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Controlling toroidal moments by crossed electric and magnetic fields
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The control of ferroelastic, ferroelectric, and ferromagnetic domains through the corresponding fields has
led to numerous applications taken for granted nowadays. Ferrotoroidal order on the other hand has been less
explored due to its more complex character and due to the peculiar field needed to control it. LiFeSi2O6 exhibits
a ferrotoroidal order that is particularly simple to analyze. By performing neutron-diffraction experiments with
spherical polarization analysis we show that crossed electric and magnetic fields allow us to control ferrotoroidal
moments.

DOI: 10.1103/PhysRevB.88.024414 PACS number(s): 75.85.+t, 75.10.−b, 75.25.−j, 75.60.−d

It would be hard to imagine the modern world without
the ability to pole and control ferroic order. Ferromagnetic
domains form the basis of today’s most efficient data storage
and there are numerous applications for ferroelectricity and
ferroelasticity as well. Considering the impact of the inversion
of time and of space ferroic order can be easily classified:1,2

ferroelastic order is invariant against time and space inversion
(++); ferroelectricity is invariant against time inversion but
changes sign upon space inversion (+−) and ferromagnetism
is time-odd and space-even (−+). The ferroic order, which
changes sign upon both time and space inversion (−−) and
which is invariant against the concomitant inversion of both,
is the ferrotoroidal order.2 A toroidal moment can arise either
by head-to-tail arrangement of local moments or by orbital
currents. Ferrotoroidal order results from spontaneous parallel
alignments of the toroidal moments. For local moments, the
toroidal moment of a cell can be obtained by t = 1

2

∑
i r i × mi

with r i and mi being the space coordinate and the magnetic
spin or orbital moment of the ith atom.3 The toroidization
is given by T = 1

V
t = 1

2V

∑
i r i × mi with V the volume

of the unit cell and the sum running over a primitive basis.
The value of toroidization, however, is not uniquely defined
but depends on the basis chosen for the sum similar to the
case of the ferroelectric polarization.3 Ferrotoroidal order
has regained interest quite recently due to its close relation
with the linear magnetoelectric effect.1,2 In the presence of
ferrotoroidal order there will be asymmetric components in
the magnetoelectric tensor as it can be seen from the relation
between the ferroelectric polarization and magnetic field:
PFE ∝ T × H . The field directly coupled to ferrotoroidal
order is an inhomogeneous magnetic field with a nonvanishing
curl that may align with the ring of magnetic moments. Such a
magnetic field, however, can only exist in the presence of
electric currents. On the other hand one may use crossed
magnetic and electric fields to pole the ferrotoroidal moments
profiting of the nondiagonal terms in the magnetoelectric
tensor. We will show that with such fields it is indeed possible
to pole ferrotoroidal domains.

LiFeSi2O6 is a member of the pyroxene family recently
shown to exhibit interesting magnetoelectric and multifer-
roic properties (see Fig. 1).4 In this material class chains
of edge-sharing MeO6 octahedra (Me = Fe, Cr, . . .) are
connected through SiO4 or GeO4 tetrahedra chains. Due
to the edge-sharing of the octahedra the nearest-neighbor
Me-Me interaction is considerably weakened in comparison
to a straight Me-O-Me bond, therefore, several other intra-
and interchain interaction parameters are comparable in
size and the system becomes frustrated.5 While NaFeSi2O6

(natural crystals) exhibits a ferroelectric polarization coupled
with incommensurate magnetic ordering at zero magnetic
field,4 LiFeSi2O6 shows a single magnetic transition into
a commensurate magnetic phase.6 There is no spontaneous
ferroelectric polarization at zero magnetic field but sizable
electric polarization is induced by finite magnetic fields
in LiFeSi2O6. Most interestingly there are asymmetric off-
diagonal components in the magnetoelectric tensor.7 The
crystal structures of NaFeSi2O6 and LiFeSi2O6 are monoclinic
and at room temperature both materials crystallize in the
same space group (C2/c). However, LiFeSi2O6 exhibits at
TS = 229 K a structural phase transition that is characterized
by a loss in translation symmetry (space group P 21/c;
lattice parameters a = 9.62 Å, b = 8.66 Å, c = 5.26 Å, β =
110.0◦).8,9 This structural distortion is induced by the smaller
ionic radius of Li and can be understood as a twisting of
the SiO4 chains which diminishes the Li-O distances. Most
important are the displacements observed for the magnetic Fe
ions. In the primitive cell of the P 21/c low-temperature phase
there are four Fe sites belonging to two FeO6 chains running
along the monoclinic c direction; see Fig. 2 and the Appendix.
The symmetry reduction from C2/c to P 21/c allows for a
displacement rac of the Fe atoms within the ac plane; these
displacements are parallel within a single FeO6 chain and
antiparallel for the two chains in the primitive cell.

There have been contradictory reports on the magnetic
structure of LiFeSi2O6 based on powder neutron diffraction;8,9

our own single-crystal diffraction experiment on the HEIDI
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FIG. 1. (Color online) Left: Structure of LiFeSi2O6 indicating the
Fe, Si, O, and Li positions. Right: Photo of the sample crystal. The
distance between the aluminium plates is 8 mm. The plates are fixed
with nylon screws, additionally the sample is glued to the plates. The
high voltage was applied to the plates yielding a nearly homogeneous
magnetic field in the sample volume.

diffractometer at FMR II identifies P 21/c
′ (point group 2/m′)

as the most probable magnetic space group in LiFeSi2O6

(see the Appendix) consistent with the more recent powder
study. Only this magnetic group is in accordance with the
finite off-diagonal magnetoelectric coefficients α31 and α13.7,10

Symmetry analysis shows that a collinear arrangement of
magnetic moments mac in the ac plane is coupled with a b com-
ponent leading to a canted antiferromagnetic structure. The b

component, however does not contribute to the ferrotoroidal
moment and will be ignored in the following. The moments
in the ac plane are parallel within a chain and antiparallel
in between. The alignment of the in-plane moments is thus
the same as that of the the structural displacements of the
Fe ions, as illustrated in Fig. 2. Let us first calculate the
toroidization for a vanishing structural distortion. In space
group C2/c there is an inversion center connecting the two
Fe sites in a single chain (sites 1 and 4, Fig. 2). Since the
two moments are parallel toroidal contributions cancel out.

FIG. 2. (Color online) Structural distortions and magnetic mo-
ments in LiFeSi2O6; only the Fe ions in a primitive cell are shown.
The structural displacements with respect to the high-temperature
phase are shown by blue arrows (enlarged by a factor 10) and the
magnetic moment by yellow arrows; the contribution to the total
toroidal moment of each ion is indicated by red arrows. The left and
right panels show the two toroidal domains which are characterized
by nearly antiparallel and nearly parallel alignment of the structural
displacement and the magnetic moment, respectively.

The same inversion center also connects site 2 with site 3
translated by one negative a lattice constant; since also these
two sites exhibit parallel magnetic components the toroidal
moments cancel out again. Without the structural distortion
the toroidal moment thus vanishes. As illustrated in Fig. 2,
the structural displacements rac and the magnetic moments
have the same relative phases at the four Fe sites, therefore the
toroidal components arising from the shift of the four atoms
add. For a finite structural displacement we thus easily obtain
T = 2

V
rac × mac which points along the monoclinic b axis.

With the crystal and magnetic structural parameters we obtain
|T | = 0.000 25(3)μB/Å

2
which is a small value due to the

coupling with the weak nuclear superstructure.
The toroidization in LiFeSi2O6 corresponds to the product

of the order parameters of the structural and the magnetic
phase transitions, which are proportional to the components
of the structural displacement and to the magnetic moment,
respectively. The two toroidal domains with toroidization
parallel and antiparallel to the b axis result from nearly
parallel or nearly antiparallel alignment of magnetic moment
and structural displacement. Note that the structural transition
only results in 180◦ domains associated with the sign of the
structural order parameter. The same holds for the magnetic
transition. Therefore one can identify four different domains
with magnetic and structural phases of (0◦,0◦), (0◦,180◦),
(180◦,0◦), and (180◦,180◦), respectively. From these the first
and the last together form the up-toroidization domain, while
the second and the third form the down-toroidization domain.
Toroidal and magnetic domains are therefore not identical, as
is the case in LiCoPO4,1,11 rendering LiFeSi2O6 an even more
interesting material.

Simple diffraction experiments sense the square of nuclear
or structural order parameters so that information about the
phases between these two or the phases of the nuclear, FN,
and the magnetic structure factors, M, themselves are lost.
However, polarized neutron scattering gives direct access
to the interference between nuclear and magnetic structure
factors and therefore the product of the phases of FN and M
can be determined.12–14 As shown above, this product just
corresponds to the ferrotoroidal moment. The centrosymmet-
ric nuclear structure and the anticentrosymmetric magnetic
structure (symmetry element 1̄′) facilitate the calculation,
as FN is real and M is purely imaginary. For the nuclear
part this just corresponds to the well-known rule, and for
the magnetic part the antiparallel alignment of moments at
(x,y,z) and (x̄,ȳ,z̄) just leads to the cancellation of the cosine
terms and thus to a purely imaginary magnetic structure
factor. We use the common coordinate system in spherical
neutron polarization studies with the x axis along the scattering
vector, the y axis in the scattering plane perpendicular to x,
and the z axis perpendicular to the scattering plane.14 The
measurements have been performed in the a∗b∗ scattering
plane at Q = (3,0,0) which is a nuclear and a magnetic
superstructure reflection. Note that this reflection is extinct
in the high-temperature nuclear phase due to its C centering.
At this reflection the b component of the magnetic order does
not contribute, therefore M only has a finite z component
Mz = imz with mz being real. (Note that Mx is always
zero in neutron diffraction as only magnetic components
perpendicular to the scattering vector Q contribute.)
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Spherical polarization analysis allows one to measure
the rotation of polarization between the incoming, P , and
outgoing, P ′, beam.14 Since there are no chiral terms in
the magnetic structure of LiFeSi2O6 and since the product
FN M has no real components, there are no contributions
generating polarization in the outgoing beam for zero incoming
polarization and it follows P ′ = P ′ P with P ′ being the
polarization matrix. Consider the channel when the incoming
neutron polarization is set along the y axis and when the
outgoing polarization is measured for the x axis. As there
are no chiral terms in the magnetic structure, the only term
yielding x polarization is given by

P ′
xy = 2Im(FN M∗

z )

M2 + F 2
N

= − 2FN mz

m2
z + F 2

N

. (1)

Here Im describes the imaginary part and ∗ is the com-
plex conjugate. Since FN is real and M purely imaginary,
Im(FN M∗

z ) = −FN mz is a real number that is proportional to
the total toroidization of the sample at constant temperature.
We wish to emphasize that the neutron polarization in this
channel thus probes the sign and the size of the toroidiza-
tion averaged over the sample crystal. This nondiagonal
neutron-polarization channel is thus a direct measure of the
toroidization. Entering the crystal and magnetic structure of
LiFeSi2O6 at 10 K yields a polarization of P ′

xy = ±0.077 for
the two monodomain states with opposed directions of the
toroidization. In the same way one can calculate the expected
polarization in the inverted channel, P ′

yx = ∓0.077. The full
polarization matrix P ′ can be easily calculated in this case as
most contributions vanish for Q = (3,0,0):14

P ′ =

⎛
⎜⎜⎜⎝

F 2
N−m2

z

F 2
N+m2

z

− 2FN mz

F 2
N+m2

z

0
2FN mz

F 2
N+m2

z

F 2
N−m2

z

F 2
N+m2

z

0

0 0 F 2
N+m2

z

F 2
N+m2

z

⎞
⎟⎟⎟⎠

=

⎛
⎜⎝

−0.997 −0.077 0

0.077 −0.997 0

0 0 1

⎞
⎟⎠ . (2)

The P ′ matrix for the domain with opposed toroidal
moment, which corresponds to a 180◦ phase shift either in the
nuclear or in the magnetic structure, differs just in the exchange
of the xy and yx components. In contrast, the domain with 180◦
phase shifts in both nuclear and magnetic structure yields the
identical matrix. Note that the large beam polarization in all
diagonal channels results from the much stronger magnetic
scattering at Q = (3,0,0).

Unfortunately spherical polarization analysis cannot be
performed with a magnetic field at the sample position, as
this would interfere with the neutron polarization. We have
used the CRYOPAD setup in which superconducting shields
expel the magnetic field.14 The poling of the ferrotoroidal
moment thus cannot be studied in situ, but the sample needs
to be cooled in crossed magnetic and electric fields below the
magnetic transition outside of the CRYOPAD. The cold sample
can then be inserted into the CRYOPAD and the analysis of the
toroidal moment can be made. This procedure is identical to
that applied to obtain a magnetic monodomain state in Cr2O3

(Ref. 15) and in MnPS3 (Ref. 16) which was proposed as a

candidate for ferrotorodicity. The neutron-diffraction experi-
ments were realized on the cold triple-axis spectrometer IN14
at the Institut Laue Langevin. The neutron wave vector was set
to k = 1.5 Å

−1
. An electric field was applied by inserting the

plate-shaped single crystalline sample of synthetic LiFeSi2O6

(plate normal b parallel to the aluminium plates, c axis vertical)
between two thin aluminium plates (8 mm apart) that are nearly
transparent for neutrons. The sample was glued in between
these plates, which were further stabilized by nylon screws; see
Fig. 1. The sample with the capacitor was mounted in a cryostat
with a sufficiently thin tail to enter both the CRYOPAD setup
and an external magnet. The sample was cooled outside the
spectrometer in an electric field of 2.5 kV/cm applied along
a∗ while a magnetic field of μ0 H = 1 T was applied along
the crystallographic c axis. Thereby cooling in crossed fields
with finite E × H parallel to the direction of the toroidization
(i.e., b direction) was achieved. At a temperature of 10 K both
fields were removed and the cold sample was transferred to
the spectrometer and the CRYOPAD setup.

The first measurement of the neutron polarization matrix
at the (3,0,0) reflection after the above-described cooling in
crossed fields (+E) × (+H) yields

P ′
exp =

⎛
⎜⎝

−1.00(1) −0.07(1) 0.01(1)

0.06(1) −1.00(1) 0.01(1)

0.01(1) 0.02(1) 1.00(1)

⎞
⎟⎠ . (3)

Errors in the nondiagonal channels are not due to statistics
but reflect the precision of polarization control. By analyzing
a purely structural reflection we may estimate the precision
in these off-diagonal channels to ±0.01. The flipping ratio
measured on a Bragg peak in the paramagnetic phase amounts
to 25.

The good agreement between the calculated and exper-
imental polarization matrix unambiguously shows that it is
possible to pole the toroidal domains in LiFeSi2O6 by applying
crossed fields. A measurement of the off-diagonal channels
after cooling without applied fields did not result in significant
polarization values.

We repeated the measurement by reversing the magnetic
field only, (+E) × (−H), and obtained P ′

xy = 0.04(1) and
P ′

yx = −0.04(1) which perfectly agrees with the expected
inversion of the toroidization although the poling appears to be
slightly less perfect in this run. These two experiments unam-
biguously show that it is possible to control the ferrotoroidal
moment by crossed fields similar to the usual control of ferroic
order.

TABLE I. Neutron polarization as function of different cooling
fields. The sample was cooled from 33 to 10 K in the particular field.
E = ±2.5 kV/cm, μ0H = ±1 T.

E H P ′
xy P ′

yx

+ + −0.07(1) 0.06(1)
+ − 0.04(1) −0.04(1)
− − −0.06(1) 0.05(1)
+ 0 0.00(1) −0.01(1)
− 0 −0.00(1) −0.01(1)
0 − 0.01(1) −0.02(1)
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FIG. 3. (Color online) Temperature dependence of the magnetic
Bragg intensity M M∗ at Q = (3,0,0) and that of the neutron
polarization in the P ′

yx channel as described by Eq. (1).

Our experiment only senses the product FN mz and,
therefore, we may not conclude whether the change in
toroidicity arises from inversion of the magnetic moment
or from inversion of structural distortions. However, the
high structural transition temperature, much above our poling
procedure, renders a control of structural domains less likely.

The next experiment was done with both fields being
reversed, (−E) × (−H), yielding P ′

xy = −0.06(1) and P ′
yx =

0.05(1), which correspond as expected to the same direction
of toroidization as for the (+E) × (+H) run. We furthermore
verified that it is not possible to pole the toroidization in
LiFeSi2O6 by applying just one, either magnetic or electric,
field. This, further, underlines the special character of the
toroidal material in comparison to magnetoelectric multifer-
roics. In the toroidal material both fields are needed to pole
the ferroic state, which is just a consequence of the linear
magnetoelectric effect. The experimental data are summarized
in Table I.

Figure 3 shows the temperature dependence of the magnetic
Bragg-peak intensity at Q = (3,0,0), M M∗ = m2

z , compared
to that of the neutron polarization in the yx channel, P ′

yx . Ob-
viously the two quantities do not exhibit the same temperature
dependence. While the magnetic Bragg intensity just corre-
sponds to the expected power-law temperature dependence of
the square of the magnetic moment, the polarization exhibits
a maximum in absolute size close to the magnetic transition.
This can be easily understood by analyzing Eq. (1). |P ′

yx | is

proportional to |FN mz|
F 2

N+m2
z

. By fitting the temperature-independent

TABLE II. The magnetic space group is P 21/c
′. Magnetic

moment at 10 K: (u,v,w) = [0.58(8), 0.69(3), 3.91(4)]μB, |m| =
3.81(3)μB.

Fe-site Element Symm. op. Magn. moment

1 1 x,y,z u,v,w
2 21 x̄,y + 1

2 , z̄ + 1
2 ū,v,w̄

3 1̄′ x̄, ȳ, z̄ ū,v̄,w̄
4 c′ x,ȳ + 1

2 ,z + 1
2 u,v̄,w

TABLE III. Structural parameters of LiFeSi2O6 at 20 K. RF 2 =
5.0%, RwF 2 = 7.8%, RF = 4.7%.

Atom x y z Uiso (Å
2
)

Li 0.2486(5) 0.0066(5) 0.2376(8) 0.0104(9)
Fe 0.25014(10) 0.64815(10) 0.23462(17) 0.0080(2)
SiA 0.0478(2) 0.3395(2) 0.2783(4) 0.0072(4)
SiB 0.5485(2) 0.8392(2) 0.2509(4) 0.0079(4)
O1A 0.86710(16) 0.33254(17) 0.1634(3) 0.0083(3)
O1B 0.36712(16) 0.83405(17) 0.1338(3) 0.0086(3)
O2A 0.11589(15) 0.50899(17) 0.3098(3) 0.0092(3)
O2B 0.62236(15) 0.00355(17) 0.3543(3) 0.0094(3)
O3A 0.10887(16) 0.26758(16) 0.5840(3) 0.0087(3)
O3B 0.60519(16) 0.72238(18) 0.5108(3) 0.0086(3)

value of F 2
N which is constant in this temperature range, and

assuming m2
z ∝ (1 − T

TN
)2β ,17 both temperature dependencies

can be simultaneously described, TN = 18.1 K and β = 0.19.
The good agreement underlines that the polarization in this
channel arises from nuclear-magnetic interference and thus
from the toroidization. The poling of the toroidization is fully
comparable to the poling of the multiferroic state by an electric
field,18–20 which has been reported prior to the hysteresis loops
at constant temperature.21–23

In conclusion, we have shown that it is possible to control
toroidal domains by crossed electric and magnetic field with
E × H aligned along the direction of toroidization. Cooling
in such fields results in a nearly monodomain toroidal state,
whereas cooling in zero fields or with only a single finite
electric or magnetic component results in an equal distribution
of toroidal domains.

This work was supported by the Deutsche Forschungs-
gemeinschaft through the Sonderforschungsbereich 608. We
thank the D3 and SANE teams at ILL for their technical support
required for this experiment.

APPENDIX

Large single crystals of LiFeSi2O6 were grown from melt
solvent of the system Li2MoO4-LiVO3. The magnetic structure
was determined at the HEIDI single-crystal diffractometer
(FRM II) with λ = 1.16 Å. The crystal structure was deter-
mined in the paramagnetic phase at 20 K; 925 reflections

TABLE IV. Structural parameters of LiFeSi2O6 at 10 K. RF 2 =
5.1%, RwF 2 = 7.7%, RF = 4.7%.

Atom x y z Uiso (Å
2
)

Li 0.2490(5) 0.0071(5) 0.2380(9) 0.0091(9)
Fe 0.25023(11) 0.64834(10) 0.23441(19) 0.0070(2)
SiA 0.0478(2) 0.3395(2) 0.2782(4) 0.0065(4)
SiB 0.5484(2) 0.8393(2) 0.2511(4) 0.0070(4)
O1A 0.86714(17) 0.33274(17) 0.1636(3) 0.0075(3)
O1B 0.36715(17) 0.83418(17) 0.1338(3) 0.0077(3)
O2A 0.11592(16) 0.50906(17) 0.3097(3) 0.0083(3)
O2B 0.62234(16) 0.00352(18) 0.3545(3) 0.0087(3)
O3A 0.10873(16) 0.26765(17) 0.5839(3) 0.0078(3)
O3B 0.60514(16) 0.72229(19) 0.5106(3) 0.0078(3)

024414-4



CONTROLLING TOROIDAL MOMENTS BY CROSSED . . . PHYSICAL REVIEW B 88, 024414 (2013)

were collected. In the magnetic phase at 10 K, 936 reflections
were collected (magnetic and structural reflections superim-
pose). The data were numerically corrected for absorption
and an extinction correction was applied in the refinement.

The structure refinement was performed with the FULLPROF

program.24 The magnetic structure is presented in Table II and
its caption. Structural results at two temperatures are given in
Tables III and IV.
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