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Microscopic derivation of spin-transfer torque in ferromagnets
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Spin-transfer torque (STT) provides key mechanisms for current-induced phenomena in ferromagnets. While it
is widely accepted that STT involves both adiabatic and nonadiabatic contributions, their underlying physics and
range of validity are quite controversial. By computing microscopically the response of conduction electron spins
to a time varying and spatially inhomogeneous magnetic background, we derive the adiabatic and nonadiabatic
STT in a unified fashion. Our result confirms the macroscopic theory [Phys. Rev. Lett. 93, 127204 (2004)] with
all coefficients matched exactly. Our derivation also reveals a benchmark on the validity of the result, which is
used to explain three recent measurements of the nonadiabatic STT in quite different settings.
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The interplay between current and magnetization is cur-
rently the central topic of spintronics.1 When a current flows
through a ferromagnetic metal, it becomes spin-polarized due
to local exchange coupling between conduction electron spins
and local magnetic moments. In turn, spin angular momentum
is transferred to magnetization through the mechanism known
as spin-transfer torque (STT),2,3 which is a consequence of spin
conservation. STT provides key mechanisms for numerous
intriguing phenomena in ferromagnets, such as current-driven
domain wall motion,4,5 spin wave excitations,6,7 etc. In
both fundamental studies and device designs, STT-driven
magnetization dynamics has aroused enormous attention in
the past two decades,8,9 and it is becoming the core issue
of spintronics. However, the fundamental physics underlying
STT is far from clear.

At present, STT is believed to be divided into adia-
batic (reactive) and nonadiabatic (dissipative) contributions.
While the former has been derived microscopically via
different approaches,2,10 the latter has only been justified
macroscopically through spin conservation3,11,12 and Galilean
invariance,13 whose microscopic origin is under intense de-
bate. In many recent efforts, microscopic theories have been
developed in generic ways14–18 and in specific contexts,19–22

but their coefficients do not lead to a consensus. Mean-
while, some others even cast doubt on the existence of the
nonadiabatic STT.23 From an experimental point of view,
measurements of this torque are not in agreement,24–26 and the
magnitude is sensitive to spin-orbit interaction27 and impurity
doping.28

In this paper, a microscopic derivation of the magnetization
dynamics induced by STT is provided. Based on the s-d
model,3 we first calculate the response of a conduction electron
spin to a time varying and spatially inhomogeneous magnetic
background M(r,t), and then we obtain the nonequilibrium
local spin accumulation δm [perpendicular to M(r,t)] by
integration over the conduction band. Due to the exchange
coupling between s-band electrons and d-band magnetic
moments, the backaction exerted on M(r,t) by the current
is proportional to δm × M, where the adiabatic and nonadi-
abatic STTs naturally appear on an equal footing. Our result
[Eq. (16)] justifies the macroscopic model3 with all coefficients
matched exactly. Our derivation also provides a benchmark
on the validity of the result, which is used to explain three

experimental results: why the nonadiabatic STT on narrow
domain walls26 shows deviations from Eq. (16), why Eq. (16)
is still valid even when an extraordinarily large nonadiabatic
STT is achieved,27 and why the nonadiabatic STT is enhanced
by impurity doping while the damping is not affected.28

We adopt the s-d model where electron transport is due
to the itinerant s-band. It will be treated separately from the
magnetization, which mostly originates from the localized d-
band. The conduction electrons interact with the magnetization
through the exchange coupling described by the following
Hamiltonian:

Hex = SJex

Ms

s · M(r,t), (1)

where s is the (dimensionless) spin of a conduction electron,
|M(r,t)| = Ms is the saturation magnetization, and S denotes
the magnitude of background spins. The coupling strength Jex

can be as large as an eV in transition metals and their alloys,
so that if M(r,t) varies slowly in space and time, conduction
electron spins will follow the background profile when the
system is in thermal equilibrium, which is known as the
adiabatic limit. However, when an external current is applied
to the system, a small nonequilibrium spin accumulation δm
transverse to local M(r,t) is induced. It is this δm that exerts
STT on the background magnetization.

To compute δm, we first study the spin response of an
individual conduction electron to the background M(r,t) when
current is applied. From Eq. (1), we know that local spin-up
(majority) and spin-down (minority) bands are separated by a
large gap � ≡ SJex = E↓ − E↑, and the associated spin wave
functions are denoted by |↑(r,t)〉 and |↓(r,t)〉. The electron is
described by a coherent wave packet centered at (rc,kc),29,30

|W 〉 =
∫

d3k w(k)eik·r |k〉[ca|↑(rc,t)〉 + cb|↓(rc,t)〉], (2)

where w(k) is a profile function that satisfies
∫

dk k|w(k)|2 =
kc; |k〉 is the periodic part of the local Bloch function; and ca ,cb

are superposition coefficients. Since |↑(rc,t)〉 and |↓(rc,t)〉
form a set of local spin bases with the quantization axis being
n(rc,t) = M(rc,t)/Ms , we can construct a local frame moving
with M(rc,t), where the coordinates are labeled by n, êθ , and
êφ in Fig. 1. The electron spin expressed in this local frame
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FIG. 1. (Color online) Eigenstates of Eq. (1) form a set of local
spin bases and define a local frame that moves with n = M/Ms .
Components of the conduction electron spin s (red) in the local frame
are denoted by s1, s2, and s3. In the tangential plane with normal n,
we make a coordinate transformation from êθ and êφ to ṅ and n × ṅ
so that everything expressed in the new basis is physical.

reads

s = {s1,s2,s3} = η†ση

= {2 Re(cac
∗
b), − 2 Im(cac

∗
b), |ca|2 − |cb|2}, (3)

where σ is a vector of Pauli matrices, and η = [ca,cb]T is
regarded as the spin wave function in the local basis.

The equations of motion are obtained from the universal
Lagrangian L = 〈W |ih̄∂t − H |W 〉 through the variational
principle,29 which involves not only the dynamics of rc and
kc but also the dynamics between the two (well-separated)
spin bands. The latter represents spin evolution with respect
to the local magnetization M(r,t) and exhibits fast rotating
character due to the large gap �. It should be distinguished
with adiabatic dynamics between degenerate bands.30 Due
to the space-time dependence of the local spin basis, Berry
gauge connections are induced in the effective Lagrangian
(Appendix A),

L = ih̄η†η̇ + η†[ṙc · A + �]η + h̄kc · ṙc − 1
2 s3� − E0, (4)

where E0 = 1
2 [E↑(kc) + E↓(kc)] denotes the average value of

local band energy; the gap � couples only with s3, which
resembles a local Zeeman energy. The Berry connections have
both a spatial component,

A = ih̄

[ 〈↑|∇|↑〉 〈↑|∇|↓〉
〈↓|∇|↑〉 〈↓|∇|↓〉

]
(5)

as a vector potential (note that ∇ = ∂
∂ rc

), and a temporal
component,

� = ih̄

[ 〈↑|∂t |↑〉 〈↑|∂t |↓〉
〈↓|∂t |↑〉 〈↓|∂t |↓〉

]
(6)

as a scalar potential. The local spin wave functions
are taken to be |↑〉 = [e−i

φ

2 cos θ
2 , ei

φ

2 sin θ
2 ]T and |↓〉 =

[−e−i
φ

2 sin θ
2 , ei

φ

2 cos θ
2 ]T, where θ = θ (rc,t) and φ = φ(rc,t)

are spherical angles specifying the direction of M(rc,t),
whose total time derivatives are θ̇ = ṙc · ∇θ + ∂tθ and φ̇ =
ṙc · ∇φ + ∂tφ. Then the Berry connection terms can be unified
into a 2 × 2 matrix,

ṙc · A + � = h̄

2

[
cos θφ̇ − sin θφ̇ − iθ̇

− sin θφ̇ + iθ̇ − cos θφ̇

]
. (7)

It is worth mentioning that freedom exists in the choice of
local spin wave functions, which leads to the gauge freedom
of the Berry gauge connection. More graphically, a specified
set of spin wave functions corresponds to a particular choice
of local frame in Fig. 1, and the relative orientation of the local
frame can be rotated about n by gauge transformations, thus
it is not physical. But everything will be expressed in terms of
gauge-invariant quantities in the end.

Regarding Eq. (3), the spin dynamics is obtained through
the variational principle δL/δη = 0. After some manipulations
(Appendix B), we obtain

⎡
⎣ ṡ1

ṡ2

ṡ3

⎤
⎦=

⎡
⎢⎢⎢⎣

0 cos θφ̇ − 1

τex
−θ̇

− cos θφ̇ + 1

τex
0 − sin θφ̇

θ̇ sin θφ̇ 0

⎤
⎥⎥⎥⎦
⎡
⎣ s1

s2

s3

⎤
⎦,

(8)

where τex = h̄/� is defined as the exchange time. Equation (8)
describes the coherent spin dynamics in the local frame moving
with M(rc,t). However, spin relaxation as a noncoherent
process should also be taken into account. In real materials,
spin relaxation is very case-dependent, but regardless of the
underlying mechanism, it adds a term − 1

τsf
(s − seq) to Eq. (8),

where τsf is the mean spin-flip time and seq = {0,0,1(−1)}
is the local equilibrium spin configuration for the majority
(minority) band E↑ (E↓). Equation (8) should be solved
numerically in general, but an approximation can be made
based upon the following considerations: the large gap �

results in an extremely small τex (typically of the order of
10−14–10−15 s). Thus on the time scale marked by τex, the
change of magnetization is negligible, i.e., magnitudes of ∂t M
and (ṙc · ∇)M are much smaller than Ms/τex. To this end,
we define two small parameters ε1 = τex sin θφ̇ and ε2 = τexθ̇

which satisfy
√

ε2
1 + ε2

2 = h̄|Ṁ|/(Ms�) � 1. On the same
time scale, variations of ε1 and ε2 are even higher-order small
quantities, thus it is a good approximation to treat ε1 and ε2

as constants, by which Eq. (8) becomes a set of first-order
differential equations with a constant coefficient matrix. As a
result, it can be solved analytically. Given the initial condition
s = seq, the solution of Eq. (8) for the majority band is obtained
in its original form in Appendix B, which, when maintaining
up to the lowest order in ε1,2, becomes the following:

s1(t) = ε1 − ξε2

1 + ξ 2
− e−ξ t̃

1 + ξ 2
[ε1(cos t̃ + ξ sin t̃)

+ ε2(sin t̃ − ξ cos t̃)], (9a)

s2(t) = −ξε1 + ε2

1 + ξ 2
− e−ξ t̃

1 + ξ 2
[ε1(sin t̃ − ξ cos t̃)

− ε2(cos t̃ + ξ sin t̃)], (9b)

s3(t) = 1 + e−ξ t̃

1 + ξ 2

(
ε2

1 + ε2
2

)
[cos t̃ + ξ sin t̃], (9c)

where t̃ = t/τex is the scaled time, and ξ = τex/τsf (this is
usually known as the β parameter in the literature).

As stated above, magnetization dynamics occurs on a time
scale T much larger than τex, thus the number N = T/τex 	 1.
This allows us to take a time average of the electron spin by
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defining 〈si〉 = 1
T

∫ T

0 si(t)dt . Then all time-dependent terms in
Eq. (9) will be negligible, because according to the expressions

1

T

∫ T

0
dt e−ξ t̃ cos t̃ = ξ + e−Nξ (sin N − ξ cos N )

N (1 + ξ 2)

<
1

N

[
ξ +

√
1 + ξ 2

1 + ξ 2

]
� 1

N

3
√

3

4
, (10a)

1

T

∫ T

0
dt e−ξ t̃ sin t̃ = 1 − e−Nξ (ξ sin N + cos N )

N (1 + ξ 2)

<
1

N

[
1 +

√
1 + ξ 2

1 + ξ 2

]
� 2

N
, (10b)

no matter how large ξ is, their upper bounds are suppressed by
N 	 1. Thus only time-independent terms of Eq. (9) survive
after the time averaging:

〈s1〉 = ε1 − ξε2

1 + ξ 2
, (11a)

〈s2〉 = −ξε1 + ε2

1 + ξ 2
, (11b)

〈s3〉 = 1. (11c)

If we write the spin as s = seq + δs, then δs = 〈s1〉êθ +
〈s2〉êφ . For the minority band, Eq. (11) only differs by an
overall minus sign. To express δs in terms of gauge-invariant
quantities, we need to make a coordinate transformation which
corresponds to a rotation of basis in the tangential plane
depicted in Fig. 1,[

ṅ
n × ṅ

]
= 


τex

[
ε2 ε1

−ε1 ε2

][
êθ

êφ

]
, (12)

where 
 = |ṅ|. Then we obtain

δs↑,↓ = ∓ τex

1 + ξ 2
[n × ṅ + ξ ṅ]

= ∓ τex

1 + ξ 2

[
n × ∂n

∂t
+ ξ

∂n
∂t

+ n × (ṙc · ∇)n + ξ (ṙc · ∇)n
]
, (13)

where ṅ = ∂t n + (ṙc · ∇)n has been used and ṙc = − ∂E↑,↓
h̄∂kc

is the center-of-mass velocity. The local nonequilibrium spin
accumulation is obtained by integration,

δm = μB

∫
dE[D↑(E)g↑(E)δs↑ + D↓(E)g↓(E)δs↓], (14)

where μB is the Bohr magneton, D↑,↓(E) is the density
of states, and g↑,↓(E) represents the distribution function.
In a weak electric field E and zero temperature, we have
g↑,↓(E) = f0↑,↓(E) + eτ0↑,↓ E · ∂E↑,↓

h̄∂kc

∂f0↑,↓
∂E , where f0↑,↓(E) is

the Fermi distribution function without electric field and τ0↑,↓
is the relaxation time. It should be noted that when the mean
spin-flip time τsf is assumed to be independent of energy, it is
equivalent to introducing it either by solving the Boltzmann
equation or in Eq. (8), and we have chosen the latter. Our target

now is to relate δm to the charge current,

j e = − e

h̄

∫
δE

[
D↑(E)g↑(E)

∂E↑
∂kc

+ D↓(E)g↓(E)
∂E↓
∂kc

]
.

Regarding Eqs. (13) and (14), terms involving electric field E
and τ0↑,↓ can be expressed in terms of j e. After some simple
algebra, we obtain

δm = τex

1 + ξ 2

[
− n0

M2
s

M × ∂ M
∂t

− ξn0

Ms

∂ M
∂t

+ μBP

eM2
s

M × ( j e · ∇)M + ξμBP

eMs

( j e · ∇)M
]

, (15)

where P = (nF
↑ − n↓F )/(nF

↑ + n↓F ) is the spin polarization,
with nF

↑(↓) being the electron density of the two bands at the
Fermi level, and n0 = μB

∫
dE[D↑(E)f0↑(E) − D↓(E)f0↓(E)]

is the local equilibrium spin density of conduction electrons,
which represents the s-band contribution to the total mag-
netization. For the s-d model, the magnetization is mainly
attributed to the d-band electrons, thus the ratio n0/Ms should
be very small. For example, in typical ferromagnetic metals
(Fe, Co, Ni, and their alloys), n0/Ms ∼ 10−2. Equation (15)
reproduces Eq. (8) in Ref. 3, but the above derivation is purely
microscopic, and the four terms of Eq. (15) can be traced back
to the four terms in Eq. (13), respectively.

From Eq. (1), the STT exerted on the background mag-
netization M(r,t) is T = (1/τexMs)δm × M, which should
be added to the Landau-Lifshitz-Gilbert equation: ∂ M/∂t =
γ Heff × M + (α/Ms)M × ∂ M/∂t + T , where γ is the gyro-
magnetic ratio, Heff is the effective magnetic field, and α is the
Gilbert damping parameter. The final form of magnetization
dynamics becomes

∂ M
∂t

= γ̃ Heff × M + α̃

Ms

M × ∂ M
∂t

+ 1

1 + η

[
(u · ∇)M − ξ

M
Ms

× (u · ∇)M
]

, (16)

where u = P j eμB/eMs(1 + ξ 2) is the effective electron
velocity, and η = (n0/Ms)/(1 + ξ 2) is a dimensionless factor.
The renormalized gyromagnetic ratio and Gilbert damping
parameter are

γ̃ = γ

1 + η
, α̃ = 1

1 + η
[α + ηξ ], (17)

where the renormalization originates from the first two terms
of Eq. (13) [or Eq. (15)], and they are determined by the local
equilibrium spin density n0 which exists even in the absence of
current. Equations (16) and (17) confirm the results of previous
macroscopic theory.3

Our microscopic derivation relies on two assumptions: local
equilibrium can be defined, and M is nearly constant on
the time scale marked by τex. The former requires diffusive
transport, which is usually the case in transition metals
and their alloys; the latter, however, is only true when the
characteristic length of the texture l (e.g., the domain-wall
width) satisfies l 	 vF τex, where vF is the Fermi velocity,
otherwise the solution Eqs. (9) and (11) are invalid. In a recent
experiment,26 people measured the nonadiabatic torque on
very narrow domain walls (1–10 nm) and found disagreement
with Eq. (16). A rough estimate using vF ∼ 3 × 105 m/s and
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� ∼ 1 eV tells us that vF τex is of the order of many angstroms,
thus a domain wall a few nm wide cannot be considered as,
l 	 vF τex. In that case, our local solution is no longer a good
approximation, because the time-dependent terms in Eq. (9)
become important and the averaging in Eq. (11) is no longer
good. As a result, STT may exhibit nonlocal behavior and also
oscillatory patterns in space.

The parameter ξ determines the relative strength of the
nonadiabatic torque with respect to the adiabatic torque. It
is very material-dependent and tunable in many different
ways.27,28 But according to Eqs. (10) and (11), the result is valid
regardless of the value of ξ ; only N = T/τex 	 1 is sufficient
to guarantee the negligence of the time-dependent terms of
Eq. (9). This can be used to explain a recent experiment in
which ξ is as large as 1,27 while the observed domain-wall
velocity is still fitted using the form of Eq. (16). However, we
should mention that large ξ is usually accompanied by large
spin-orbit coupling, which brings about spin-orbit torque in
addition to the nonadiabatic torque.31,32 This is an important
issue that has drawn attention very recently, but it goes beyond
the scope of this paper.

In another experiment, ξ is enhanced by increasing impurity
doping (which decreases τsf), but the damping is basically not
affected.28 This can be easily understood through Eq. (17):
since n0/Ms ∼ 10−2 is very small within the s-d model
description, η is a small quantity, hence α̃ could only be slightly
renormalized even if ξ has a sizable change.

A final remark concerns the spin motive force33 ESMF =
h̄
2e

n · (∂t n × ∇n), which is small but should be taken into
consideration in a strict sense. As a result, the electric field
should be replaced by the effective field Eeff = E + ESMF in
deriving Eq. (15) from Eqs. (13) and (14). This creates an
additional contribution to the renormalized α̃, which has been
studied recently via a quite different route.34
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APPENDIX A

Setting |u〉 = ca|↑(rc,t)〉 + cb|↓(rc,t)〉, the wave packet
is |W 〉 = ∫

d3k w(k)eik·r |k〉|u〉, where w(k) is the profile
function satisfying two conditions:

∫
dk|w(k)|2 = 1 and∫

dk k|w(k)|2 = kc, with kc being the center-of-mass momen-
tum. Then following a quite standard procedure,29 the effective
Lagrangian becomes

L = ih̄

〈
u

∣∣∣∣du

dt

〉
+ h̄kc · ṙc − 〈u|Hex|u〉. (A1)

Due to the orthogonality 〈↑|↓〉 = 0, the energy term becomes
〈u|Hex|u〉 = |ca|2E↑ + |cb|2E↓. From Eq. (3), we know that
s3 = |ca|2 − |cb|2 and |ca|2 + |cb|2 = 1, thus we have the

following:

〈u|Hex|u〉 = 1 + s3

2
E↑ + 1 − s3

2
E↓

= E↑ + E↓
2

+ s3
E↑ − E↓

2
= E0 + 1

2
s3�. (A2)

To compute the Berry connection term, we notice that∣∣∣∣du

dt

〉
= ċa|↑〉 + ċb|↓〉

+ [ca(ṙc · ∇ + ∂t )|↑〉 + cb(ṙc · ∇ + ∂t )|↓〉] , (A3)

where ∇ = ∂
∂ rc

. Multiplying by 〈u|, we have〈
u

∣∣∣∣du

dt

〉
= (c∗

aċa + c∗
bċb) + |ca|2〈↑|ṙc · ∇ + ∂t |↑〉

+ c∗
acb〈↑|ṙc·∇ + ∂t |↓〉+ |cb|2〈↓|ṙc·∇ + ∂t |↓〉

+ cac
∗
b〈↓|ṙc · ∇ + ∂t |↑〉. (A4)

Now define the Berry connection (2 × 2) matrices

A(rc,t) = ih̄

[ 〈↑|∇|↑〉 〈↑|∇|↓〉
〈↓|∇|↑〉 〈↓|∇|↓〉

]
, (A5)

�(rc,t) = ih̄

[ 〈↑|∂t |↑〉 〈↑|∂t |↓〉
〈↓|∂t |↑〉 〈↓|∂t |↓〉

]
, (A6)

which play the role of a vector potential and a scalar potential,
respectively. From Eqs. (A2), (A4), (A5), and (A6), we obtain
the effective Lagrangian,

L = ih̄η†η̇ + η†[ṙc · A + �]η + h̄kc · ṙc − 1
2 s3� − E0,

(A7)

where η = [ca,cb]T, thus Eq. (4) is justified. The local spin
wave functions are chosen to be

|↑〉 =
[

e−i
φ

2 cos θ
2

ei
φ

2 sin θ
2

]
, |↓〉 =

[
−e−i

φ

2 sin θ
2

ei
φ

2 cos θ
2

]
, (A8)

where θ and φ are spherical angles specifying the direction of
local magnetization M(r,t), hence they are functions of space
and time. Using Eq. (A8), the Berry connections (A5) and (A6)
can be written in a unified 2 × 2 matrix,

A (rc,t) ≡ ṙc · A(rc,t) + �(rc,t)

= h̄

2

[
cos θφ̇ − sin θφ̇ − iθ̇

− sin θφ̇ + iθ̇ − cos θφ̇

]
, (A9)

where θ̇ = ṙc · ∇θ + ∂tθ and φ̇ = ṙc · ∇φ + ∂tφ are total time
derivatives. It should be noted that the choice of Eq. (A8) is
not unique, which gives rise to the gauge freedom of the Berry
potential.

APPENDIX B

Decomposing the Berry potential A in terms of Pauli
matrices A = σiAi (adjoint representation), we have

{A1,A2,A3} = 1
2 Tr[σA ] = 1

2 {− sin θφ̇, θ̇ , cos θφ̇}, (B1)

where Tr[σiσj ] = 2δij has been used.
Taking the variation of the Lagrangian with respect to η,

we obtain the evolution of the spin wave function in the local
frame,

ih̄η̇ = ih̄
d

dt

[
ca

cb

]
= −A

[
ca

cb

]
+ �

2

[
ca

−cb

]
. (B2)
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From Eq. (B2) and its complex conjugate, we derive spin
dynamics in the local frame,

ih̄
d

dt
s = ih̄

d

dt
(η†ση) = ih̄(η̇†ση + η†σ η̇)

= (η†A ση − η†σA η)

+ �

2

(
[−c∗

a,c
∗
b]ση + η†σ

[
ca

−cb

])
. (B3)

To put Eq. (B3) into a simple and elegant form, we should
write it down component by component. The third component
of Eq. (B3) reads

ih̄ṡ3 = η†Ai[σi,σ3]η + �

2
(−|ca|2 − |cb|2 + |ca|2 + |cb|2)

= −2ih̄ηε3ijAiσjη + 0 = 2ih̄ε3ij siAj , (B4)

where εijk is the total antisymmetric tensor. The first compo-
nent reads

ih̄ṡ1 = η†Ai[σi,σ1]η + �(cac
∗
b − c∗

acb)

= −2ih̄ηε1ijAiσjη + 2i� Im[cac
∗
b]

= 2ih̄ε1ij siAj − i�s2, (B5)

and the second component reads

ih̄ṡ2 = η†Ai[σi,σ2]η + i�(cac
∗
b + c∗

acb)

= −2ih̄ηε2ijAiσjη + 2i� Re[cac
∗
b]

= 2ih̄ε2ij siAj + i�s1. (B6)

Now we are able to combine Eqs. (B4), (B5), and (B6) in a
matrix form,

⎡
⎣ ṡ1

ṡ2

ṡ3

⎤
⎦=

⎡
⎢⎢⎢⎣

0 cos θφ̇ − �

h̄
−θ̇

− cos θφ̇ + �

h̄
0 − sin θφ̇

θ̇ sin θφ̇ 0

⎤
⎥⎥⎥⎦
⎡
⎣ s1

s2

s3

⎤
⎦,

(B7)

where Eq. (B1) has been used. Defining τex = h̄/� as the
exchange time, Eq. (8) is justified.

As sin θφ̇, cos θφ̇, and θ̇ can be treated as constants on
the time scale marked by τex, Eq. (B7) can be solved ana-
lytically. Adding the relaxation term, the solution is obtained
upon the initial condition s = seq = {0,0,1} for the majority
band,

s1(t) = 1


2 + 1/τ 2
sf

{
1

τ
sin θφ̇ − 1

τsf
θ̇ − e−t/τsf

[
1

τ
sin θφ̇

(
cos 
t + 1


τsf
sin 
t

)
+ 
θ̇

(
sin 
t − 1


τsf
cos 
t

)]}
,

s2(t) = −1


2 + 1/τ 2
sf

{
1

τ
θ̇ + 1

τsf
sin θφ̇ + e−t/τsf

[

 sin θφ̇

(
sin 
t − 1


τsf
cos 
t

)
− 1

τ
θ̇

(
cos 
t + 1


τsf
sin 
t

)]}
,

s3(t) = 1


2 + 1/τ 2
sf

{
1

τ 2
+ 1

τ 2
sf

+ e−t/τsf (sin θφ̇2 + θ̇2)

(
cos 
t + 1


τsf
sin 
t

)}
,

where we have defined 
2 = 1/τ 2 + (sin θφ̇2 + θ̇2) and
1/τ = 1/τex − cos θφ̇. Since ε1 = τex sin θφ̇ and ε2 = τexθ̇

are small quantities, we have 
 ∼ 1
τex

[1 + O(ε2)], where the

first-order terms O(ε) all vanish. Regarding this, we neglect
second-order terms O(ε2) in the above equations, by which
Eq. (9) is justified.
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