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We propose a possible realization of the overscreened Kondo impurity problem by a magnetic s = 1/2
impurity embedded in a two-dimensional § = 1 U(1) spin liquid with a Fermi surface. This problem contains
an interesting interplay between non-Fermi-liquid behavior induced by a U(1) gauge field coupled to fermions
and a non-Fermi-liquid fixed point in the overscreened Kondo problem. Using a large-N expansion together with
an expansion in the dynamical exponent of the gauge field, we find that the coupling to the gauge field leads to
weak but observable changes in the physical properties of the system at the overscreened Kondo fixed point. We
discuss the extrapolation of this result to a physical case and argue that the realization of overscreened Kondo
physics could lead to observations of effects due to gauge fields.
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I. INTRODUCTION

Impurity models constitute an important chapter in modern
condensed-matter physics. Since the original paper by Kondo'
considering an electron sea screening a single-impurity spin,
this problem has attracted significant theoretical and experi-
mental attention.”>° More recently, impurity physics has been
studied in the context of strongly interacting systems. Numer-
ous examples include®! an impurity in systems with vanishing
density of states,”>?* high-temperature superconductors,’* and
quantum magnets.”>3° Quantum magnets are particularly
versatile as a host system, having a large number of possible
ground states with different low-energy excitations.

In this paper we consider a spin-half impurity embedded in a
spin-1 quantum paramagnet with a spin-liquid ground state.’!
We consider the situation where the low-energy excitations
of the paramagnet are described by emergent fermionic
excitations with a Fermi surface, coupled to a U (1) gauge field.
This study is motivated by the recent appearance of several
S =1 spin-liquid candidate materials.’>3® Theoretically, a
number of spin-liquid ground states for a spin-1 system
have been proposed.***! One possible scenario involves the
emergence of three fermionic excitations carrying spin-1
quantum numbers.’”**!" Assuming that Fermi surfaces of
these excitations are not destroyed by a pairing instability,
we obtain the host system that is considered below.

Impurity physics in a spin-1/2 spin liquid has been
considered in the context of bosonic spin liquids,*® algebraic
spin liquids,?”® and spin liquids with a Fermi surface.’® In
particular, Ribeiro and Lee*” concluded that the physics of a
spin-1/2 impurity embedded in a spin liquid with § = 1/2
fermionic excitations is similar to that of the conventional
Kondo problem.!* In what follows we argue that a spin-
1/2 impurity in a S =1 spin liquid with a Fermi surface
realizes overscreened Kondo physics. Although our results
are qualitatively similar to the overscreened Kondo effect in
conventional systems, there are observable differences due to
the presence of an emergent gauge field coupled to spinons.

Our findings suggest that an impurity in a S = 1 spin liquid
can be used to probe fermionic excitations. As these excitations
do not carry a charge, their experimental detection is a difficult
problem. Different experimental probes have been suggested
in the context of spin-1/2 spin liquids.*>*” We suggest that the
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realization of overscreened Kondo physics is a possible way to
unravel the physics of a spin-1 spin liquid, allowing probes of
fermionic excitations, as well as the presence of an emergent
gauge field.

Overscreened Kondo physics is realized in multichannel
Kondo models, where a single spin is coupled to N copies
(flavors) of itinerant electrons.* On the one hand, such a
generalization of the original Kondo model may be seen as
merely a theoretical tool, allowing a perturbative expansion
in 1/N. On the other hand, the physics changes drastically
depending on the interrelation between impurity spin length
s and the number of flavors coupled to the impurity. When
the number of flavors N is just enough or less than needed to
screen the impurity spin, N < 2s, antiferromagnetic coupling
between the impurity and electrons flows to infinity in the
infrared, meaning that at low temperatures impurity spin is
screened to the maximum possible extent by electrons. For the
case of perfect screening, N = 2s, this results in Fermi-liquid
behavior.>'* In the underscreened case residual ferromagnetic
interaction leads to a singular Fermi liquid.***’ However,
in the overscreened regime, N > 2s, i.e., when there are
more channels than required to screen the impurity spin, the
system has a non-Fermi-liquid fixed point. 7! This state is
characterized by singularities in different physical observables,
such as impurity spin susceptibility, specific heat, etc. It is
particularly interesting as a solvable example of a system with a
non-Fermi-liquid fixed point.® Despite the rich and interesting
physics, the overscreened regime of the Kondo model has only
a few realizations (in particular quantum dots and two-level
systems.!>131059) Hence our system is also interesting as a
possible implementation of overscreened Kondo physics.

Qualitatively, the problem of a spin-1/2 impurity hosted by
anisotropic S = 1 spin liquid looks similar to the conventional
overscreened Kondo impurity model. When coupled antifer-
romagnetically, itinerant excitations carrying spin-1 quantum
numbers cannot screen the impurity. However, the presence
of a gauge field effectively enforcing a single-occupancy
constraint for fermionic excitations makes these two problems
different. Even without the impurity, fermions are in a non-
Fermi-liquid regime®'~’ due to the gauge field. The fermion
propagator is dressed by a singular self-energy, so there are
no well-defined quasiparticle excitations in the system. This is
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manifested, for example, in the singular behavior of the specific
heat C o« T?/ in two dimensions at low temperatures.>'->

Coupling the impurity to fermions with non-Fermi-liquid
behavior allows us to study the interplay between the gauge
field induced non-Fermi-liquid behavior and the Kondo non-
Fermi-liquid fixed point. The conventional approach to the
Kondo problem is either an exact solution by mapping it onto
a one-dimensional problem®'” or 1/N expansion. Neither
method is directly applicable in our case. The presence
of a gauge field impedes the mapping of our model to a
one-dimensional problem in the radial channel. On the other
hand, arigorous 1/N expansion is not possible due to singular
self-energy corrections.’®® The latter issue has been recently
resolved in the paper by Mross et al.,”’ where a controlled
double-expansion scheme has been provided. It combines the
1/N expansion with an expansion in another small parameter
(related to the dynamical critical exponent of the gauge field).

We adapt the recently developed double-expansion
method®” to our problem. Since the double expansion includes
the large N limit, we expect to have a perturbatively accessible
fixed point. At leading order, the gauge field does not affect
the position of this non-Fermi-liquid Kondo fixed point.
However, it leads to corrections to the scaling dimension of the
Kondo coupling. Assuming that the results obtained using the
double expansion interpolate to the physical case, we conclude
that physical properties such as impurity spin susceptibility,
specific heat, etc., are still characterized by singular behavior.
Unlike the case of the Kondo model in the regime of perfect
screening,®® where the coupling to the gauge field has no
consequences to leading order in 1/N, in our case the gauge
field influences Kondo physics.

The rest of the paper is organized as follows. In the
remainder of this section, we introduce the basics of our
model and diagram technique and briefly explain the idea
behind double expansion. In Sec. II we first review known
results for the B function in the overscreened Kondo problem
without the gauge field. Afterwards, we calculate the
function with the gauge field and study the changes in scaling
behavior of different physical quantities. Finally, in Sec. III
we discuss the extrapolation of our findings beyond the double
expansion and comment on possible experimental realizations
and experiments to detect Kondo physics. Details regarding the
calculation of corrections to the 8 function due to the gauge
field are given in Appendixes A and B.

A. Spin liquid with fermionic excitations and impurity

Let us consider a spin Hamiltonian on a lattice consisting
of spin-1 sites,

Hgpin = Z[Jijsi 8+ Kij(Si - S)P 4, (1)
ij

where the ellipsis denotes other possible terms such as
ring exchange. We are motivated by recent work*' which
shows evidence of stabilizing a spin-liquid phase with spinon
Fermi surface on a triangular lattice with nearest-neighbor
bilinear and biquadratic spin interactions along with ring-
exchange terms. The low-energy description of such a state
is a theory of fermions strongly coupled to a U(1) gauge
field. From now on we assume that such a spin-liquid state
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exists and work only with the low-energy effective theory
described below.

Referring the reader to the literature for more detailed
discussions of the effective theory,’® we only summarize the
results. A spin-1 operator at a given site is represented using
three fermion operators ﬂ, r=1,2,3, as

3
Si= Y firf, ©)

A p=1

with I*” being the set of three spin-1 matrices [generators
of SU(2) in spin-1 representation].’’” In order to remove
unphysical states from the Hilbert space, introduced by
the representation in Eq. (2), one has to enforce a single-
occupancy constraint on each site. Fermionic f; are the
low-energy excitations of the spin liquid, carrying spin-1
quantum numbers. In addition, the low-energy description
contains a U(1) gauge field, coupled to fermions f;, and
enforces the single-occupancy constraint.

Before proceeding further, let us reiterate the question of
interest. We want to understand if the non-Fermi-liquid fixed
point of a conventional overscreened Kondo model is changed
by the presence of the gauge field in the bulk. The model
outlined above provides us with a particular setup to study the
influence of the non-Fermi-liquid bulk on the overscreened
Kondo fixed point. However, in order to have control over
calculations we need to resort to the large-N limit. The crucial
requirement for the generalization procedure is to retain the
presence of the overscreened Kondo fixed point. We choose a
model with N species of spin-1/2 fermions, f;qm, With a =
My andm=1,...,N, as a large-N generalization. This is
the simplest model which allows for controllable calculations.

The corresponding Lagrangian for our generalized model
may be split into a fermionic part (including coupling to gauge
field and impurity spin) and a gauge-field Lagrangian,

L = Lgermion + Lgaugeo 3

The generalized fermion Lagrangian becomes

Lfermion = /dT Z |:fkam(at _8k)fkam

k,m,a

¢ J
o ﬁ; flLr%otmv(k) : allfk*%am - WKS(O) . si|,
“

where we use imaginary time. In accordance with the dis-
cussion above, fermion operators fjy, now carry spin-1/2
quantum numbers (o = 7, ). We omit the time component of
the gauge field from the coupling since it is screened>* and do
not write the diamagnetic term, including it in the gauge-field
propagator. The fermion spin at r = 0 is

1 P
SO =5 D Fian—y Foom ©)
k,p,o,B,m
with o = (6%,07,07%) being the set of three Pauli matrices and

N being the number of sites in the lattice. In what follows,
Greek indices label spin projection, o, 8, ... = 1,|, whereas
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Latin indices m,n,... =1, ...,N label channels. The cou-
pling to the impurity Jx is assumed to be antiferromagnetic,
JK > 0.

The gauge-field Lagrangian is

1 [dqdw
2) Q2nd)

where the time component of the gauge field is excluded.
The bare gauge-field propagator is zero since the gauge field
is not dynamical, but rather represents fluctuations around the
mean-field ansatz. However, nontrivial dynamics are generated
if one accounts for coupling to fermions, leading to a nonzero
Di;l (q,iw), which is discussed in Sec. I C.

*

aj(q.w)D;; (g,iwaj(q.w), (6)

Lgauge =

B. Diagram technique

The impurity spin is conveniently represented via fermionic
operators,

.o
s=Y S, @
a.B

where c? ' (cy,y) are creation (annihilation) operators of
spin-up or down pseudofermions.? In what follows we use the
term “pseudofermions” to distinguish the operators ¢, from
the operators fgy,, which describe low-energy excitations in
the spin liquid. A faithful representation of spin via fermion
operators requires an additional constraint to exclude doubly
occupied and empty states from the Hilbert space. However,
in the case of a single spin-1/2 operator, s, in Eq. (7), gives
zero when acting on unphysical states in the Hilbert space.
Therefore one can ignore the constraint in this case,” writing
the impurity Lagrangian as

Limp = /dT Cm(0r — Mimp)cmv (8)

where [imp is the large positive energy corresponding to
the chemical potential for impurity pseudofermions (see
discussion in Ref. 2).

The rules for the diagram technique, following from
Egs. (4)—(8), are summarized in Fig. 1. Propagators for
fermions and pseudofermions along with interaction vertices

A4
Faﬁ’yé LA

Gk, iw) —>——
Il x‘
[

F(iw) m- -
D(q,iw) AN Tas "\<
B

FIG. 1. Summary of rules for the diagram technique. Solid,
dashed, and wavy lines represent a fermion, pseudofermion, and
gauge-field propagator, respectively. Also, the interaction vertices
of fermions with the gauge field, Z.s, and fermions with impurity
pseudofermions, I'yg,s, are shown. All objects are diagonal in flavor
indices, which are thus suppressed.
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are given by

Gmn(k . ) Saﬂamn (9 )
s =, a
o ) = — S(iw)
Sa
Fuplio) = —— (9b)
LW — Mimp
J
leﬁnyg = _Tkaaﬁ : 0y88mnv (9C)
e
IZZ! = __vkaaﬁamnv (9d)

VN

where &, = e — p is the fermion energy relative to the Fermi
surface. The self-energy, included in the fermion Green’s
function [Eq. (9a)], is discussed below. We note that the
interaction between fermions and the impurity is local in
real space. Therefore, in Fourier space, the momenta of two
fermion operators in the impurity interaction vertex [Eq. (9¢)]
are unrelated. Fermion propagator and interaction vertices are
diagonal in flavor indices. Thus the only contribution of flavor
indices is an extra factor N for every loop of fermions, and
they will be suppressed in the remainder of the paper.

C. Double expansion

We briefly review the double-expansion framework intro-
duced in Ref. 57. First, we specify the dynamically generated
propagator of the gauge field. To leading order, the propagator
is given by the fermion bubble with current vertices along
with the diamagnetic term shown in Fig. 2(a). In the Coulomb
gauge, V - a = 0, the propagator is transverse and can be
written as>>>*%7

D;l(q,la)) = (Sij — %) Dal(q,w), (]03)

o || _
Dy (g iw) = o + x0q*7", (10b)

with z;, =3 and y =2n/kp, o = 1/(24wm) for fermions
with a quadratic dispersion. Note that the Landau damping
term is nonzero only for |w| < vpg. We assume z;, takes
general value z, < 3 and use it as a control parameter. This
approach is consistent because terms g®~!' for z, < 3 are
nonlocal. Since z; is not going to be renormalized within
perturbation theory, it is a valid control parameter.

(a)

N S-r/\/\/\’%

FIG. 2. (a) Self-energy of the gauge field due to interaction
with fermions. The second diagram describes the diamagnetic
contribution. (b) Self-energy of fermions due to interactions with
the gauge field in the leading order in 1/N.
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The singular form of the gauge propagator [Eq. (10)] leads
to a singular self-energy correction for fermions. In the leading

order in 1/N, the diagram in Fig. 2(b) gives us’*36-7
S(iw) = —ik|w/¥? signw, (11a)
2 1 2/zp
= <1> . (11b)
N vy 47 sin i X0

For z;, > 2, the self-energy is more important than the bare i w
term in the Green’s function [Eq. (9a)] when |w| < wy. The
energy scale wy is set by a combination of parameters y, xo,
and vp [see Eq. (14)] and is of the order of Fermi energy, the
only energy scale related to fermions.

When the self-energy, Eq. (11), is singular compared to
the bare frequency dependence of the fermions’ Green’s
function, a factor of 1/N in the fermion self-energy leads to
an extra power of N in the numerator of the Green’s function.
This spoils naive power counting in the 1/N expansion,3®8
requiring a summation of an infinite series of diagrams of
a particular topology (genus) at any given order in 1/N.
However, if we assume a gauge-field dynamical exponent,%
Zp = 2 + ¢, and take the double scaling limit,>’

g—>0, N — 00, &N =const, (12)

we obtain finite A o< 1/(N¢e) in Eq. (11b), rather than A
1/N — 0. The absence of the factor 1/N in front of the self-
energy restores naive power counting, where the gauge-field
interaction vertex contributes 1/+/N and each fermion loop
gives a factor of N.

Finally, before proceeding further, we rewrite X(iw) in a
simplified form, valid in the double-scaling limit,

Sliw) = —i 0| 2" (13)
iw)=—i—ow|—| .,
Ne 1o
where the scale wy is explicitly given by
2 2/e
wo= 20 (L) (14)
Y \272 xo

II. PERTURBATIVELY ACCESSIBLE FIXED POINT

The renormalization group (RG) approach in conjunction
with 1/N expansion has been proven to be fruitful when
applied to the conventional Kondo impurity problem. >~!1-6!
The renormalization procedure is defined with respect to
the fermion bandwidth D. Eliminating states far away from
the Fermi surface, one studies the induced flow in the
dimensionless coupling g = vJg (v is the density of states
per spin per channel assumed to be constant within the whole
band). The corresponding § function is defined as

ding
dInD

and can be calculated perturbatively in g. This simplification
is brought by the 1/N expansion and is justified in vicinity of
a fixed point located at small g* o« O(1/N).

When there is a gauge field coupled to fermions, the RG
approach still can be applied. However, it requires some
modifications. The usual 1/N expansion has to be replaced
by the double expansion discussed above, but the RG flow is

B(g) = (15)
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still defined with respect to bandwidth D. The coupling of the
fermions to the gauge field ¢ is treated as a constant since a
single impurity cannot change its flow under RG. Likewise, in
the conventional Kondo problem, there exists a perturbatively
accessible fixed point. After briefly reviewing the calculation
for RG flow in the conventional Kondo problem, we calculate
the B function in the presence of the gauge field and obtain
physical properties in the vicinity of the fixed point.

A. B function in the conventional Kondo problem

While reviewing the RG procedure for the usual Kondo
impurity problem, we mostly follow Refs. 2 and 3. Renor-
malization of the dimensionless coupling g in the leading
order is given by diagrams shown in Fig. 3. Figures 3(a)
and 3(b) represent corrections to the bare interaction vertex
in the second and third orders of perturbation theory. These
are the only diagrams up to the third order which are
logarithmically divergent and thus renormalize the coupling.
Note that Figs. 3(a) and 3(b) describe the contributions of
the same order since the latter diagram, in addition to an
extra power of g o« 1/N, has a factor of N from the fermion
loop. Figure 3(c) describes renormalization of the Z factor of
pseudofermions and also contributes to the S function.

Calculation of the diagrams in Fig. 3 gives the 8 function:

ding , N 4
Py = ="8+t58+ (16)
where the ellipsis denotes terms C;Ng*+ C,N%g> from
higher-order diagrams. The coefficients C| ; are readily avail-
able in the literature ®!"°2 and are listed below in Eq. (20). As
we shall see, these extra terms are subleading in the vicinity of a
fixed point. One can easily solve for a stable non-Fermi-liquid
fixed point of this 8 function:
2

e 17
8 N+ a7

2
Ao=ﬂ/(g*)=ﬁ+~--, (18)

.

(c)

FIG. 3. Diagrams contributing to the 8 function in the leading
order in 1/N. (a) and (b) describe corrections to the vertex in
the second and third orders of perturbation theory [the symmetric
counterpart of (a) with the direction of one of the fermion lines
changed is not shown]. (c) is the correction to the self-energy of
pseudofermions, contributing to the 8 function via renormalization
of the Z factor.

024419-4



OVERSCREENED KONDO FIXED POINTIN § =1 SPIN . ..

where A is the slope of the S function at this fixed point.
The ellipses here stand for terms O(1/N?). We see that g* is
indeed small in 1/ N, justifying the use of perturbation theory.

B. Correction to the B function due to the gauge field

As we shall see, within the double-expansion framework,
the gauge field produces a small correction to the regular g
function. Therefore it suffices to consider the effect of the
gauge field to leading order.

There are two types of effects related to the gauge field.
First, the gauge field destroys the well-defined quasiparticle,
leading to non-Fermi-liquid behavior. This is manifested
by the singular self-energy due to the gauge field in the
fermion propagator [Eq. (13)]. Therefore one has to recalculate
diagrams in Fig. 3 using the fermion propagator which contains
the self-energy. A lengthy but straightforward calculation
(see Appendix A for details) yields an answer identical to
the case without gauge field, but with a modified divergent
logarithm. Namely, the standard In-divergent contributions are
replaced by

D 1 1
K= ——,
2N 1+ (Neg)~!

where the energy scale wy o« D was defined in Eq. (14).

Another effect of the gauge field is the appearance of
vertex corrections. All diagrams describing vertex corrections
can be split into two classes, with representatives of each
class depicted in Figs. 4(a) and 4(b), respectively. Diagrams
belonging to the first class have at least one of the ends of the
gauge-field propagator connected to the internal fermion line.
In Appendix B we show that due to the transverse character of
the gauge-field propagator and the locality of the interaction
with the impurity, all diagrams of this type with a single gauge
propagator exactly vanish.*"

In the vertex correction diagrams attributed to the sec-
ond class, the gauge-field propagator connects two external
lines. One can think about these diagrams as describing a
new interaction vertex [first diagram in Fig. 4(b)] and its
renormalization (all other diagrams of this type). This new
vertex contains an additional small factor 1/N compared to

. LN
Q

19)

In——In—,
1=k K
w w Wy

>
’ BN
SN S
4 N . X
~ -
. Sl - .
’ [N
RN ; ;
, N L N AN
. 4 \
~ X 7 2N
4 ~ . S -7 .

. N ’ N

FIG. 4. Two types of vertex corrections in the leading order in
1/N due to the gauge field. (a) Example of vanishing diagrams
with a single gauge propagator connected by at least one end to
the internal line. (b) Nonvanishing corrections, representing a new
nonlocal vertex (first diagram) and an example of a diagram leading
to its renormalization (second diagram).
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the original impurity interaction vertex. However, it is nonlocal
since it depends strongly on the relation between outgoing and
incoming fermion momenta, k and p, respectively. The vertex
is logarithmically divergent when the transferred momentum
|k — p| is close to 2k and is small otherwise.’?*7 The flow
of this vertex to leading order in 1/N is identical to the flow
of the standard vertex. Thus it does not influence the scaling
in the vicinity of the fixed point. The effect of this vertex is to
provide subleading corrections to different observables (due
to the extra factor 1/N). Therefore in what follows we do not
consider this vertex.

As we demonstrated, no new diagrams contribute to the g
function up to order 1/N?3. Calculation of diagrams in Fig. 3
with self-energy included in the fermionic propagator gives us

2 N 3
Bg) =1 —«) (—g +3g>

2

N . N
+ 51+t - =g, (20)

where terms in the second line come from higher-order
diagrams and are O(1/N?) in the vicinity of the fixed point.
The terms in the first line are universal with respect to the
reparametrization of the coupling constant g.'° These terms
have to be included for consistency since ¥ &« 1/N but are
identical to those in the B function without the gauge field,
Eq. (16) [accounting for gauge field in these terms will produce
corrections 0(1/N4)].

The obtained B function, Eq. (20), differs from the S
function without the gauge field, Eq. (16), by terms O(1/N?).
This correction does not shift the fixed point g* even at order
1/N? compared to the fixed point, Eq. (17).°> However, it
modifies the slope of S(g) at the fixed point,

2
A1=N(1_K)+~~-=(1—K)AQ, (21

compared to the slope for the case of the conventional Kondo
problem A [Eq. (18)]. Below, the slope of the 8 function A
will be used to determine the flow of the coupling in the vicinity
of the fixed point as well as the singular behavior of different
measurable quantities.!! Therefore the difference between
Ao and A; modifies the behavior of different observables
compared to the conventional Kondo problem.

C. Observables

In order to understand how the non-Fermi-liquid fixed point
manifests itself in observables, we first find the dependence
of the running coupling constant gg(w) on w. It can be
determined from the flow equation dgg(w)/dInw = —B(gg)
by employing the results for the 8 function and its slope at the
fixed point. Denoting the bare value of coupling at w = D as
gr(D) = g, we have!!

@ A
gr(w) =g* = ¢ (T_K) ; (22)

where A is the slope of the 8 function, which depends on
the presence of the coupling to the gauge field. The position
of the fixed point g*, Eq. (17), is not influenced by the
gauge field. The Kondo temperature is Tx = D(T/D)*/2,

where T\ = Dg"/2 exp(—1/g) is the Kondo scale for the case
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without a gauge field, and ¢ = (g*)?/e. We assumed here that
w < Tk and that the initial value of coupling g is small.

The power-law behavior of the running coupling leads to a
similar behavior in different physical quantities. Corrections
to different measurable properties within perturbation theory
can be expressed as a series in coupling g. Applying the
renormalization group to this series results in singular behavior
as a function of frequency or temperature with the exponent
proportional to A. For the case when there is no gauge field
present, this procedure has been implemented in Ref. 11.
Generalization of this procedure to the case with the gauge
field is straightforward.

The main effect of the gauge field is always related to the
different values of the slope of the § function A. Without a
gauge field A = Ap is given by Eq. (18). When there is a
gauge field, we have A = A, specified in Eq. (21). While for
thermodynamical quantities this is the only effect, transport
properties and other quantities acquire small corrections to
prefactors which are not given here.

Calculating the contribution of impurity to the imaginary
part of the self-energy of the fermions gives the scattering rate
due to the impurity. As a function of frequency, it acquires a

cuspatw =0,
37 Mimp 1N o \* 23)
2N? ¢ Tx ’

which has to be contrasted with a Lorentzian shape of
vri;:)(w) for a Fermi-liquid fixed point. The correction to the
resistivity due to the Kondo interaction has a similar form;
however, it is of little interest due to the neutral character of
fermionic excitations in a spin liquid. The correction to the heat
conductivity is potentially more interesting. Using Eq. (23) and
assuming that impurity scattering time iy, is much longer than
the relaxation time without impurity 7y, we find the correction
to the inverse two-dimensional thermal conductivity,

9 h on T\
Se;'=—=——"211-N¢|— , 24
[a’] N2K2T n [ §<TK> } @9
where we restored 7 and kp is the Boltzmann constant.
Also one can calculate corrections to different thermody-
namic properties. A rigorous calculation of the self-energy

allows us to find the impurity specific heat with a critical
exponent o = 2A:

Ay * (25)
imp = 75 ¢ Tx .

The magnetic properties, such as the impurity susceptibility as
temperature 7 — 0 and the dependence of magnetization on
the field h = ugH at T = 0, are given by

-1
VTipp(@) =

o (ﬂ) 1 (1) 26)
lep - 2 T TK ’
A
M = NE <i> . 27)
2 \Tg

Likewise, it is possible to find an expression for
fermion-fermion, fermion-impurity, and impurity-impurity
susceptibilities.!! Last, we list results for Ximp(@, T)/w, which
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is a contribution to the NMR relaxation rate due to the impurity.
Its behavior is again specified by A, and forw < T

4
Ximp(wa T) - T2A—2'

w

(28)

III. DISCUSSION

We have investigated the effect of the gauge field strongly
coupled to fermions at a non-Fermi-liquid overscreened
Kondo fixed point. Using the double-expansion framework, we
demonstrated that the gauge field does not alter the position of
the perturbatively accessible non-Fermi-liquid fixed point but
leads to corrections to exponents characterizing the behavior
of different physical properties in the vicinity of the fixed
point. In particular, it “softens” the nonanalytic behavior of
specific heat, magnetization, and spin susceptibility compared
to those for a Kondo problem without the gauge field. The
physical origin of this effect is the “smearing” of the sharp
quasiparticles by the gauge field.

Let us discuss the extrapolation to the physical case. In
order to have a control over calculations, we worked in the
double-expansion limit, Eq. (12), with N species of spin-1/2
fermions. We note that if the coupling to the gauge field is
absent, the considered model for N = 4 corresponds to the one
channel of spin-1 itinerant moments coupled to impurity.”'?
The same equivalence was found to hold in our perturbative
calculations of the B function for the case when there is a
coupling to the gauge field.

Thus we expect that the physical case corresponds to
N =4, ¢ = 1. Assuming that our results can be extrapolated to
these values of N and ¢, we can argue that the non-Fermi-liquid
Kondo fixed point is not destroyed by the presence of a gauge
field. However, we expect singularities in different physical
properties related to the non-Fermi-liquid fixed point to be
weakened compared to their values without a gauge field. In
such a case, the realization of overscreened Kondo physics in
an § = 1 spin liquid may be used not only to observe neutral
fermionic excitations but as evidence for the presence of a
gauge field. Indeed, non-Fermi-liquid behavior may be used
as an indication of fermionic excitations present in the system.
At the same time, the difference of observed scalings from
those for the case without a gauge field !> may be used
as a litmus test for the presence of a gauge field coupled to
fermions. From an experimental point of view, specific heat
(proportional to impurity concentration), spin susceptibility,
and the NRM relaxation rate are the most promising probes.

It is instructive to compare the role of the gauge field in our
case to the case of the Kondo model in the regime of perfect
screening in Ref. 30. In the latter case, the system flows to the
infinite-coupling fixed point, and the results of Ref. 30 show
no changes in impurity specific heat and spin susceptibility
due to the presence of the gauge field.

Finally, we discuss possible experimental realizations of our
proposal. In recent experiments®>33 materials that could pos-
sibly realize the spin liquid with fermionic excitations®”-**4!
have been found. One can speculate on the possible stabi-
lization of the U(1) spin-liquid phase in the same or similar
types of materials. The presence of spin-1/2 impurities in
such a phase would realize the scenario considered in our
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work. Another way to implement the discussed physics is to
go to lower dimensions. A gapless phase for spin-1 chain with
bilinear and biquadratic interaction has been established for a
certain range of couplings.®*%7 A spin-1/2 impurity in such
a chain is expected to realize overscreened Kondo physics.
A detailed consideration of this problem will be presented
elsewhere.
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APPENDIX A: CALCULATION OF DIAGRAMS
FOR THE g FUNCTION

In this Appendix we present the calculation of the diagrams
in Fig. 3 with the fermion propagator, Eq. (9a), containing
self-energy due to the gauge field. A detailed calculation of
these diagrams without a gauge field can be found, for example,
in Refs. 2 and 3.

First, we consider the diagram in Fig. 3(a), which describes
the second-order correction to the dimensionless coupling
g = vJg. We will be interested only in the logarithmically
divergent part of the diagram. Using the zero-temperature
Matsubara diagram technique and implying summation over
repeated indices, we can write, for the correction to the
impurity interaction vertex,

a JK :
Taiys = = (T) (0ap - 0y1)(0 pp - 015)

dkdw

* ] @y

F(—iw)G(k,io+iw). (Al

The symmetric counterpart of the diagram in Fig. 3(a) with
a flipped direction of the propagation of the pseudofermions
(not shown) gives us

I\’
ngﬁz;zs = - (T) (Oap - 015)(0pp - T42)

dkdow, _ . . .
— F(iw)G(k,iw + iwy).

By (A2)

After integrating over w; and changing the integration variable
from k to £ = e, — u, we have similar expressions for both
diagrams:

a e \*
Tusys = < K) (F200p - 05 + 38apdys)

4
(£
o fag——CC0 (A3)
io(l1+ - |2") —¢

We perform the integration over &, retaining only the logarith-
mic part. Collecting results for both diagrams and going to the
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real-frequency domain, we get

I\’

(@)

Fopys = 4v (7> (Gap - 0ys)
D

x In .
ol (14 7512[7)

w

(A4)

We expand the logarithm in ¢ to the leading order and collect
both terms into a single logarithm again:

D D o)
In e = In— —xln—
ol ) el el
D
=In———, (AS)
ol wf

where « is small, x o« O(1/N),

1 1
K= — . A6
2N 1+ (46)
Finally, we have
'  — —gln——Tuss, A7
afys 8 |w|1—xw6 By$ (A7)

where the bare vertex I'yg, s is defined in Eq. (9¢), and we re-
tained only logarithmically divergent terms. Alternatively, we
could expand the Green’s function in 1/N before performing
integration over frequency and momenta [Eqs. (A1) and (A2)],
reproducing the same result.

Calculations of the vertex and Z-factor renormalization,
described by Figs. 3(b) and 3(c), respectively, are very similar.
Indeed, in order to get the impurity pseudofermion Z factor,
Zimp, We have to differentiate self-energy over w, which may
be thought of as an introduction of an additional vertex with
zero incoming frequency. Therefore below we present only the
details of the calculation for the derivative of self-energy and
list the result for the vertex renormalization.

The correction to the impurity self-energy described by
Fig. 3(c) is written as

: Jx \? [ dk;dw, dk,dS2
Zlmp(iw) — _6N _K 1awi 2 2
4 Qry Q)

X G(kl,ia)l)G(kg,ia)l + IQQ)F(Z(I) + iQQ),
(A8)
where we omitted the spin indices of external pseudofermions

and the associated § function. Renormalization of Z;y, is given
by the derivative of the self-energy,

-1 _ 1 _ azimp(ia))
Aiw)
so that, to first order in the self-energy,
ITIMP(j )
Aiw)
Integrating over €2, in Eq. (A8), we have
Jk\> 0 dk; dk
8Zimp = 6N ( - . 1—421k1,k2,iwa
4 d(iw) 2m)

dw . . .
Tao koo = / Gk )Gk i) — i0)0(~Ex). (A12)

(A9)

imp —

8 Zimp = (A10)

(Al1)
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To simplify further calculations, we expand in ¢ and 1/N.
The self-energy, Eq. (13), expanded to the leading order in ¢
becomes

1 1 wo

Y(iw)=—io| — + —In|—

(iw) lw(Ns + N n -

Inserting this into the fermion Green’s function, Eq. (9a), and
expanding in 1/N, we get

G(ky,iw)) = G(ky,iwy)

). (A13)

Lo in |22 (Glkyion?,  (Al4)
—_—— n —
2le1 o1 L,Iw)l,
where G(k;,iw,) is defined as
~ 1
G(ky,iwy) = - (A15)

la)l(l =+ NLS) —%'kl ’

Finally, expansion of the product of the Green’s function in
Tk, kr.iw> BQ. (A12), gives us

dw - -
T oo = f 0ty i) G ki — i)

1 -
x [1 ~ syionn Z—‘: Gky,ion)
1 -
_ ﬁi(a)l —w)ln a)lw—o w‘ G(ky,iwy — ia))] .

(A16)

After integration over w;, the zeroth-order term in (A 16) yields

0) _ 9(&1)9( - E’Q) _
(14 72) (6 + [] = (14 57)e]

ki kyio T

(A17)
This is inserted into Eq. (A11). After integration over momenta
the extra factors (1 + ﬁ) drop out, and we reproduce the
answer for the case without a gauge field, §Z{)) = —3Ng*/
8In(D/|w)).

Frequency integration for terms proportional to 1/N in
Eq. (A16) results in a cumbersome expression. However, after
integrations over &, and &, and extracting the In-divergent
part we obtain §Z(1) = 3kNg?/81n(wy/|w|), where k is

imp

defined in Eq. (A6). Combining §Z{) and §Z{), we have,
for the impurity pseudofermion Z factor,
3
Zimp =1+ 8Zimp=1—=Ng’In (A18)

8

The correction to the impurity interaction vertex [Fig. 3(b)]
is calculated in a similar way. The resulting contribution to the
interaction vertex is

1—k K "
|| “awy

o _N o

ofys = g g (A19)

n————-TI
1— © L afys-
|w] “awy
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q,92

(k)
k+q,w+Q k,w

FIG. 5. Part of the diagram with vertex corrections that makes the
diagram vanish.

Finally, the renormalized coupling is

_g+3dg

: A20
Zim (A20)

8R

where Ziy,, is given by Eq. (A18) and dg can be read from
Egs. (A7) and (A19):

8 N D
% _(ce+ =g in—" . (A21)
g 8 lw|'—* wf
Using that wy o« D, we obtain the 8 function:
dlng » N 4
=——=(1- - — s, (A22
B = = K)(g+2g + (A22)

where the ellipsis denotes the subleading terms O(1/N?)
obtained in Ref. 11 and listed in the main text. Note that
Eq. (A22) is exact to the order 1/N3: corrections to subleading
terms from the gauge field are of order O(1/N*) and thus can
be ignored.

APPENDIX B: VERTEX CORRECTIONS

In this Appendix we demonstrate that a subset of vertex
corrections where the gauge-field propagator is connected to
the internal fermion Green’s function vanishes. Two examples
of such diagrams are shown in Fig. 4(a). It suffices to consider
a part present in all diagrams, consisting of two Green’s
functions and a single gauge-field vertex (Fig. 5). Using
notations adopted in Fig. 5, we can write for the integral over
momentum k

/ dk, dky v,(K)G(k,iw)G(k + gey,iv +iQ),  (Bl)

where we assumed that ¢ has only the x component, ¢q|e,,
and used the fact that the gauge field is transverse. Note that
integration over k does not involve any other functions due to
the fact that interaction with impurity is local. It is integration
over ky in Eq. (B1) that makes the expression zero. Indeed,
prefactor v, (k) is odd under the inversion of k,, whereas
neither Green’s function changes under k, — —k,. Since this
part is present in all diagrams in Fig. 4(b), all these diagrams
vanish.
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