand the exponentials of the oper-
ators in the usual power series, and obtain the matrix
elements

M
p′,p
n′,n = 〈n′(R̃)|�̃p′

+ (R̃)�̃p
−(R̃)|n(R̃)〉. (A62)

Then, one evaluates the integrals over θk̃
′ , φk̃

′ , and
ξk̃

′ to obtain the relevant recursion relation for the an

coefficients.
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