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Nonplanar ground states of frustrated antiferromagnets on an octahedral lattice
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We consider methods to identify the classical ground state for an exchange-coupled Heisenberg antiferromagnet
on a non-Bravais lattice with interactions Jij to several neighbor distances. Here, we apply this to the unusual
“octahedral” lattice in which spins sit on the edge midpoints of a simple cubic lattice. Our approach is informed
by the eigenvectors of Jij , taken as a matrix, having the largest eigenvalues. We discovered two families of
noncoplanar states: (i) two kinds of commensurate states with cubic symmetry, each having twelve sublattices with
spins pointing in (1,1,0) directions in spin space (modulo a global rotation) and (ii) varieties of incommensurate
conic spiral. The latter family is addressed by projecting the three-dimensional lattice to a one-dimensional chain,
with a basis of two (or more) sites per unit cell.
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I. INTRODUCTION

This paper concerns the classical ground state of the
Hamiltonian

H =
∑
ij

− Jij si · sj , (1.1)

where {si} are unit vectors, and the couplings {Jij } have the
symmetry of the lattice and may extend several neighbors away
(being frustrated in the interesting cases).

After an antiferromagnet’s ordering pattern (or partial
information) is determined by neutron diffraction, the next
question is which spin Hamiltonian(s) imply that order if we
admit interactions J2 to second neighbors or Jn to further
neighbors. The starting point for understanding ordered states
is always the classical ground state(s). If the spins sit on a
Bravais lattice (e.g., face-centered cubic), the solution is trivial
due to a rigorous recipe, called the “Luttinger-Tisza” (LT)
method (see Sec. II A below): the spins adopt (at most) a simple
spiral, a coplanar state, meaning all spins point in the same
plane of spin space.1,2 However, if the spins form a lattice with
a basis (more than one site per primitive cell), e.g., kagome,
diamond, pyrochlore, or half-garnet lattices, no mechanical
recipe is known to discover the ground state. In these
more complicated lattices, magnetic frustration (competing
interactions) often induces complicated spin arrangements.

Our aim has been to find a recipe for general lattices (albeit
neither exhaustive nor rigorous) to discover the ground-state
spin pattern corresponding to a given set of exchange couplings
Ji , to neighbors at successive distances. That is obviously
a prerequisite for solving the inverse problem: given the
ordering patterns found by neutron diffraction, find which
combination(s) of interactions can explain them. Furthermore,
after the whole phase diagram is mapped out, we can identify
the parameter sets leading to exceptionally degenerate or
otherwise interesting states, so as to recognize which real or
model systems might be close to realizing those special states.

A. The octahedral lattice

Our spins sit on a rarely studied lattice we christen the
“octahedral lattice,” consisting of the medial lattice (bond

midpoints) of a simple cubic lattice, thus forming corner-
sharing octahedra (see Fig. 1). Thus each unit cell has a
basis of three sites, forming what we call the x, y, and z

sublattices (according to the direction of the bond they sit
on). Each cubic vertex is surrounded by an octahedron of six
sites, with nearest-neighbor bonds forming its edges; these
octahedra share corners, much as triangles or tetrahedra share
corners in the well-known kagome and pyrochlore lattices.
(Indeed, although the “checkerboard” lattice was introduced
as a two-dimensional version of the pyrochlore lattice,19 the
octahedral lattice is the best three-dimensional generalization
of the checkerboard lattice.) This lattice was first studied by
theorists as a frustrated Ising antiferromagnet20,21 and again as
inspired by the inverse perovskite materials.22 Also recently,
it was used as a (simpler/pedagogical) toy model in papers
aimed at the “Coulomb phase” of highly constrained spins on
a pyrochlore lattice.23,24 It is one of the lattices constructed
from the root lattices of Lie algebras.25

In this paper, we mainly consider four kinds of couplings,
for separations out to the third neighbors: J1 for 〈1/2,1/2,0〉,
J2 or J ′

2 for 〈1,0,0〉, J3 for 〈1,1/2,1/2〉 (see Fig. 1). Notice that
couplings with the same displacement need not be equivalent
by symmetry, since the site symmetry is just fourfold, less
than cubic. (Our naming convention is to use the prime
for the separation which requires more first-neighbor steps
to traverse.) We also (less extensively) consider interactions
J4 or J ′

4 for 〈1,1,0〉. To organize our exploration of this
parameter space, in analytic calculations, we shall often
assume J3,J4,J

′
4 � J1,J2,J

′
2 (that suffices to give examples

of most of the classes we found of noncoplanar ground states).

B. Realizations of the octahedral lattice

The octahedral sites are Wyckoff positions (and hence can-
didates for a magnetic lattice) in most cubic space groups, so
this is plausible to find in real materials, and a few are known.
Since our most elaborate states are found when there are
several nonzero exchange interactions Ji , the most interesting
realizations are metallic alloys in which the moments are more
localized than itinerant. Such moments get coupled by the
RKKY exchange interaction, which gives a Ji that oscillates
with distance inside a slowly decaying envelope, thus making
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FIG. 1. (Color online) The structure and couplings of the octahe-
dral lattice. The x, y, and z sublattices are denoted by red x’s, black
circles, and blue squares, respectively. Solid lines show representative
site pairings for the couplings.

plausible the couplings to more distant neighbors as well as
the competing signs.

The simplest realization of the octahedral lattice is the
transition metal sites in the Cu3Au superstructure of the fcc
lattice20 (i.e., all but one of the four simple cubic sublattices).
So far, the only example known in which the “Cu” lattice
is magnetic seems to be Mn3Ge, which turns out to be
ferromagnetic.26

A more interesting realization is the metallic inverse per-
ovskites such as Mn3SnN, which exhibit a variety of ferrimag-
netic and antiferromagnetic phases as comprehensively studied
by Fruchart and Bertaut;27 in the conclusion (see Sec. VIII B1),
we will try to glean some information about the couplings
from the magnetic structure, in light of the phase diagrams
worked out in this paper. Current interest in this family is
driven by the possibility of applications due to the large
magnetoelastic coupling, which gives Mn3Cu1−xGexN,28 and
perhaps doped Mn3ZnN,29 a negative thermal expansion over
a wide temperature range.

Finally, the octahedral lattice is closely related to the
magnetic lattice found in the (mostly metallic) Ir3Ge7 struc-
tures, including the strong-electron-interaction superconduc-
tor Mo3Sb7.30,31 In that lattice, the simple-cubic lattice sites are
surrounded by disjoint octahedra, i.e., a dimer of two magnetic
ions decorates each bond of the simple cubic lattice. If this
dimer were strongly coupled ferromagnetically, it would be
a good approximation to treat it as a single spin, which is
exactly the octahedral lattice. Instead, in Mo3Sb7, the dimers
are antiferromagnetically coupled and, since Mo has spin 1/2,
they form singlets.31 If the spin length were longer, justifying
classical treatment, we could convert to the ferromagnetic case
simply by inverting the spin directions in every octahedron
around an odd site of the cubic lattice, and changing the sign
of all bonds coupling even sites with odd sites. Thus much of
the classical phase diagram for the Mo3Sb7 lattice is related to
that of the octahedral lattice.

C. Noncoplanarity and its motivations

In this work, we focus on a particular aspect of the phase
diagram: which parameter combinations give a noncoplanar
ground state that could never happen in a Bravais lattice?
In adopting the exchange Hamiltonian (1.1), we excluded
consideration of single-site anisotropies and Dzyaloshinskii-

Moriya couplings, which can produce noncoplanar ground
states for (comparatively) trivial reasons.

We do not count cases where a noncoplanar ground state
belongs to a degenerate family of states that also includes
coplanar ground states. That happens trivially when two
sublattices are not coupled at all or nontrivially when the
interactions are constrained to cancel. In the latter cases,
thermal or quantum fluctuations usually break the degeneracy,
favoring the collinear or coplanar states.3,4 (A small amount of
site dilution or bond disorder can generate a uniform effective
Hamiltonian that favors noncoplanar states,3,5 but here we only
consider undisordered systems.)

There are specific physical motivations to hunt for non-
coplanar states (in any complex magnetic lattice). First, they
point to possible realizations of chiral6 spin liquids, such as are
described within bosonic large-N formalisms (as are hoped to
approximate the behavior of frustrated magnets with s = 1/2).
Such formalisms describe transitions from an ordered state to
a quantum-disordered spin liquid; since there is no generic
reason for a state to stop being chiral when it loses spin order,
a chiral ordered state presumably transitions into a chiral spin
liquid. Hence, as a rule of thumb, a chiral spin liquid is feasible
if and only if the classical ordered state (on the same lattice)
is noncoplanar.7,8

Second, spin noncoplanarity in metals (usually induced
by an external magnetic field) allows the anomalous Hall
effect observed in pyrochlore and other magnets.9–12 This is
ascribed to spin-orbit coupling and the Berry phases of hopping
electrons (which are zero in the collinear or coplanar case).

Third, the symmetry breaking of noncoplanar exchange-
coupled magnetic states is labeled by an order parameter
which is an O(3) matrix, so the order-parameter manifold is
disconnected. This permits a novel topological defect: the Z2

domain wall,13 which is only possible in noncoplanar phases.
Finally, there is current interest in “multiferroic” materials

(i.e., those with cross couplings of electric and magnetic polar-
izations). For example, in the canonical multiferroics RMnO3

(where R = rare earth), frustrated exchange interactions induce
a coplanar spiral, which in the presence of Dzyaloshinskii-
Moriya anisotropic interactions carries an electric polarization
with it.14–18 If these spirals were asymmetric conic spirals, like
our second class of ground states, there is generically a net
moment along the axis, which serves as a convenient “handle”
to externally manipulate the orientation of the ground state
(and thus control the multiferroic properties).

D. Outline of paper and preview of results

We begin (Sec. II) by developing the techniques and
concepts necessary to find the phase diagram as a function
of the Jij ’s and to discover noncoplanar ground states. We
found ground states using three methods. The first (Sec. II A)
was Fourier analysis, known as the “Luttinger-Tisza” method,
which can give a lower bound on the energy, but may
not give a full picture of the ground state. The second
(Sec. II B) is an iterative minimization algorithm, which
numerically converges to a ground state; we introduce several
diagnostic tools for understanding the spin patterns produced
by iterative minimization. The third method (Sec. II C) is
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the variational optimization of idealized patterns displayed
by iterative minimization.

We then turn to our results, beginning with descriptions
of the several classes of magnetic state we found for the
octahedral lattice: various coplanar states (Sec. III), the non-
coplanar, commensurate “cuboctabedral” spin states (Sec. IV),
and a more generic group of noncoplanar, incommensurate
“conic spirals” (Sec. V); in these, the lattice breaks up into
layers of spins with the same directions, each layer being
rotated around the same (spin-space) axis relative to the layer
below. Particularly noteworthy was a “double-twist” state we
encountered, which is something like a conic spiral which
also has a complex modulation in the transverse directions
(Sec. VI). The plain stacked structures can be studied by
mapping to one-dimensional (“chain”) lattices, also with
couplings to many neighbors, as worked through in Sec. V B.

From this, we go on (Sec. VII) to quickly survey the phase
diagrams we found, first for the cuboctahedral lattice, and then
for the chain lattice (when treated as a lattice in its own right).
In the conclusion, Sec. VIII, we consider how the lessons
from this paper may be transferred to other (more commonly
studied) non-Bravais lattices such as the kagome, pyrochlore,
or garnet lattices.

We consider that the most significant contribution of this
paper is to flash out a framework for determining a phase
diagram, with multiple Ji’s, on any non-Bravais lattice. One
half of this framework is the set of methods: none of these is
original, but we were unable to find any literature in which they
were systematically combined to work out a phase diagram
with no constraining assumptions as to the nature of the spin
states. The other half of the framework is a classification of the
states and a classification of the ways that one state transitions
to another (the “bridging states” elaborated in Sec. II D below).
We discovered that, at least in the octahedral lattice, most of
the phase diagram consists of coplanar states (see Fig. 2);
noncoplanar states appear in intervals near the transition
between two different ordering vectors. The most robust of
the noncoplanar states are the two kinds of “cuboctahedral”
states.

II. METHODS AND FRAMEWORK

We employed several approaches, listed below, to discover
and understand ground states, for each given set of interactions.
These are developed in the rest of this section—except for
the use of mappings, which we explain in Sec. V, where it
becomes natural to employ this technique. (Technical aspects
of our implementation, as well as alternative techniques that
are not used extensively are relegated to the Appendix A.) (a)
A Fourier analysis of the Hamiltonian (1.1) as a quadratic form
with coefficients Jij , the so-called “Luttinger-Tisza” method,
which is outlined in Sec. II A.

(b) Iterative minimization, our main “exploratory” tech-
nique: starting from a random initial condition, we succes-
sively adjusted randomly chosen spins so as to reduce the
energy (see Sec. II B). We then analyzed each resulting pattern
with various diagnostics, as described in Sec. II B, and tagged
the noncoplanar ones for further investigation.

(c) Variational optimization of the iterative minimization
ground state: finding a closed form for the ground state

(1/2, 0, 0)
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FIG. 2. Generic phase diagram for the octahedral lattice as a
function J2/|J1| of J ′

2/|J1| for fixed J1,J3. Most of parameter
space is dominated by single-mode, coplanar states that divide
parameter space into four quadrants. For specific ranges of couplings,
noncoplanar states (shaded regions) can be found between the
boundaries of these coplanar states. The (1/2, 0, 0) noncoplanar
modes (analyzed in Sec. IV) are frequently observed. The (q,q,Q)
modes [either coplanar (q,q,q) or noncoplanar (Q,Q,0) (Sec. VI)]
are only found in very narrow ranges of couplings.

introduces a number of free parameters (the most obvious
being a wave vector). By allowing these parameters to vary
from the values found with iterative minimization, we find a
new, more rigorous, ground state.

(d) Mapping the (three-dimensional) problem to a similar
problem in a one-dimensional “chain” lattice with a basis of
two sites: this is valid when the optimal (three dimensional)
spin configuration is a stacking of layers, which we judged
based on the results from approaches (a) and (b). The states
on this simplified chain lattice may be found using approaches
(a) and (b), or analytically solved after parametrizing the state
with a set of variational parameters.

A. Spin states and Luttinger-Tisza modes

The general theory of spin arrangements is reviewed in
Refs. 2 and 32. The most fruitful approach to finding the ground
states of the Hamiltonian (1.1) is to treat it as a quadratic form
rewriting (1.1) as

H = −
∑

k

m∑
α,β=1

J̃αβ (k)s̃α(−k) · s̃β(k), (2.1)

where α and β are sublattice indices; the explicit formulas
for the cuboctahedral lattice case are given in Appendix B 1,
(B1). Then we diagonalize this matrix, obtaining

H = −
∑

k

m∑
ν=1

J̃ (kν)|s̃(kν)|2. (2.2)

Here, m = 3 is the number of sites per primitive cell, and ν

is a band index; thus {J̃ (kν)} are the eigenvalues of Jij as an
mN × mN matrix, with N being the number of cells (to be
taken to infinity), and the wave vector k runs over the Brillouin
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zone. [In the Bravais lattice case, m = 1, the eigenvalue J̃ (k)
is simply the Fourier transform of J (r); for m > 1.] Also,
s̃(kν) (complex-valued 3-vector) is the projection of the spin
configuration onto the corresponding normalized eigenmode,
N−1/2vνs exp i(k · r). We shall call these the Luttinger-Tisza
(LT) eigenvalues and modes;2,33,35 a mode with the most
negative J̃ (kν) is called an “optimal” mode, and its wave
vector is called {QLT}.

The ideal case is that we can build a spin state satisfying two
conditions: (1) {si} are entirely linear combinations of optimal
LT modes and (2) |si |2 = 1 everywhere (unit length constraint).
If both conditions are satisfied, these must be ground states,
and all ground states must be of this form.

In the case of a Bravais lattice (m = 1), the LT modes
are just plane waves eik·r, and one can always construct a
planar spiral configuration,1 s(r) = cos(QLT · r)B̂ + sin(QLT ·
r)Ĉ, where B̂ and Ĉ are orthogonal unit vectors, and the
spatial dependence consists only of optimal modes.2 In the
simplest cases, QLT is at high symmetry points on Brillouin
zone corners, and one can construct a combination of optimal
modes which is ±1 on all sites, which defines a collinear
ground state, as in the phase diagrams in Ref. 36.

Thus non-Bravais lattices are necessary (but not sufficient)
in order to get noncoplanar states. In lattices with a basis, the
LT eigenmodes have different amplitudes on different sites
within the unit cell, and it is not generally possible to make
any three-component linear combination of the best modes that
satisfies the unit-length constraint.34 (There is an exception
for lattices in which the neighbors of neighbors are all second
neighbors, such as the diamond37 or honeycomb38 lattices.)

Although the LT optimal modes (usually) give the exact
ground states in the cases we focus on, we believe the exact
ground state is frequently built mainly from almost-optimal
modes; that is, although a linear combination of optimum LT
modes violates the unit-spin constraint, with a small distortion,
it may satisfy the constraint and be the ground state. [That
distortion necessitates admixing other modes but with small
amplitudes, since they carry a large energy penalty, according
to (2.2).] In particular, we anticipate that (for incommensurate
orderings) the true ordering wave vector lies in the same
symmetry direction as the LT wave vector; and that the phase
diagram for optimum LT wave vectors mostly has the same
topology as the actual phase diagram for ground states. Thus
the LT modes can serve as a “map” for navigating the parameter
space of {Ji} and for understanding the ground-state spin
configurations.

An important caveat is that almost all Q vectors have
symmetry-related degeneracies, and the LT analysis is silent
on how these modes are to be combined with different spin
directions, so the specification of the actual spin configuration
is incomplete. (An example is the “double-twist” state in
Sec. VI.) As a corollary, a single phase domain on the LT
mode phase diagram might be subdivided into several phases
in the spin-configuration phase diagram that represent different
ways of taking linear combinations of the same LT modes. This
cannot be detected at the LT level.

In practice, we never used LT to directly discover the
ground-state spin configuration; its value is to quickly prove a
given state is a ground state. But the LT viewpoint did inform

the Fourier-transform diagnostic we used in analyzing the
outputs of iterative relaxation (Sec. II B. Furthermore, when
we operated in the “designer” mode (seeking the couplings that
stabilize a specified state), we used the LT modes as a guide or
clue: namely, we found the {Ji} that made the ordering wave
vector Q of our target state to be the optimal QLT, which is
easier than making Q be the ordering wave vector of the actual
ground state.

B. Iterative minimization

Our prime tool for exploration was iterative minimization
starting from a random initial condition. Random spins are
selected in turn and adjusted (one at a time) so as to minimize
the energy, by aligning with the local field of their neighbors,
till the configuration converged on a local minimum of the
Hamiltonian.41 (Our criterion was that the energy change in
one sweep over the lattice was less than a chosen tolerance,
typically 10−9.)

It might be worrying that such an algorithm gets stuck in
metastable states, unrepresentative of the ground state; such
“glassy” behavior is indeed expected in the case of Ising (or
otherwise discrete) spins, or in randomly frustrated systems
such as spin glasses. However, vector spins typically have
sufficient freedom to get close to the true ground state.42,43

The typical ways they deviated from the ground state are just
long-wavelength wandering (“spin waves”) or twists of the
spin directions.

The greatest difficulty in our procedure was not obtaining an
approximation of the ground state, or even deciding whether it
was genuine, rather, it was grasping what the obtained pattern
is, and how to idealize it to a periodic (or quasiperiodic) true
ground state of the infinite system. We were aided by the
following three diagnostics.

1. Diagnostic: Fourier transform

Configurations obtained by iterative minimization were
Fourier transformed and the norms of each Fourier component∑

s |s̃(k,s)|2 were summed (combining the sublattices).45

This suffices to identify the state when it is a relatively
simple antiferromagnetic pattern, or an incommensurate state
described as a layer stacking. In any case, the results can be
compared to the LT mode calculation to see if the found state
achieves the LT bound.

2. Diagnostic: Common-origin plot

The simplest visual diagnostic of a state is the “common-
origin plot” in which each spin’s orientation is represented as
a point on the unit sphere. For example, an incommensurate
coplanar spiral state would appear as a single great circle on
the common-origin plot (see Fig. 3).

A drawback of the common-origin plot is the lack of
information on the spatial relation of the spins. (For example,
a “cone” might appear consisting of closely spaced spin
directions, but these might belong to widely spaced sites.)
Furthermore, this diagnostic is quite fragile in configurations
where a domain wall or other defects have been quenched in.47
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(a) (b)

(c) (d)

FIG. 3. (Color online) Common-origin plots for four kinds of spin
ground states on the octahedral lattice, appearing for different choices
of the exchange interactions {Ji}. Colors correspond to sublattices.
(a) Planar spiral, (b) cuboctahedral state, (c) asymmetric conic spiral,
and (d) alternating conic spiral.

3. Diagnostic: Spin moment-of-inertia tensor

We computed the 3 × 3 tensor

Mij ≡ 1

mN

∑
α,r

[si(�r)]α[sj (�r)]α (2.3)

[notice Tr(M) = 1] and diagonalized it. We recognize as
coplanar or noncoplanar spin states those where M has two
or three nonzero eigenvalues, respectively. (Rotating the spin
configuration so that the principal directions of M are the
coordinate axes usually manifests the spin configuration’s
symmetries.)

C. Variational optimization

Through the diagnostic techniques described in Sec. II B,
it is normally straightforward to parametrize the spins in the
ground state as s(r,{α}), i.e., as a function of position and
some arbitrary set of parameters, {α}. The exact values of
these parameters can (formally) be calculated from optimizing
H(s(r,{α}),{J }). One major advantage of relying upon this
method is that it reduces the effect of numerical artifacts from
iterative minimization. For example, we no longer enforce an
arbitrary periodicity upon the LT wave vector.

D. Conceptual framework for bridging states

This section is not about a technique, but a classification of
two ways that ground states may be related to each other, and
thus of two kinds of phase boundaries in the phase diagrams
(Sec. VII and Appendix B). We call these two concepts
“encompassing states” and “families of degenerate states.”

1. Encompassed states

We call a ground state “encompassed” if it is a special case
of another, more general state. For example, a ferromagnet is
encompassed by a helimagnet, since letting the helimagnetic
angle go to zero produces a ferromagnet. “More general”
means there is a continuous family of states such that
each particular combination of couplings Ji’s completely

determines a particular member of that family. Moreover, the
(more general) encompassing state necessarily spans at least
one more dimension of spin space, so if the encompassed state
is coplanar, the encompassing one is noncoplanar.46

2. Degenerate states

By contrast, “degenerate states” means that for certain
combinations of Ji’s, there is a continuous family of exactly
degenerate ground states. Most commonly, this is the result
of decoupling between sublattices of spins, meaning one can
apply a global rotation limited to just one of the sublattices
while remaining in the degenerate manifold. This can come
about in two ways. The trivial way is when all Ji’s that
couple those sublattices vanish. The more interesting way
is when the couplings are nonzero, but cancel generically
in all the ground states; the simplest example of this kind
is the J1-J2 antiferromagnet on the square3 or bcc (Ref. 4)
lattice, in the J2-dominated regime in which each of the even
and odd sublattices realizes plain Néel order. Apart from
decoupling, degenerate manifolds are also sometimes realized
by simultaneous rotations involving all sublattices with some
mutual constraint (e.g., in the nearest-neighbor kagome lattice,
the constraint that the spins add to zero in every triangle).

The degeneracy of a family of states can be categorized by
how the number of parameters scales with size, i.e., O(Ln) with
n � 0. For example, a layered lattice with vanishing interlayer
couplings has the number of free parameters scale as O(L);
the J = 1 kagome antiferromagnet is a mutually constrained,
degenerate case with O(L2) parameters, i.e., extensively many.
In reciprocal space, this degeneracy implies that the ground
state is on a degenerate, n-dimensional manifold.

Notice that when n = 0, the manifold is a set of discrete
Q related by symmetry [e.g., the J1-J2 square lattice anti-
ferromagnet has QLT = (1/2,0) or (0,1/2)]. In this case, the
degeneracy is in the eigenmodes at Q. Whereas, when n > 0,
there is a continuum of degenerate Q. The rhombohedral
lattice with J1, J2, and J3 has a degenerate one-parameter
family of wave vectors corresponding to different coplanar
spirals.48 The three-dimensional pyrochlore lattice with only
nearest-neighbor (J1) couplings is a well-known example of
the highly degenerate scenario, requiring an extensive number
of parameters. In that case, the minimum LT eigenvalue is
uniform throughout the Brillouin zone49 (a so-called “flat
band”). We will sometimes refer to the n = 0 and n > 0 cases
as simply and highly degenerate, respectively.

3. Encompassed and degenerate states as bridges
in phase diagram

What encompassing states and families of degenerate states
have in common is to serve as bridges between simple states. In
the “encompassing” case, the encompassing state is typically
stable in a finite region of parameter space. When one adjacent
phase in a phase diagram is encompassed by the other, they
are necessarily related (in our T = 0 phase diagram) by a
continuous transition, usually involving a symmetry breaking.

In contrast, degenerate families are (frequently) confined
to phase boundaries. Even when they occupy a finite area in
a slice of parameter space [e.g., the (J1,J2) plane when all
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other couplings are zero], turning on additional couplings can
remove the degeneracy.

A corollary is that the naive classification of continuous
or first-order phase transitions does not work. Consider two
phases separated by a phase boundary on which a degenerate
family is stable. Each of the two phases (or the limit of either
as the boundary is approached) is a special case from the
degenerate family. Since the limits taken from the opposite
directions are different, it appears at first as an abrupt transition.
On the other hand, it is possible to take the system continuously
from one phase to the other if we pause the parameter variation
when we hit the phase boundary, and follow a path through
the degenerate manifold from one of the limiting states to the
other one.

Furthermore, turning on additional parameters generically
destroys the degeneracy. That converts the degenerate family
into an encompassing family, and the single phase boundary
into two continuous ones. Specifically, starting in one of the
main phases, we cross a small strip of phase diagram in
which the configuration evolves (determined by the parameter
combination) from one of the limiting states to the other
one, and then enters the other of the main phases. Thus
the encompassed kind of transition is distinct from either
a first-order transition (between two unrelated states) or an
ordinary continuous one and will be indicated on phase
diagrams with a distinct kind of line.

E. Cluster analysis: Two degenerate ground states

The “cluster” method is a rigorous analytic approach to
ground states, alternative to the LT mode approach,50 which
depends on decomposing the Hamiltonian into terms for
(usually overlapping) clusters, and finding the ground states for
one cluster. If these ground states can be patched together so
as to agree where they overlap, the resulting global state must
be a ground state and all ground states must be decomposable
in this fashion. In this way, we can characterize the degenerate
states appearing for two special combinations of Ji’s.

1. Antiferromagnetic J1 only

In this case, the cluster is a triangle (one face of an
octahedron, including one site each from the x, y, and
z sublattices). The ground state of such a triangle is the
usual 120◦ arrangement of spins. If all such triangles are
to be satisfied, then wherever two of them share an edge,
the respective unshared spins are forced to have identical
directions—in the present case, spins on opposite corners of the
octahedron. Thus a line of x sublattice spins in the x direction
(or similarly of the other sublattices in their directions) is
constrained to be the same.

This high degeneracy is not limited to the single point in
parameter space specified by J1 < 0 and J2 = J2′ = J3 = 0.
If we turn on J2, which couples the nearest neighbors along
those lines of spins, the same configurations remain the ground
state until J2 is negative and its magnitude is sufficiently large
compared to |J1|; less obviously, the same thing is true for
J3 = J4, varied together.

This allows two different kinds of highly degenerate state:
(a) one sublattice (say x) has si = +Â along every line. Within
the other sublattices, each yz plane has an independent rotation

about the Â axis. Thus the spin directions are

si = −1

2
Â ±

√
3

2
B̂(x), (2.4)

where B̂ is a different unit vector in each plane, and we take
the + or − sign in the y or z sublattice, respectively.

The common-origin plot for this state looks superficially
like a conic spiral, the cone being formed by the y and z

spin directions. In reality, whereas an incommensurate spiral
gives a uniform weight along the spiral in the common-origin
plot, this state gives a random distribution that approaches
uniformity only in the limit of a very large system.

(b) For a second family of (discretely) degenerate states,
we choose

s(n1 + 1/2,n2,n3) = 1√
2

[0,f2(n2), − f3(n3)], (2.5a)

s(n1,n2 + 1/2,n3) = 1√
2

[−f1(n1),0,f3(n3)], (2.5b)

s(n1,n2,n3 + 1/2) = 1√
2

[f1(n1), − f2(n2),0], (2.5c)

where fi(ni) = ±1 are arbitrary. Notice that (2.5c) uses
(a subset of) the cuboctahedral directions. Typically, in a
sufficiently large system, all those directions are used nearly
equally; the common-origin plot would show a cuboctahedron.
However, the spins do not have a regular pattern in space since
(2.5c) is random, with a discrete degeneracy O(L) in a system
of L3 cells. The states (2.5c) represent a degenerate family of
states, as formulated in Sec. II D: the optimum LT eigenvalues
are found at all wave vectors Q lying on the (100) axes.

We are not interested in the high degeneracy for its own
sake; its significance is that various kinds of ordered states
can be selected out of it, by turning on additional couplings
(even infinitesimally). Thus the high-degeneracy parameter
combinations will be corners of phase domains in the phase
diagram.

2. Antiferromagnetic J1 and J2

Let Lα be the net spin of the octahedron centered on α,

Lα ≡
∑
i∈α

si , (2.6)

where α is a cubic lattice vertex and i ∈ α means site i is on
one of the six bonds from α. Consider a Hamiltonian written
as

H = J

2

∑
α

|Lα|2. (2.7)

On the one hand, expanding the square shows this is simply
the antiferromagnet with J1 = J2 = J . On the other hand,
it is obvious from (2.7) that any configuration with a net
(classical) spin of zero on every octahedron is a ground state.
This is another example of a degenerate ground state family
(see Sec. II D); in this case, the continuous degeneracy is
macroscopic. This Hamiltonian is constructed in exactly the
same way as those of well-known highly frustrated lattices
(kagome, checkerboard, half-garnet, pyrochlore) that have
similar ground-state degeneracies.
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III. COPLANAR STATES

Several different collinear or coplanar ground states can
be stabilized within the octahedral lattice, only one of which
requires couplings beyond J2. We will describe them from the
smallest to the largest magnet unit cells. The most elementary
of these is the ferromagnetic state, in which all spins are
aligned in the same direction, and which obviously requires
predominantly positive couplings. This state is composed of a
(0,0,0) LT mode with equal amplitudes on every sublattice (so
the normalization condition is already satisfied).

There is also the “three-sublattice 120◦ antiferromagnetic
state,” whose unit cell is the primitive cell. Each of the three
sublattices has a uniform direction; the net intersublattice
couplings are antiferromagnetic, so (as in the ground state
of a single antiferromagnetic triangle) the respective spin
directions are 120◦ apart and coplanar. Thus this state, too,
is characterized by an ordering wave vector Q = (0,0,0), but
not the same LT mode as the ferromagnetic state. Instead, this
one is from the two degenerate modes at Q = (0,0,0) that are
orthogonal to the uniform mode. (Any combination of these
modes has unequal magnitude on the different sublattices,
which is why both modes need to be present in the spin state,
combined with different spin directions.) This state is a special
case of the highly degenerate ground states found when only
J1 < 0 (Sec. II E1).

The next group of coplanar states are the Q �= 0 antiferro-
magnetic states, of which there are three kinds, characterized
by having ordering wave vectors of type (0,0,1/2), (0,1/2,1/2),
or (1/2,1/2,1/2). Each of these states is antiferromagnetic
overall within every sublattice; the sublattices decouple, since
any intersublattice interaction couples a spin in one sublattice
to equal numbers of spins pointing in opposite directions in
the other sublattice. These are LT states; in the (0,0,1/2) and
(0,1/2,1/2) cases, the LT mode used is nonzero on only one
sublattice, and a different one of the three symmetry-related
wave vectors is used for each sublattice (the one with the same
distinguished direction), e.g., the x sublattice uses (1/2,0,0)
or (0,1/2,1/2) modes. Notice that in these two cases, the
spins repeat ferromagnetically along some directions (within
a sublattice); this is a consequence of the anisotropy of the
intrasublattice couplings. Qualitatively, these states are stable
when J2 is different from J ′

2. All of these states can be realized
with collinear spins.

Lastly, the octahedral lattice admits helimagnetic states.
These states require at least J3 couplings to become stabilized.
The helimagnetic states must be composed entirely out of
(q,q,q) modes. This is because any other wave vector would
break the symmetry between the sublattices. More precisely,
helimagnetic states are generically a function of one variable,
�k · �r , and are therefore equivalent to a one-dimensional system.
It will therefore be amenable to stacking vector analysis,
developed in Sec. V. However using stacking vectors to
transform the octahedral lattice to a one-dimensional chain
will necessarily produce a non-Bravais lattice, unless the
stacking vector is (111) (or symmetry equivalent to it). Then
any helimagnetic mode in the one-dimensional non-Bravais
lattice, will break normalization in the octahedral lattice, since
some spin directions would be represented more than others
(this will be allowable for conics because they mix multiple

modes, but helimagnets are explictly single mode). Therefore
the only allowable stacking vector (and by implication, wave
vector) is (111).

IV. CUBOCTAHEDRAL STATES

The octahedral lattice possesses two kinds of “cuboc-
tahedral” states, stable in different domains of parameter
space, for which the common-origin plot takes the form
of a cuboctahedron, i.e., twelve spin directions of the form
(1,1,0)/

√
2 and its permutations [see Fig. 3(b)]. The magnetic

unit cell is 2 × 2 × 2 for both of these true cuboctahedral states
(spuriously cuboctahedral states were remarked in Sec. II E1).
They differ in that the angles between neighboring spins
(which are in different sublattices) are 60◦ in one kind of
cuboctahedral state but 120◦ in the other kind.

As worked through in this section, the cuboctahedral states
can be understood from any of three approaches: (a) cluster
construction, where the Hamiltonian can be decomposed into a
sum of terms, each for an octahedron, so we can patch together
the ground states of the respective octahedra to obtain a ground
state of the whole lattice (for 60◦ cuboctahedral only); (b)
degenerate perturbation theory, two special sets of couplings
give degenerate families of ground states, out of which a small
additional coupling can select the cuboctahedral state (for 120◦
cuboctahedral only); or (c) the Luttinger-Tisza framework of
Sec. II A (for both kinds of cuboctahedral state).

The 120◦ cuboctahedral state is a subset of the J1-only
antiferromagnetic (J1 < 0) ground states described above
(Sec. II E1). Thus this state is stabilized even in the limit of
J2 (or other distant couplings) becoming arbitrarily small. It is
the only noncoplanar state we found that does not require any
couplings beyond J2 and J ′

2.

A. Lattice as a union of cuboctahedral cage clusters

The first cuboctahedral state noticed was in the J1-J2

magnet on the kagome lattice,51,52 with J1 ferromagnetic
and J2 antiferromagnetic. There is a range of ratios J2/J1

in which the magnetic unit cell on the kagome lattice is 2 × 2.
Taking that cell as given, the possible ground states are those
of the twelve-site cluster made by giving periodic boundary
conditions to one unit cell—a cluster that is topologically
equivalent to a single cuboctahedron (even when couplings
to any distance are taken into account), and hence includes the
cuboctahedral state.

Turning to the present case of the octahedral lattice, in
fact, this is a union of cuboctahedral cages surrounding cube
centers, complementary to the octahedral clusters surrounding
the cube vertices. We can apply the “cluster” construction (see
Sec. II E) to these cages by representing its lattice Hamiltonian
as a sum of cuboctahedron Hamiltonians, with j1 = J1/2, j2 =
J2/2, j2 = J ′

2/2, and j4 = J4/2 (J1, J2, J ′
2, and J4 are shared

by two cuboctahedra); also j3 = J3 and j ′
4 = J ′

4.
Consider for a moment the ground state of 12 spins placed

on an isolated cuboctahedron,53 with couplings j1, j2, j3, and
j4. Now, it is well known that, on a chain (i.e., a discretized
circle), j1 > 0 and (small) j2 < 0 give a gradual, coplanar
spin spiral; on a circle with the right number of sites, the spin
directions point radially to that circle. Roughly speaking, the
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three-dimensional analog of this happens on a cuboctahedron,
which is a discretized sphere: if j1 is ferromagnetic and
one of the more distant couplings is antiferromagnetic, the
spin ground state is a direct image of the center-to-vertex
vector in the cuboctahedron [modulo a global O(3) rotation
of the spins]. This notion only works for the 60◦ kind of
cuboctahedral, occurring for J1 > 0, in which the nearest
neighbors are (relatively) close to being parallel.

To build a global state in which every cuboctahedron
has the cuboctahedral spin configuration, the difficult part is
just to make the spins agree where they are shared between
cuboctahedra. That is achieved by applying mirror operations
in alternate layers of cuboctahedra, such that, e.g., the sx

i

components are multiplied by (−1)x/a .

B. Hamiltonian as special case of J1-only antiferromagnet

When we have only J1 < 0 couplings, the ground state is a
degenerate state with 120◦ angles between nearest neighbors,
as written in Eq. (2.5c) of Sec. II E1. In that degenerate state
of Sec. II E1, the spins take some or all of the cuboctahedral
directions but do not have a genuine cubic spin symmetry. As
soon as an arbitrarily small antiferromagnetic J2 is added as
a perturbation, a subset of these states is selected, which is
the 120◦ kind of cuboctahedral state. In the notation of (2.5c),
if this true, the 120◦ cuboctahedral state takes the following
form:

s
(

n1 + 1

2
,n2,n3

)
= 1√

2
[0,(−1)n2 ,(−1)n3 ], (4.1a)

s
(

n1,n2 + 1

2
,n3

)
= 1√

2
[(−1)n1 ,0, ± (−1)n3 ], (4.1b)

s
(

n1,n2,n3 + 1

2

)
= ± 1√

2
[(−1)n1 ,(−1)n2 ,0], (4.1c)

where + corresponds to the 120◦ state and − to the 60◦.

C. Luttinger-Tisza approach to cuboctahedral states

Alternatively, both cuboctahedral states can be understood
within the LT framework. For certain domains of parameter
values, the optimal LT modes have wave vectors QLT of
{1/2,0,0} type. It can be worked out that for, e.g., QLT =
(1/2,0,0), one eigenmode has amplitudes (1,0,0) on sublat-
tices (x,y,z), i.e., its support is only on the x sublattice. Each
of the other two eigenmodes has its support equally on the y

and z sublattices, the amplitudes being (0,1, ± 1). When the
first eigenmode is optimal, we get the decoupled (1/2,0,0)
antiferromagnet already described in Sec. III; when either of
the two-sublattice eigenmodes is stable, a cuboctahedral state
is found.

It is obviously impossible to satisfy normalization in a
spin state using just one of the two-sublattice modes, since
its amplitude vanishes on the third sublattice. To build a
normalized ground state, it is necessary and sufficient to form
a linear combination using all three of the symmetry-related
QLT wave vectors, associating each with a different orthogonal
spin component. Thus the spin directions are (1,1,0)/

√
2, with

all possible permutations and sign changes, as we already saw
in (4.1). These states could be called a commensurate triple-Q
state. The eigenmode with amplitudes of form (0,1,1) gives the

60◦ cuboctahedral, whereas the one of form (0,1, − 1) gives
the 120◦ cuboctahedral state.

1. Absence of (1/2, 1/2, 0) cuboctahedral state

From the LT viewpoint, one would naively expect to
construct similar noncoplanar cuboctahedral states of cubic
symmetry using QLT of (1/2,1/2,0): why are they absent?
After all, the {1/2,1/2,0} type wave vectors are threefold
degenerate, just like the (1/2,0,0) wave vectors from which
the cuboctahedral states are built, and it is straightforward
to follow the analogy of those states to construct a (1/2,
1/2,0) cuboctahedral (just allotting each mode one of the three
cartesian directions in spin space). Furthermore, if we include
J4 and J ′

4 couplings in the Hamiltonian, there is a certain
region of parameter space in which QLT = (1/2, 1/2, 0) can
indeed be optimal, with the optimal LT eigenmodes being
orthogonal to the eigenmodes that make up the (1/2,1/2,0)
type antiferromagnetic state. Hence in that region, the putative
(1/2,1/2,0), cuboctahedral state really is a ground state.

Yet closer examination of the LT matrix for k =
(1/2,1/2,0) shows that neither the cuboctahedral state, nor
any noncollinear state, is forced. At this high-symmetry point
in the Brillouin zone, all intersublattice contributions to the
LT matrix J̃αβ(k) [see (2.1)] cancel. That means the (J̃αβ) is
a diagonal matrix. Its eigenvalues are −J2 + 2J ′

2 − 4J4 − 2J ′
4

for the mode of the (1/2,1/2,0) antiferromagnet, plus two
degenerate eigenvalues J2 + 2J ′

4 for the modes of interest here.
Furthermore, the fact that only J2 and J ′

4 enter the formula
indicates that all other couplings cancel out. Not only are
spins of different sublattices decoupled, but each sublattice
decouples into two interpenetrating (and unfrustrated) tetrag-
onal lattices. (The latter decoupling is reminiscent of the
decoupling of the J2-only simple cubic antiferromagnet.) In
light of these decouplings, we cannot call this state a (1/2,
1/2, 0) cuboctahedral; it is merely a particular configuration
out of a degenerate family that also includes collinear states.

V. CONIC SPIRAL STATES

The conic spiral states are generically incommensurate and
constitute the most common class of noncoplanar states that
we found. They are layered states, where the spins are all
parallel in a given layer, that is, the lattice breaks up into
layers normal to some stacking direction Q̂stack in real space.
We encountered only Q̂stack = {Q00} stacked conic spirals, so
we concentrate on that case, but stacking directions other than
{100} should be feasible, in principle. Within each layer, all
the spin directions are the same; as you look in each successive
layer, the spin directions rotate around an axis ĉ in spin space.
Due to this layering, it is possible to map a conic state to a
one-dimensional “chain lattice” (as introduced in Sec. V B),
which is a significant simplification in the analysis.

Considered from the LT viewpoint, a conic spiral is a
mix of two different modes: two spin components follow an
incommensurate wave vector Q, spiraling as in a helimagnet,
and the third component follows a commensurate wave vector
Q′ (Q′ ∼= 0 in the asymmetric-conic case). In both Q and Q′,
all components transverse to the stacking direction must be
zero.
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A. Categories of conic spiral states

The conic spirals divide into subclasses, the alternating
and asymmetric conic spirals, according to whether they are
symmetric under the (spin space) symmetry of reflecting in
the plane normal to ĉ. In the octahedral lattice, the only
type of conic spiral we observed was the asymmetric conic.
However, in the chain lattice, we find that two distinct classes
of conic spiral are possible: the asymmetric conic and the
alternating conic. In principle, both states should be possible
in the octahedral lattice, but an analysis in terms of stacking
vectors (see Sec. V B) reveals that longer range couplings
(J5,J6, . . . ) would be necessary to stabilize the conics.

1. Asymmetric conic spiral

In the asymmetric conic, the ground states are linear
combinations of helimagnetic and ferromagnetic modes. Let
the stacking direction be along the z axis, so all spins are
only functions of z. (Alternatively, we could interpret z as
the position in the one-dimensional chain lattice of Sec. V B,
below.) The helimagnetic part is parametrized with a rotating
unit vector:

Â(z) ≡ cos(Qz)Â0 + sin(Qz)B̂0, (5.1)

where (Â0,B̂0,Ĉ) form an orthonormal triad. Then

s(z) = cos(α)Â(z) + sin(α)Ĉ, (5.2a)

s
(
z + 1

2

) = cos βÂ
(
z + 1

2

) − sin(β)Ĉ, (5.2b)

with 0 � α,β � π/2. The spins in each sublattice rotate about
some common cone axis Ĉ in spin space; spins of the same
sublattice have the same component along the cone axis (giving
net magnetic moments for both sublattices of N ∗ s(α)

‖ , where

s(α)
‖ is the component of a spin of sublattice α along the

common axis). The different sublattices are antiferromagneti-
cally coupled, so these net moments have different signs. And
because the couplings within the sublattices are not equal to
those of the other sublattice, the magnitudes of the net moments
are not equal. This can be easier to understand if we think in
terms of common-origin plots (see Fig. 3), since then, the spins
all lie upon the surface of a sphere. In the common origin plot,
each sublattice forms a cone. These cones are along the same
axis, but oppositely oriented and their azimuthal (conic) angles
are not equal.

2. Alternating conic spiral

In the alternating conic spiral, one sublattice is a planar
spiral, while the other is always a combination of the same
helimagnetic mode and an antiferromagnetic mode. This state
is thus represented as, again using (5.1),

s(z) = cos(α)Â(z) + (−1)z sin(α)Ĉ, (5.3a)

s
(
z + 1

2

) = Â
(
z + 1

2

)
, (5.3b)

where 0 � α � π/2 for the alternating conic. Returning again
to our common-origin plot (see Fig. 3), one sublattice forms a
great circle along the equator of the sphere. The other sublattice
now traces cones on each side of this equator (the common
axis is the vector normal to the circle). The spins of the second
sublattice alternate between the two sides of the equator, giving
the antiferromagnetic component. Thus the difference between

sublattices is more fundamental in the case of the alternating
conic spirals than in asymmetric conic spirals.

3. Splayed states

There are two other states essentially related to these conic
spirals, but are important enough to deserve their own names
(this is much the same as ferromagnetism being a special case
of helimagnetism). We term these states ferromagnetic and
ferrimagnetic splayed states.

Consider the alternating conic spiral in the limit of the polar
angle going to 0 or 1/2. In both cases, the spins are confined
to a plane, but they are emphatically not in a helimagnetic
configuration. The sublattice that was helimagnetic is now
ferromagnetic and the sublattice that was conic now merely
alternates (that is, reflects about the equatorial plane without
rotation). If the polar angle is 0 (1/2), then the dot product of
spins in different sublattices is positive (negative) and the state
is a ferromagnetic (ferrimagnetic) splayed state.

While the difference between ferromagnetic and ferri-
magnetic splayed states seems rather trivial here, it is more
dramatic when we think of asymmetric conic spirals. The
ferrimagnetic splayed state is produced when one of the conic
angles and the polar angle go to 1/2 while the other conic angle
remains arbitrary, but because the coupling between sublattices
is antiferromagnetic for the asymmetric conic spiral, the conic
angles of the sublattices will always confine spins to opposite
sides of the “equator.” This means that the asymmetric conic
spiral will never continuously transform into a ferromagnetic
splayed state, and so such a transition would necessarily be
first order.

B. Stackings and chain mapping

For the cases of incommensurate conic spirals, our main
analytic method is variational: we assume a functional form for
the spin configuration (based on iterative minimization results)
depending on several parameters, and optimize exactly with
respect to them. Say we know that the correct ground state is
stacked of a stack of planes with identical spins—in practice,
this is determined empirically from the outcome of iterative
minimization (Sec. II B)—then the variational problem is
equivalent to a one-dimensional (and hence simpler) one:
layers of the 3D lattice may be mapped into a chain containing
inequivalent sublattices.

This mapping is fruitful in two or three ways. First, we could
(and did) explore the chain lattice ground states using interative
minimization, in much longer system lengths than would be
practical in an L × L × L system. Second, it is unifying, in that
various stackings of various three-dimensional lattices map to
the same chain lattice. Finally, it illuminates what conditions
are necessary in order to obtain noncoplanar states.

Notice that if a stacked state is the true ground state of
the three-dimensional lattice, its projection must be the true
ground state of the chain projection (since the chain lattice
states correspond exactly to a subset of three-dimensional
states), but, of course, the converse is false—the proven
optimal state of the chain lattice might be irrelevant to the
three-dimensional lattice, when a different (e.g., unstacked)
kind of ground state develops a lower energy. As coupling
parameters are varied, that different states might become stable
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FIG. 4. (Color online) The mapping between the octahedral and
chain lattices for a (001) stacking direction. All sites with the same
value of z on the x and y sublattices (red x’s) are projected onto the
same point, while those in the z sublattice (blue squares) are mapped
onto a different point (again a function of z). As such, there are twice
as many sites mapped onto any x as there are mapped onto a square.
The spatial structure is shown in dotted lines, while couplings are
shown in solid lines.

in a first-order transition; our only systematic ways to address
that possibility are (i) iterative minimization and (ii) watching
for an exchange of stability between two LT eigenmodes at
different wave vectors. Although with the latter method we
had to rely primarily upon iterative minimization for reliable
results, as LT analysis is insufficient to determine the ground
state, particularly in cases where a ground state cannot be
constructed from the optimal LT modes.

For the cases that concern us here, the chain lattice has a
basis of two sites per cell, with inversion symmetry at each
site—we take the lattice constant to be unity. The mappings to
chain sites z are given by

z = Q̂stack · r, (5.4)

where Q̂stack is a vector of integers, having no common factor.
We let “even” sites be those with z integer and “odd” sites
be those with z = integer + 1/2. As in three dimensions,
we consider intersublattice couplings j1 and j3, as well as
intrasublattice couplings out to distances 1 and 2, namely, j2

and j4 (between even spins) or j ′
2 and j ′

4 (between odd spins).
Notice that, if j2 = j ′

2 and j4 = j ′
4, the chain system reduces

to a Bravais lattice (with lattice constant 1/2) and its ground
states are (at most) coplanar spirals, as explained in Sec. II A;
that rules out Q̂stack = (1,1,1). Notice that for stackings in low-
symmetry directions (and thus requiring larger coefficients in
the Q̂stack vector), short-range Jij couplings in the octahedral
lattice map to long-range jij couplings in the chain lattice, e.g.,
Q̂stack = (211) maps J1 through J4 to j1 through j6. Because
longer-range couplings quickly appear, it is reasonable to
explore them in the chain lattice. In order to organize our
exploration of parameter space, we shall call j1, j2, and j2

“primary” couplings; j3, j4, and j ′
4 are “secondary” couplings,

and if necessary are assumed small compared to the primary
couplings.

We encountered Q̂stack = (1,0,0) stackings often enough
in the iterative minimization, and we searched for Q̂stack =
(1,1,0) type stackings also (although this search was ultimately
unsuccessful). The Q̂stack = (001) mapping is illustrated in real
space in Fig. 4. The numerical values of the mapped couplings

are given by a matrix multiplication:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

j0

j1

j2

j ′
2

j3

j4

j ′
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 2 4 0 4 2
8 0 0 16 0 0
0 0 2 8 4 4
0 1 0 0 4 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

J1

J2

J ′
2

J3

J4

J ′
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5.5)

where j0 is the energy within a plane of constant z in
the octahedral lattice. Notice that for this stacking vector,
couplings J1 through J4 are projected down to j0 through
j2. This helps explain the absence of stable conic spirals in
the octahedral lattice. We only find conic spirals in the chain
lattice for j3 or longer-range couplings. But in order to do
so, when the stacking wavevector Q̂stack is (100), at least a J5

coupling is required. (To stabilize an alternating conic spiral,
it is more plausible that J6 is required, given the asymmetry
between the sublattices.)

C. Transversely modulated spirals

This is a hypothetical (but likely) class of states. Here,
“transversely modulated” means that when we decompose the
lattice as a stacking of layers, a single layer does not have a
single spin direction but, instead, a pattern of spin directions.
Whereas the asymmetric conic spiral used ordering wave
vectors (say) (Q,0,0) and (0,0,0) and the alternating conic
spiral used (Q,0,0) and (1/2,0,0), a transversely modulated
spiral might replace the first wave vector by, e.g., (Q,1/2,1/2).

Equivalently, if we look at a column of successive cells
along the stacking direction, in a plain conic spiral (whether
alternating or asymmetric), adjacent columns are in phase, but
in the transversely modulated conic spirals, different columns
are offset in phase according to a regular pattern. It should be
possible to generalize the chain mapping to such cases, but we
have not tried it.

VI. DOUBLE-TWIST STATE

Here, we describe the incompletely understood “double-
twist” state, which has attributes in common with both
cuboctahedral and conic states, and was observed only for
a small set of couplings (J1 = −2, J2 < 0, J3 = 1, all others
zero). These couplings were selected to give QLT = (Q,Q,0),
as the ground states previously encountered had a QLT either
along the (111) direction or on the edges of the Brillouin zone.
For a given Q, the value of J2 is determined by

J2 = 4
√

2[3 cos2(Q/2) − 1]/
√

1 − 2 cos2(Q/2). (6.1)

We particularly studied the Q = 3/8 case. (Note that iterative
minimization necessarily probes commensurate states, due
to our boundary conditions.) This corresponds to J2/J3 =
−3.7717, according to (6.1).

The double-twist state is, to good approximation, composed
solely of (Q,Q,0) modes (for normalization, there will
necessarily be other wave vectors, but these have relatively
small amplitudes). Unlike previous states, each sublattice has
nonzero contributions from all (Q,Q,0) wave vectors, rather
than a subset. The weight of each sublattice in a given (Q,Q,0)
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mode differs between sublattices, approximately in proportion
to relative weight in the LT optimal mode with a similar QLT.

The spatial variation produced by this combination of
modes is complicated. There is a stacking axis in real space,
which we take to be ẑ without loss of generality. Spin space is
characterized by three orthonormal basis vectors: Ĉ defines a
conic axis, around which the other two basis vectors Â and B̂
rotate as a function of z:

Â(z) = cos(Qz)Â0 − sin(Qz)B̂0, (6.2a)

B̂(z) = sin(Qz)Â0 + cos(Qz)B̂0, (6.2b)

Ĉ = Â(z) × B̂(z) = Â0 × B̂0. (6.2c)

We can parametrize this cartoon of the double-twist state as⎛
⎝S1(r)

S2(r)
S3(r)

⎞
⎠ = �0

⎛
⎝−a b b

b −a b

b b −a

⎞
⎠
⎛
⎝ sin(�y)Â(z)

sin(�x)B̂(z)
� cos(�x) cos(�y)Ĉ

⎞
⎠

(6.3)

with �x(c) ≡ Qx − φx , where φx is an arbitrary phase,
similarly �y(y) ≡ Qy − φy . Note the coordinates r in Si(r)
are the actual sites for sublattice i, which are half-odd integers
in the i component. Thus, in addition to the twisting of the
basis vectors along the stacking direction, in (6.2), there are
spatial modulations transverse to the stacking direction that
appear in the coefficients of Â, B̂, and Ĉ in (6.3).

While the form described by (6.3) is close to what we
observe with iterative minimization, it unfortunately does not
satisfy normalization: the ground state necessarily contains
admixtures of nonoptimal modes. [To satisfy normalization
using only the (Q,Q,0) modes would require four-component
spins.] In (6.3), (−a,b,b) should ideally be the amplitudes
(on the three respective sublattices) of the LT eigenvector
at (0,Q,Q), while � is a weighting factor that reduces the
deviations of the spins in (6.3) from uniform normalization.

What if we demanded, not normalization of all spins, but
only that the mean-squared value of |Si(r)|2 be one in each
sublattice? Since each cosine or sine factor has mean square
of 1/2, and since a2 + 2b2 = 1, we ought then to have �0 =
� = √

2. Projecting the actual result of iterative minimization
onto such modes gave � ≈ 1.36. Also, whereas b/a = 1.64 in
the actual LT eigenvectors, we found b/a ≈ 1.5 in the results
of iterative minimization.

The double-twist state can be viewed as related to the
hypothesized transversely modulated conic spirals or to the
cuboctahedral states. In particular, the composition of this state
in terms of LT modes is more similar to the cuboctahedral states
than to any other configuration.

The LT mode underlying this state, according to (6.1),
has a continuously variable wave vector as J2 is varied.
Due to the limitations of iterative minimization with periodic
boundary conditions, we have not followed the evolution of the
double-twist state; in particular, we do not know if it becomes
incommensurate in both the stacking (z) direction and the
transverse directions.

VII. PHASE DIAGRAMS

To understand how the ground states outlined in Secs. III–
VI fit together, it is necessary to examine the phase diagrams

TABLE I. Ground states of the octahedral lattice, with ordering
wave vector Q.

State Q Energy/spin

Ferromagnetic (000) −4JX − J2 − 2J ′
2 − 4J4 − 2J ′

4,

JX ≡ J1 + 2J3

Three sublattice—120◦ (000) 2JX − J2 − 2J ′
2 − 4J4 − 2J ′

4

(1/2,1/2,0) AFM
(

1
2 , 1

2 ,0
) −J2 + 2J ′

2 − 4J4 − 2J ′
4

(1/2,1/2,1/2) AFM
(

1
2 , 1

2 , 1
2

)
J2 + 2J ′

2 − 4J4 − 2J ′
4

(1/2,0,0) AFM
(

1
2 ,0,0

)
J2 − 2J ′

2 − 4J4 − 2J ′
4

π/3 cuboctahedral
(

1
2 ,0,0

) −2J1 − J2 + 4J3 + 4J4

2π/3 cuboctahedral
(

1
2 ,0,0

)
2J1 − J2 − 4J3 + 4J4

Helimagnet (qqq) −2J1 − 2J4 − J ′
4 − J 2

S /(8JL),

JS ≡ 2J1 + J2 + 2J ′
2 + 4J3,

and JL ≡ 2J3 + 2J4 + J ′
4

of the octahedral and chain lattices. A series of representative
cuts through the phase diagrams for both lattices gives us
a general sense of their topology, and specifically in what
regions noncoplanar states are stabilized.

Of course, rescaling the couplings by any positive factor
gives an identical ground state (with energy rescaled by the
same factor). Therefore we present the phase diagrams in
rescaled coordinates, normally Ji → Ji/|J1| (except when
J1 = 0).

An important aspect of all the phase diagrams is the
classification of the transitions into first-order (discontinuous),
encompassed (continuous), or degenerate: the distinction be-
tween the last two kinds was explained in Sec. II D. Whenever
a continuous manifold of degenerate states is found (always
on a phase boundary), it is labeled in the diagrams by “O(Ld )”
representing how the number of parameters (needed to label
the states) scales with system size.

A. Octahedral lattice

In the octahedral lattice, we are fortunate in that most kinds
of states have energies that can be written exactly as a linear
combination of couplings [given in Table I (Ref. 54)] the phase
boundaries between such phases are simply the lines (more
exactly hyperplanes) where the two energy functions are equal.
Most other phase boundaries are handled analytically, e.g.,
the helimagnetic state and its “encompassed” ferromagnetic
and antiferromagnetic states. The only phase boundary not
determined analytically from a variational form was the
double-twist state for which we do not have an exact variational
form; in this case, the boundary was approximated by the LT
phase boundary. We would expect this approximation to be
accurate for any such complex phase that is built entirely from a
star of symmetry-equivalent modes, provided the neighboring
phase is built from other modes.

Using this information, we can easily find the phase
boundaries of various states. To aid in graphical display, we
will normalize all couplings by |J1| and restrict attention
to |J3|/|J1| < 1. Phase diagrams will be plotted in the
variables (J2,J

′
2) representing a slice with (J1,J3) fixed. In
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all such slices, the second, third, and fourth quadrants of the
phase diagram are dominated by antiferromagnetic phases of
ordering vector (1/2,1/2,0), (1/2,1/2,1/2), and (1/2,0,0),
respectively. Recall that all of these are nontrivially decoupled
states in which distinct sublattices can be independently rotated
due to cancellations of the intersublattice interactions. When
thermal or quantum fluctuations are added to the description,
“order-by-disorder effects”3,4 typically select specific states
from these manifolds that are collinear. The first quadrant is
dominated either by the ferromagnetic phase, or (if J1 < 0) by
the 120◦ three sublattice phase. Cuboctahedral phases may be
found near the J ′

2 = 0 axis when J2 > 0.
The phase transitions are first order in the octahedral

lattice, with the following exceptions, which can be clas-
sified according to the three scenarios for bridging states
outlined in Sec. II D (encompassing and degenerate). (1) The
transition from the helimagnet to either the (1/2,1/2,1/2)
antiferromagnet or to the ferromagnet is continuous [as is the
ferromagnet to (1/2,1/2,1/2) antiferromagnet, by extension],
since the optimal wave vector varies continuously along
(q,q,q) until it hits the commensurate value [(1/2,1/2,1/2) or
(0,0,0)], then it stops; this is an example of an encompassing
state.

(2) Transitions to the (1/2,1/2,1/2) antiferromagnet phase
are degenerate, since the phase boundaries in parameter
space imply a decoupling (the manner of the decoupling
is not always obvious). For the (1/2,1/2,0) and (1/2,0,0)
antiferromagnets, the decoupling is clear, as the boundaries
are given by J2 = 0 or J ′

2 = 0 (respectively), which (trivially)
decouple sublattices. In the Brillouin zone, the wave vector
can evolve continuously along (1/2,q,k) and (1/2,1/2,q) [for
the (1/2,0,0) and (1/2,1/2,0) antiferromagnets, respectively].
The double-twist state is an exception to this rule, as it is not
composed of LT modes related by symmetry, and so there is
no well-defined path through k space to turn the double-twist
state into an antiferromagnet.

(3) Transitions from the ferromagnetic or 120◦ state to either
cuboctahedral state are degenerate: on the phase boundary, the
stable states include the highly degenerate J1-only state (or its
analog).

(4) Lastly, transitions between states of the same QLT are
degenerate, occurring where two eigenvalues of the LT matrix
for QLT cross, as a function of changing parameters. This is
found for the (0,0,0) modes (ferromagnetism and the 120◦
state) and the (1/2,0,0) modes [both types of cuboctahedral
states with each other and with the QLT = (1/2,0,0) anti-
ferromagnetic state]. Because the degeneracy is limited to
different eigenmodes of the same wave vector, these are O(L0)
degenerate transitions.

Consider first the phase diagram produced with ferromag-
netic J1 and no couplings beyond J2,J

′
2 (see Fig. 5). In this

case, we find only four states, all of them coplanar (these
are outlined in Sec. III). What is particularly important here,
though, is the way that the phase diagram divides up into four
quadrants. This is a fairly generic feature that we will see
in other phase diagrams. Along the J ′

2 = 0 line between the
(1/2,1/2,1/2) AFM and the (1/2,0,0) AFM, in all the phase
diagrams, we get a degenerate [O(L2)] decoupled state in
which each J ′

2-coupled line has an independent staggered spin
direction.

AFM
Ferro

AFM
AFM

(1/2, 0, 0)
(1/2, 1/2, 1/2)

(1/2, 1/2, 0)

0

J1 = 1, J3 = 0

J
2
/J

1

J ′
2/J1

21 3 4 5−1−2−3−4−5

0
2

1
3

4
5

−
1

−
2

−
3

−
4

−
5

O(L)

O
(L

2
)

FIG. 5. Octahedral phase diagram for J1 = 1, J3 = 0. Squares
indicate couplings tested with iterative minimization. Solid lines de-
note first-order transitions, dashed lines denote degenerate transitions
(Sec. II D), where the scaling of degrees of freedom is labeled. Dotted
lines indicate a second-order transition from encompassing states.
Regions shaded gray indicate a noncoplanar phase.

Let us now examine how the ferromagnetic J1 phase
diagram is modified by an antiferromagnetic J3 (see Fig. 6).
First of all, it stabilizes the π/3 cuboctahedral state, our
first example of a noncoplanar phase. J3 also stabilizes a
(q,q,q) helimagnet at the center of the phase diagram. The
boundaries of this phase are quite sensitive to J3: as J3 becomes
more antiferromagnetic, the helimagnet’s phase boundaries
with ferromagnetism and (1/2,1/2,1/2) antiferromagnetism
move outward in opposite directions, so as to increase the
region of parameter space that is helimagnetic. Meanwhile,
the phase boundaries of helimagnetism with the (1/2,0,0)
antiferromagnet and π/3 cuboctahedral state move inwards in
opposite directions, so as to decrease the region of parameter
space that is helimagnetic. The result is that, as J3 becomes
more antiferromagnetic, the helimagnetic region of parameter

AFM

AFM
AFM

(1/2, 0, 0)
(1/2, 1/2, 1/2)

(1/2, 1/2, 0)

J1 = 1 , J3 = −1/10

Cuboc
π/3

(1/2, 0, 0)

Ferro

Heli
( q, q, q )

0

J
2
/
|J

1
|

J ′
2/|J1|
21 3 4 5−1−2−3−4−5

2
1

3
4

5
−

1
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2
−
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−

4
−
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O
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)
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O
(L

)
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)

FIG. 6. Octahedral phase diagram for J1 = 1, J3 = −1/10. First
instance of a noncoplanar state (the π/3 cuboctahedral state, in the
shaded region) and of helimagnetism.
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FIG. 7. Octahedral phase diagram for J1 = −1, J3 = 0. First
instance of the 2π/3 cuboctahedral state. The large filled circle is
the point in parameter space corresponding to only J1 coupling of
antiferromagnetic sign, and thus the “J1-only” state. The point where
four phases meet has even greater degeneracy.

space first grows and later shrinks until J3 = −J1/2 < 0,
where it disappears entirely.

Now we turn to the phase diagrams with antiferromagnetic
J1, first considering arbitrary J2,J

′
2 with J3 = 0 (see Fig. 7).

In this case, we still see the quadrant structure, at least
qualitatively; the upper right quadrant now represents the
(ordered) three-sublattice 120◦ state. However, a strip between
the upper quadrants is occupied by the 2π/3 cuboctahedral
state, a noncoplanar state that only requires two nonzero
couplings. Furthermore, along the boundary between the 2π/3
cuboctahedral state and the three-sublattice 120◦ state, we
find the (highly degenerate) “J1-only” state (described in
Sec. II E1). Thus the hat phase transition is O(L1) degenerate.

For antiferromagnetic J1, adding ferromagnetic J3 (see
Fig. 8), we see the 2π/3 cuboctahedral state expand, changing
the topology of the phase diagram [it now shares a boundary
with the (1/2,0,0) antiferromagnet]. In addition, near the
triple point of the (1/2,1/2,1/2) antiferromagnet, (1/2,0,0)
antiferromagnet, and 2π/3 cuboctahedral state, we find the
double-twist state.55 Note that the slice of parameter space
shown here, J1 = −2J3, includes the phase boundary between
the three-sublattice 120◦ state and the ferromagnetic state: that
boundary (the striped region in Fig. 8) has an extra degeneracy
of the kind described in Sec. II D.

The double-twist state, described in Sec. VI, may be
understood in the light of Fig. 8 as a selection from the family of
degenerate states found along the J ′

2 = 0 phase boundary. The
nature of those states’ degeneracy was that sublattices decouple
by row. This decoupling depended upon cancellations due to
the alternating order within each sublattice. Adding J1,J3 to
the J2-only state (with J2 sufficiently small) selects for a spiral
distortion within each sublattice, such that the interactions
between sublattices no longer cancel, and lower the energy.

The J1 < 0 phase diagrams superficially resemble the
J1 > 0 phase diagrams, with two different cuboctahedral
states appearing around the J2 > 0 axis, and a helimagnet
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FIG. 8. Octahedral phase diagram for J1 = −1, J3 = 1/2. The
double-twist state is found in the small region near the origin. The
striped region indicates that this slice (J3 = 1/2) contains a phase
boundary between the 120◦ three-sublattice and ferromagnetic states;
for the parameter set plotted, that region has states of the degenerate
[marked “O(L0)” parameters] and nontrivially decoupled kinds. If we
varied J3 to pass through that region of parameter space, we would
cross a degenerate phase transition.

or double-twist state (respectively) appearing in a small edge
below the phase diagram’s center.

We have also considered the case of J1 = 0 with an
antiferromagnetic J3 (phase diagram not shown). This phase
diagram, apart from the trivial change of normalizing the
couplings by |J3| instead of |J1|, strongly resembles the case
of antiferromagnetic J1 and J3 = 0 shown in Figure 7); the
sole difference is that we now find the π/3 cuboctahedral state
in place of the 2π/3 cuboctahedral.

With iterative minimization we found asymmetric conic
states along the phase boundary between the (1/2,1/2,1/2)
antiferromagnet and the (1/2,0,0) antiferromagnet, but we
believe these are artifacts, in the sense we will describe now.
This boundary corresponds to LT modes degenerate over a
plane of wave vectors, leading to a degenerate family of spin
ground states with an arbitary wave vector. These are gener-
ically noncoplanar spirals, except the limiting states of this
family are collinear encompassed states (in the nomenclature
from Sec. II D). Thus, although these conic spirals are valid
ground states, we do not count them as noncoplanar, since
that is not forced by the couplings. This is an instance where
the overlap between encompassing and degenerate states is
especially stark, as the family of degenerate states coincides
with the class of encompassing states.

The impossibility of forcing any conic spiral in the
octahedral lattice is understood by using the mapping (5.5) of
couplings from the octahedral lattice to the chain lattice (see
Sec. V B). We will see shortly (Sec. VII B) that stabilizing
either kind of conic states requires a coupling j3 or j4 in the
chain lattice; for a (100) stacking vector, (5.5) takes octahedral
coupings J1 through J4 to chain-lattice couplings j0 through
j2, so, clearly, couplings J5, J6, or longer are required (and
sufficient) to truly stabilize conic spirals in the octahedral
lattice.
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TABLE II. Parametrizations and energies of the chain lattice.
Q denotes the ordering wave vector(s), as a multiple of 2π . The
energy per unit cell is given. The splaying angle is given by cos α =
−(j1 + j3)/2j2 for the splayed ferromagnet or +(j1 + j3)/2j2 for the
splayed ferrimagnet.

State Q Energy

Ferro 0 −2j1 − j2 − j ′
2 − 2j3 − j4 − j ′

4

AFM 0 2j1 − j2 − j ′
2 + 2j3 − j4 − j ′

4

Heli- 2ψ −2j1 cos ψ − (j2 + j ′
2) cos 2ψ

magnet −2j3 cos 3ψ − (j4 + j ′
4) cos 4ψ

Splayed 0 and (j1 + j3)2/2j2 + j2 − j ′
2 − j4 − j ′

4

ferro 1/2

Splayed 0 and (j1 + j3)2/2j2 + j2 − j ′
2 − j4 − j ′

4

ferri 1/2

Alter- 1/2 −2(j1 cos ψ + j3 cos 3ψ) cos α

nating and +j2 − j4 − j ′
2 cos 2ψ − j ′

4 cos 4ψ

Conic 2ψ −[j2(cos 2ψ + 1) + j4(cos 4ψ − 1)] cos2 α

Asym- 0 −2(j1 cos ψ + j3 cos 3ψ) cos α cos β

metric and +2(j1 + j3) sin α sin β − j2 − j ′
2 − j4 − j ′

4

conic 2ψ −(j2 cos2 α + j ′
2 cos2 β)(cos 2ψ − 1)

−(j4 cos2 α + j ′
4 cos2 β)(cos 4ψ − 1)

B. Chain lattice

The chain lattice ground states are significantly more
complicated than those of the octahedral lattice. Analytically
determining the optimal energy of even the helimagnet
becomes difficult when couplings beyond j3 are included.
Therefore, while we can easily determine a variational form
for the energies, we cannot analytically determine the ground
state when couplings j3 or higher are introduced. Energies
are given in Table II, which are then numerically optimized
to give the subsequent phase diagrams. We once again
normalize by |j1|, but we now plot j ′

2/|j1| × j2/|j1|, rather
than J2/|J1| × J ′

2/|J1|. This change of convention does not
have great physical implication, as the difference between J2

and J ′
2 in the octahedral lattice is distinct from the difference

between j2 and j ′
2. Lastly, by the definitions of the chain lattice,

several properties of the phase diagram follow immediately.
First, simultaneous exchange of j2 with j ′

2 and j4 with j ′
4 will

merely change the labeling convention to distinguish the two
sublattices. The ground state in the chain lattice must therefore
be invariant under this operation. Furthermore, when j2 = j ′

2
and j4 = j ′

4, this exchange will not change anything. In this
region of parameter space, there is no difference between the
two sublattices and the chain lattice becomes a Bravais lattice
with unit cell 1/2. From this fact and Sec. II A, it follows that
states in this region are necessarily coplanar.

To classify phase boundaries in the chain lattice, it is
important to consider limiting cases (i.e., encompassed states
in the nomenclature of Sec. II D). States with variational
parameters (the helimagnetic wave vector q as well as the
conic/splay angles) will undergo a second-order transition
when their parameters reach a limiting value (0 or 1/2
for the helimagnet angle, 0 or 1/4 for conic angles). Thus
there is a second-order transition between helimagnetism
and either antiferromagnetism or ferromagnetism as well as
between alternating conic spirals and every other state (except
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FIG. 9. Chain lattice phase diagram for j1 = 1, j3 = 0, j4 = 0,
and j ′

4 = 0. Note the similarity to phase boundaries in Fig. 5, despite
the lack of other similarity.

asymmetric conic spirals). Asymmetric conic spirals, on the
other hand, have second-order transitions to ferromagnetism,
antiferromagnetism, helimagnetism, or ferrimagnetic splayed
states, but not to ferromagnetic splayed states or alternating
conic spirals. The splayed states, meanwhile, can only have
second-order transitions to ferromagnetism or antiferromag-
netism (depending upon which type of splayed state it is), to
the other splayed state, or the appropriate conic spiral. All
other transitions are necessarily first order.

Consider first the case that j1 is ferromagnetic with no
couplings beyond j2,j

′
2 (see Fig. 9). The phase diagram

displays the same quadrant structure that we found in the
octahedral lattice. However, the quadrant structure is not
identical in the two lattices. First of all, the ground states are
different in the chain lattice (helimagnetism and splayed states
instead of various forms of antiferromagnetism). Second, the
topology of the first- and second-order transitions are reversed
for the two lattices. Both of these phenomena can be explained
by appealing to the additional degrees of freedom in the
octahedral lattice. Because the octahedral lattice has three
spatial variables, it has ground states that cannot exist in the
chain lattice. This includes families of degenerate states at the
phase boundaries of the octahedral lattice, producing second-
order transitions (when there are second-order transitions in the
chain lattice, they are principally due to encompassing states).

Next, we consider the case that j1 is antiferromagnetic
and j3 is ferromagnetic (see Fig. 10). Several states in the
quandrant structure are different from the ferromagnetic j1

case (i.e., ferrimagnetic versus ferromagnetic splayed), but
more interesting is the presence of the asymmetric conic
state—the first instance of a nonplanar state in the chain lattice.
In much the same way that tuning j3 in the octahedral lattice
produced helimagnetic states around the phase boundaries
of the more common states, so in the chain lattice we find
that the asymmetric conic spiral becomes stabilized around
what would be the antiferromagnetic, ferrimagnetic splayed,
helimagnetic triple point. Unlike the helimagnetic state in
the octahedral lattice, which had both first- and second-order
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FIG. 10. (Color online) Chain lattice phase diagram for j1 = −1,
j3 = 0.28, j4 = 0, and j ′

4 = 0. First state with asymmetric conic spiral
and therefore first instance of noncoplanar ground states in the chain
lattice. White circles denote helimagnetic phase, black circles anti-
ferromagnetic, crosses splayed ferrimagnetic, and filled squares (blue
online) asymmetric conic spiral, the phases determined by numeri-
cally optimizing the variational form of the energy for these couplings.

transitions, the asymmetric conic spiral has only second-order
transitions (this is because it is an encompassing parametriza-
tion of every other state in this slice of the phase diagram).

If we switch the sign of j3 so that we have both j1 = −1
and j3 = −0.28 antiferromagnetic, the topology of the phase
diagram (not shown) is much the same as Fig. 10. The
AFM/Heli boundary gets shorter and moves towards the lower
left, so that the four domains almost meet at a point. More
significantly, the asymmetric conic does not appear along
the phase boundaries. Instead, all transitions are continuous,
except that along both parts of FerriSplayed/Heli boundary,
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FIG. 11. (Color online) Chain lattice phase diagram for j1 = −1,
j3 = 0, j4 = −0.28, and j ′

4 = 0. Filled squares denote conic spiral
phases of which both kinds exist in this parameter slice: symmetric
conic spiral in the upper half (blue online) and asymmetric conic
spiral in the lower half (red online). This is our first instance of an
alternating conic spiral.

the portion closest to the center is first order.56 (The point
where the nature of the transition switches from first order to
continuous is thus of tricritical type.)

Finally, we consider the case that j1 is ferromagnetic and j4

is antiferromagnetic states (see Fig. 11). This slice of parameter
space is quite interesting as both types of conic spiral are
present. Furthermore, the alternating conic spiral now fills a
relatively large region of parameter space. This is likely due
to its highly nonlinear dependence on j4 (as a function of its
variational parameters).

VIII. CONCLUSION AND DISCUSSION

To conclude the paper, we first review our principal results,
and then assess how much of what we learned is transferable
to other lattices.

A. Summary: methods and results

The highlights of this paper include both concepts and
methods, as well as results specific to the octahedral lattice,
which seems relatively amenable to noncoplanar states. We
pay special attention (Sec. VIII A2) to commonalities in
the positioning of noncoplanar states in the phase diagram
vis-à-vis neighboring phases.

Our overall focus had a flavor of reverse engineering, in
that we try to ask which couplings gave a certain phase (or
which gave any noncoplanar phase)—of course, in order to
do that, one must also understand the forward question (given
the couplings, what is the phase). In that sense, our work is
an example of a “materials by design” philosophy, whereby
materials are tailored, e.g., by adjusting their chemical content,
to have a combination of interactions leading to a desired state.

1. Methods

Our basic recipe to determine the ground state of a non-
Bravais lattice was a two-step process (Sec. II). First, an
approximate ground-state configuration is generated through
iterative optimization (Sec. II B) of a lattice, starting from a
random initial spin configuration. From this result, an idealized
spin configuration is created. The idealized formulation, if it
has parameters undetermined by symmetry, is then used vari-
ationally optimizing the Heisenberg Hamiltonian (Sec. II C),
yielding also the energy per site as a function of parameters.
When this has been carried out for each candidate phase, a
phase diagram (Sec. VII) can be generated.

We refined the basic recipe further using three additional
concepts or tricks. First, although the eigenmodes of the
coupling matrix do not (in the non-Bravais case) automatically
lead us to the ground state, they sometimes do work and
are always a useful guide. Second, if the magnetic structure
is layered, the three-dimensional octahedral lattice can be
mapped to various (non-Bravais) one-dimensional lattices;
such “chain” lattices are much more tractable than the
cuboctahedral one, but they still support noncoplanar states.
Third, we applied perturbation analysis to find second-order
phase boundaries (especially in combination with variational
optimization, but also in the Luttinger-Tisza Fourier analysis).
Namely, when a ground state could not be written exactly,
but emerges as an instability of a closely related state—e.g.,
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a helimagnetic phase out of the ferromagnetic one—we can
expand around the latter state and solve for the couplings at
which it goes unstable.

One immediate insight was afforded by considering the LT
phase diagram. Short-range couplings have Fourier transforms
J̃αβ (k) in (2.1) that vary slowly in reciprocal space. Such
functions typically possess extrema at high-symmetry points
in the Brillouin zone; the same is probably true for the optimum
eigenvalues and their wave vectors QLT. That corresponds to
simple, commensurate ordering in real space. In order to get the
optimal LT mode (and presumably the actual ordering) to be
incommensurate, or to possibly stabilize states with stacking
directions other than (100), one needs to include more distant
neighbor couplings.

The insufficiency of finding regions with the correct QLT

for the purpose of stabilizing a targeted magnetic structures
is an important caveat for the LT approach. There are some
combinations of modes that cannot be stabilized by any set of
pairwise interactions, that is, we can make them be optimal
modes, but only if they are part of a degenerate family
that includes other optimal LT modes that are unrelated by
symmetry.

2. Why are noncoplanar states scarce?

One might have expected noncoplanar ground states to
be generic (in the non-Bravais case, when they are possible
at all) but in fact they were seen in only a small portion
of our parameter space (Sec. VII). In fact, noncoplanar
phases typically appeared in the phase diagram as “bridges”
intermediate between simpler phases; there are two scenarios
of bridging, as formulated in Sec. II D.

First, typically along the phase boundary between two
simple commensurate phases, one finds families of contin-
uously degenerate states. Usually, this infinite family includes
coplanar states but the generic member is noncoplanar;
appropriate tuning of the couplings (e.g., including further
neighbors) can select particular noncoplanar states in different
ways. However, since the noncoplanar phase was limited (in
the first-order description) to the (measure zero) boundaries
between planar states, it naturally occupies only a small region
of the extended parameter space. Indeed, the noncoplanar
states we found in the octahedral lattice either occurred in
small wedges, e.g., the cuboctahedral or double-twist states,
or were only observed as accidental instances of the degenerate
family in cases where the degeneracy cannot be broken (within
the parameter space we took as the scope of this paper), e.g.,
the asymmetric conic states.

Second, there are the encompassing states. Such states
become qualitatively different as a free parameter reaches
some limiting value (a canonical example is the collinear
ferromagnet as a limiting case of planar spirals). In the
chain lattice, we often observed phase boundaries between
two states that did not encompass each other; by tuning
the couplings, it was sometimes possible to stabilize a third
state that encompassed the original two, so the original first-
order transition is converted to two successive second-order
transitions with the encompassing state in the middle. This is
the means by which conic spiral states are stabilized in the
chain lattice.

Recently, a framework was proposed with a motivation
similar to ours: the “regular states”57, which have a magnetic
symmetry such that all sites are symmetry equivalent. The
cuboctahedral state is an example. However, this is neither
necessary nor sufficient for our own problem, to find all kinds
of noncoplanar states: most of those, e.g., the double-twist
state, are not regular, and conversely certain noncoplanar reg-
ular states are not stabilized by bilinear exchange interactions
alone.

B. Summary: Results on octahedral lattice

We identified two categories of noncoplanar arrangements
(which could be defined for more general lattices than the octa-
hedral one). First, there are the commensurate three-Q states,
exemplified here by the highly symmetric “cuboctabedral”
spin state (Sec. IV). A second general class includes several
varieties of incommensurate “conic spiral” (Sec. V). The
commensurate three-Q states were found for both short-
and long-range couplings (i.e., Ji’s limited to no more than
second-nearest neighbors or extending beyond second-nearest
neighbors), while incommensurate conic spirals were possible
for our lattice only when there are some Ji’s beyond the second
neighbors.

The conic spirals came in “alternating” or “asymmetric”
subclasses (stable in different parts of {Ji} parameter space)
according to whether the spin components along the rotation
axis were the same in each layer or alternated. This suggested
that an additional subclass should exist, the “transversely
modulated conic spiral,” which is nonuniform in each layer.
In addition, we came across a “double-twist” ground state of
high (but not cubic) symmetry, which has some commonalities
with the cuboctahedral state but is probably best classified as
a transverse-modulated conic spiral (Sec. VI).

The conic spiral states were found to be a function of
one spatial coordinate, allowing the more involved octahedral
lattice to be mapped to the 1D chain lattice while preserving
the ground state (Sec. V B). While this mapping is not a generic
property of ground states in the octahedral lattice, it dramat-
ically simplifies the analysis. Moreover, the transformation
provides a guide for the couplings required to stabilize the
conic spiral states in the octahedral lattice.

Note that while the presence of inequivalent sublattices
was necessary for the stabilization of noncoplanar states
in the one-dimensional chain lattice, it is not so in higher
dimensions. Our octahedral-lattice couplings explicitly treat
all sites equivalently; noncoplanar states emerge either when
it divides into unequal layers that map to the chain lattice, or
when it supports three-dimensional spin patterns not mappable
to a chain lattice. The most dramatic examples when the chain
lattice fails to represent the ground state in the octahedral lattice
are the cuboctahedral states, for which there is no distinguished
direction of variation (or stacking vector).

1. Comparison to experiments on inverse perovskite

Application to experiment was not the driving motivation
in our study, but it is of interest to compare with the
experimental structures observed among a large family of
inverse perovskite alloys with composition Mn3AX, where
A is metallic (nonmagnetic) element and X is a metalloid.
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TABLE III. Experimental states of inverse perovskite alloys
Mn3AX. Column “Q” identifies the ordering mode present in
the structures found by neutron diffraction; (0,0,0)F and (0,0,0)A
distinguish the ferromagnetic and antiferromagnetic modes, similarly
(0,0,1/2)A denotes the decoupled (0,0,1/2) antiferromagnet as
distinguised from the two (0,0,1/2) cuboctahedral modes; “qz” is
variable from 0 to 0.25 as explained in the text. The next column gives
the pertinent figure or table in Fruchart and Bertaut27 explaining this
structure; for Mn3CuN, also see Ref. 28, Fig. 3(a). Column “Figure”
is the pertinent phase diagram in our paper. Last four columns tell the
signs of the couplings as suggested from the ordering mode and the
phase diagram; here “∼” means near zero (or near the borderline for
the transition controlled by that coupling).

Alloy {Q} Ref. 27 Figure J1 J2 J ′
2 J3

Mn3ZnN (0,0,0)A Fig. 7(c) 7, 8 − + + ?
Mn3SnN (0,0,0)A and Table III 7, 8 − ∼ + ∼

(0,0,qz)
Mn3SbN (0,0,0)A, (0,0,0)F , Fig. 9 7, 8 − ∼ + ∼

and (0,0,0.5)
Mn3CuN (0.5,0.5,0) Fig. 9(a) 5 + + ∼ +?
or Mn3SnC and (0,0,0)F
Mn3GaC (0.5,0.5,0.5) Fig. 5(a) 2 ? − − ?

As summarized in Table III, we took the ordering vectors
found from neutron scattering by Fruchart and Bertaut27 and
looked in our phase diagram for the corner of parameter space
supporting that mode. It should be kept in mind that, in a non-
Bravais lattice such as this, (i) there are very different ordering
modes labeled with the same wave vector [e.g., ferromagnetic
versus antiferromagnetic at (0,0,0), or three kinds of (1/2,0,0)
mode], and (ii) of course, there are two inequivalent kinds of
second-neighbor coupling, J2 versus J ′

2.
A recurrent kind of order in the Mn3AX family is the

three-sublattice 120◦ state with spins in a plane normal to
(111), called triangular or �5g in Ref. 27. It was already
noticed in Ref. 28 that this indicates antiferromagnetic J1 and
ferromagnetic second neighbor(s). In Mn3CuN, a tetragonal
state is found that mixes Q = (1/2,1/2,0) with a ferromag-
netic component. Notice (see Table III and Fig. 6) that with
a possibly small change of J3 (in the negative direction),
this would cross into the parameter region in which the
cuboctahedral π/3 state would be stable; conceivably, that
could be accessed via doping with an appropriate fourth
species. Iikubo et al.28 found that doping Cu→Ge in Mn3CuN
induces a transition to the three-sublattice 120◦ state; one can
conjecture from Table III that changing the sign of J1 is the
most important change driven by this doping.

In Mn3SnN, the spin configuration is built from anti-
ferromagnetic Q = (0,0,0) modes but with a longitudinal
modulation in the z direction so that another ordering vector
(0,0,qz) is mixed in, with qz ranging from 0 to 0.25(2π ),
depending on temperature, along with a tetragonal distortion.
The Mn3SbN case is a mixture of antiferromagnetic and
ferromagnetic Q = (0,0,0) as well as Q = (0,0,1/2) modes.

Many of the experimental states entail a violation of the spin
normalization condition, which may be attributed either to a
partially itinerant nature of the moments (and possibly thermal
averaging also for T > 0). All in all, none of them corresponds

exactly to the state predicted by our model: clearly some sort of
anisotropic term is playing a role, and conceivably interactions
beyond J3 are too.

C. Generalizations to other lattices?

Now we consider moving beyond the somewhat artificial
octahedral lattice. We examine the necessary conditions for
noncoplanar spin configurations analogous to the two main
classes we discovered (cuboctahedral and conic spiral). Can
our results be applied to other lattices, such as the pyrochlore
lattice?

1. Generalizing the cuboctahedral state?

The cuboctahedral states seem highly specific to the
octahedral lattice, since they possess the same symmetries
as the lattice. On the other hand, the LT construction (each
sublattice using different combinations of LT modes, the
combinations being related by rotational symmetry of the
different sublattices) seems fairly generic. A general name for
states like the cuboctahedral state might be “commensurate
triple-Q state,” referring to its content of LT modes. Can such
states be found in other lattices, or are there others in the
octahedral lattice?

One answer requires that the hypothetical generalized state
enjoys the full symmetry of the lattice, as the cuboctahedral
state does. Then the number of site classes must be a multiple
of the number of spin components, i.e., of three. That will not
work for the pyrochlore lattice, in which there are four site
classes associated with (111) directions. However, it might
work in the half-garnet lattice, which has six site classes
associated with (110) directions.

A second, more systematic way to answer question follows
the LT approach of Sec. IV C. The state must be a linear
combination of three modes—one for each component of spin.
For the state to enjoy the full lattice symmetry, these must be
the complete star of symmetry-related modes, thus it must
have a threefold multiplicity. Furthermore, each mode must
be real (otherwise one mode requires two spin components);
that happens only if the wave vector is half a reciprocal lattice
vector, i.e., is at the center of one of the Brillouin zone’s faces.

However, Sec. IV C1 gave a cautionary example: finding
such modes is not sufficient, because it might give a state with
decoupled sublattices, so that the cuboctahedral state would
merely be one undistinguished configuration in a continuous
manifold of degenerate states that even includes collinear
states. We can, in fact, borrow a notion from Sec. V B to
guess when this happens: mapping to a chain lattice, but now
applied to LT modes rather than to spin structures. The wave
vector of one mode defines a set of planes, and thus a way of
projecting both the sites and the mode onto a one-dimensional
chain lattice. On the chain lattice, in order for the mode to
be real, the wave vector must be π . If all the site planes are
equivalent, the chain lattice is a Bravais lattice and the mode
must be a plane wave; with Q = π , it is easy to see that we
get a decoupled pattern, namely (+1,0, − 1,0, . . . ). On the
other hand, if the site planes are inequivalent, there is no such
problem.

As an example in the octahedral lattice, the {1/2,0,0}
modes have a threefold degeneracy and also correspond to
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a inequivalent set of stacked planes, giving a cuboctahedral
state, whereas the threefold degenerate {1/2,1/2,0} modes
have equivalent stacked planes and give decoupled states. As
for the pyrochlore lattice, the {1,0,0} modes have a threefold
multiplicity but have equivalent stacked planes; on the other
hand, the {1/2,1/2,1/2} modes have inequivalent stacked
planes but their multiplicity is fourfold. Thus, in the pyrochlore
case, a simple recipe based on threefold multiplicity does not
lead us to a cuboctahedral state. (A subsequent study found a
subtle way in which a cuboctahedral state can be stabilized on
the pyrochlore lattice by using only three of the {1/2,1/2,1/2}
modes and breaking lattice symmetry.58)

The third way to answer this question is via the cluster
construction of Sec. IV A, in which the lattice was decomposed
into cuboctahedral cages. Indeed, some other lattices consist
of a union of roughly spherical “cage” clusters, e.g., in the
Cr3Si-type or “A15” structure, the majority atoms form cages
in the form of distorted icosahedra. Furthermore, couplings
can certainly be chosen such that the spin ground state of a
cluster forms at the same polyhedron as the cluster itself.

However, our ground-state construction (see Sec. IV A)
demanded that the spin configurations in adjacent cages
be related by a reflection in spin space. Thus the cages
alternate between proper and improper rotations of a reference
configuration. That is possible only if the cage centers form a
bipartite lattice, which is not true for the A15 majority-atom
cage centers. (They form a bcc lattice with first- and second-
neighbor links.)

2. Generalizing the noncoplanar spirals?

Long ago, Kaplan and collaborators studied doubly mag-
netic spinels, and identified a (noncoplanar) “ferrimagnetic
spiral” configuration arising from exchange interactions (a
spiral of this sort is responsible for multiferroic properties
of CoCr2O4.18 This is actually a kind of double spiral (each
magnetic species accounting for one of the spirals). Notice
that we could map that structure to a chain, too, and that chain
would have two inequivalent sites, which we point out is a
precondition for developing a noncoplanar state.

For a mapping to the 1D chain lattice to provide a
noncoplanar state, the mapped sites must be inequivalent by
translation; if not, the chain lattice is a Bravais lattice and must
have (at most) a coplanar spiral state. This in turn depends
on having unequal layers in the three-dimensional lattice,
which is impossible in the Bravais case, but inequivalent layers
can emerge from a non-Bravais lattice with fully symmetric
couplings. Thus, as we worked out in Sec. V B, a {100} stacking
in the octahedral lattice has twice as many sites on x and y

bonds, constituting one kind of layer, as there are sites on z

bonds, constituting the other kind.
The stacking direction is one in which the wave vector

is incommensurate, and so we may seek out parameter sets
for which QLT goes incommensurate in a desired direction.
However, this is no guarantee that the actual ground state
is stacked, since it might be better energetically to combine
these modes (or ones nearby in k space) in a quite different
way. Thus, although we found some optimal QLT wave vectors
in directions other than {100}, they were never the basis of a
stacked spiral.

3. On to pyrochlore lattice?

The pyrochlore lattice is undoubtedly the most prominent
non-Bravais lattice that is likely to have noncoplanar states and
was a major motivation for the methods we developed in this
paper for the more tractable octahedral lattice.

Relatively few works have tackled the isotropic spin
problem on the pyrochlore lattice, beyond the (massively
degenerate) case of only J1 (analogous to the J1 = J2 case on
the cuboctahedral lattice). The J1-J2, or J1-J3 pyrochlore, with
large antiferromagnetic J1, has a noncoplanar and somewhat
obscure state that is not fully understood at T = 0.59–61

In the spinel GeNi2O4, neutron diffraction found a {111}
ordering consisting of alternating kagome and triangular lattice
layers with different densities of spins, analogous to the
{100} stackings we have explored in the octahedral lattice.
Reference 62 invoked interactions out to J4 in order to
rationalize this state, but did not verify it was the ground
state for the suggested interactions. Finally, to address metallic
pyrochlore compounds, a toy Hamiltonian was investigated on
the pyrochlore lattice with exchange couplings having RKKY
oscillations.63

Very recently, a comprehensive study has been carried out
for just the J1-J2 phase diagram of the pyrochlore lattice
by applying the methods of the present paper, which were
equally effective in that case.58 About four complex states were
identified, including the above mentioned state introduced by
Kawamura and collaborators,59–61 a state reminiscent of our
double-twist state, a more complex generalization of a conic
spiral, and a cuboctahedral spin state that has less than cubic
lattice symmetry, thus evading the negative conclusions of
Sec. VIII C1.58
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APPENDIX A: IMPLEMENTATION OF ITERATIVE
MINIMIZATION

The only problem with the dynamics is that our algorithm is
a variant of “steepest descent,” one of the slowest of relaxation
algorithms (such deviation modes are indeed slow relaxing).
For this kind of (local) dynamics, the relaxation rate of a
long-wavelength spin wave at wave vector q is proportional
to |q|2, i.e., 1/L2 for the slowest mode in a system of side
L. (In future applications, some version of conjugate gradient
should be applied to give a faster convergence, or—if there is
a problem in finding the right valley of the energy function—
one might adapt Elser’s “difference map” approach to global
optimization.44)

For initial explorations, we usually used very small cubic
simulation boxes of L3 cells (L = 3, 4, or 5). For each set of
{Jij } tested, we tried both periodic and antiperiodic boundary
conditions, as well as even or odd L. Usually, one of those
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four cases accommodates an approximation of the infinite
system ground state, though of course any incommensurate
state must adjust either by twisting to shift the ordering wave
vector to the nearest allowed value, or else (as we observed)
via the formation of wall defects. We tried to distinguish the
ground states that were “genuine” in that a similar state would
remain stable in the thermodynamic limit. In particular, out
of the four standard systems we tried (even/odd system size,
periodic/antiperiodic BC’s), a “genuine” state should be the
one with the lowest energy.

For a large portion of the parameter space, the ground
states were planar spirals, essentially no different from the
solutions guaranteed in the Bravais lattice case. Many of the
noncoplanar configurations found were “nongenuine” artifacts
of the finite size when the periodic (or antiperiodic) boundary
conditions and dimension L were incompatible with the
natural periodicity of the true ground state. One might expect
the wrong boundary condition to simply impose a twist by π/L

per layer on the true ground state, but instead the observed
distortion of the spin texture was sometimes of the natural
periodicity of the ground state, and a “buckling” occurred;
that is, the configuration consists of finite domains similar to
the true ground state, separated by soliton-like domain walls.

APPENDIX B: PERTURBATIVE CALCULATION OF
PHASE BOUNDARIES

To move from a collection of ground states discovered at
discrete points in parameter space to drawing a full phase
diagram is nontrivial. To analyze the phase boundaries of
the more complicated states (those with free parameters
in their parametrization), we depend on either variational
optimization (see Sec. II C), or some kind of perturbation
theory. Perturbation theory can be applied in two places: either
to the LT matrix, or to the Hamiltonian of a parametrized spin
state. The former is more straightforward, but is limited since
most of the noncoplanar ground states are not exactly built
from optimal LT eigenmodes.

An obvious caveat for either of these applications of
perturbation is that they detect continuous transitions, rep-
resenting infinitesimal changes in the spins: it is a bifurcation
of the local minima as points in the configuration space,
but there the ground state might instead change due to a
first-order transition, when the energies of two separated
configurations cross as parameters are varied. We do encounter
the first-order case on occasion, though not nearly so often as
the continuous one. To detect such discontinuous transitions,
we must compare numerical calculations of the ground-state
energies.

Our original question was “given a certain set of parameters,
what is the ground state?” but in these calculations, it has been
turned around to “given a particular ground state, for what
parameter sets is it favored?”

1. LT Analysis (octahedral lattice example)

We give an example here of the use of perturbation theory
to discover the incipient instabilities of LT modes. Such
an approach may be especially useful to locate the phase
boundaries for transitions from an LT exact ground state to
more complicated, incommensurate states. If one is hunting for
the parameter domain that would stabilize a particular mode
with ordering wave vector Q, a substitute problem is to find
the parameter domain in which this mode (or one with QLT

similar to Q) is the optimal LT mode. We reiterate the caveat
from Sec. II A: such a discovery is a necessary but not sufficient
criterion to guarantee the existence of any ground state based
on the obtained QLT. (It is not sufficient because the actual
ground state could feature additional modes or modes merely
in the neighborhood of QLT.)

The LT matrix elements Jij (k) and eigenvalues J̃ (kν) are
functions of wave vector k. Imagine that Q0 is a point of high
symmetry in the zone so as to be a stationary point for J̃ (kν).
For some parameter sets, we know, it is a minimum and in fact
optimal, whereas for some other parameter sets, we imagine, it
is only a saddle point, and the minimum occurs at some nearby
wave vector of lower symmetry.

One first writes a Taylor expansion of the LT matrix in
powers of δk ≡ k − Q0. Using standard techniques (formally
identical to those used for eigenfunctions of the Schrödinger
equation), it is straightforward to write a perturbation ex-
pansion for J̃ (kν) in powers of δk. Inspection then shows
where this stops being positive definite. Since the LT matrix
elements are bounded, so are the eigenvalues J̃ (kν). So if
the mode at Q0 goes unstable at quadratic order in δk, there
must be higher-order positive terms in the expansion. Thus the
single local minimum of J̃ (kν) bifurcates in some fashion. The
corresponding spin state cannot be a commensurate spiral, but
it might be representable in the framework of planar stackings
(Sec. V B).

This technique was used, for example, to analyze how the
Q0 = (1/2,1/2,0) wave vector is destabilized in the LT phase
diagram. Simulations had found degenerate antiferromagnetic
orderings at that wave vector; if an incommensurate wave
vector of form (q,q,0) had been stabilized, this might have
been the basis of a noncoplanar spiral stacked in the (1,1,0)
direction.

The LT matrix is given by

Jii(k) = 2J2 cos ki + 2J ′
2(cos kj + cos kk) + 4J4 cos ki

×(cos kj + cos kk) + 4J ′
4 cos kj cos kk, (B1a)

Jij (k) = 4J1 cos
ki

2
cos

kj

2
+ 8J3 cos

ki

2
cos

kj

2
cos kk.

(B1b)

Here, j,k in (B1a) denote indices other than i, similarly, k in
(B1b) is an index other than i,j . If we substitute k = (k,0,0),
for example, the eigenvalues along this cut are

J̃ (k,0) = −J2 + 2J ′
4 − [JF (0) − J2](1 + cos k) + 2JX(k), (B2a)

J̃ (k,±) = − 1
2 {2J ′

2 − 4J4 + [JF (0) + 4J4](1 + cos k) + 2JX(k)}
± 1

2

{
[(J2 − J ′

2 + 2J4 − 2J ′
4)(1 − cos k) + 2JX(k)]2 + 16J 2

X(0)(1 + cos k)
}1/2

. (B2b)

024407-19



SOPHIA R. SKLAN AND CHRISTOPHER L. HENLEY PHYSICAL REVIEW B 88, 024407 (2013)

Along another cut through the zone, k = (k,k,0)/2
√

2, the eigenvalues are

J̃ (k,0) = J2 − 2J ′
4 − 2JF (0) cos2 k + 2JX(0) cos2 k, (B3a)

J̃ (k,±) = J ′
2 + 2J4 cos2 2k − [JF (2k) + 2J ′

2 + 4J4 cos 2k] cos2 k − 2JX(0) cos2 k

± 1
2 ({[JF (2k) − 4J ′

4 cos 2k] sin2 k − JX(0) cos2 k}2 + 8JX(2k)2 cos2 k)1/2. (B3b)

In both cuts, JF (q) ≡ J2 + J ′
2 + 2J4 cos q + 2J ′

4 cos q is the
effective ferromagnetic coupling and JX(q) = J1 + 2J3 cos q

is the effective cross-sublattice coupling.

2. State perturbation (chain-lattice example)

The major advantage of applying perturbation theory to
a parameterization of the lattice’s spins, rather than the LT
matrix, is that it can accommodate a more generic ground
state. This is not to say that it avoids the disconnect between
the state being perturbed and the actual ground state, if the
perturbed state does not encompass the true ground state then
the disconnection is required. However, this method does allow
us to consider states composed of multiple LT wave-vectors.

In the octahedral lattice, most of the ground-state types
we encountered—even the noncollinear ones—are essentially
built using a single “star” of symmetry-related ordering
wave-vectors. Therefore, for the octahedral lattice, the actual
phase diagram mostly reflects the LT phase diagram and it is
preferable to find phase boundaries via the LT perturbation
method illustrated above in Sec. B 1. For the chain lattice,
however, the ground state is typically characterized by several
wave vectors (as noted near the beginning of Sec. V) . Such
multi-LT wave vectors are all parameterized by some form of
“conic spirals,” a mix of a planar spiral using the wave vector
(q) and a deviation along the wave vector (k2), where k2 is
either integer or half-integer (since the chain lattice is 1D, the
wave vectors are as well). Within a range of parameter space
j1 through j4/j

′
4 (j5 and higher all 0), these conic spirals are

the most general form of ground state, making the problem of
finding the ground state amenable to variational methods.

As an illustration of determining the ground state by
variational methods, we consider the problem of finding the
phase boundaries for the “alternating conic spiral” k2 = 1/2.
The spin configurations in the lattice are parameterized by
(5.3b). Without loss of generality, we take the odd sites to be
the ones with planar spins. A symmetry relates the states (5.3b)
to the other family of alternating conic configurations in which
even and odd sites have swapped roles, if one also swaps in
parameter space (j2,j4) ↔ (j ′

2,j
′
4).

Up to interaction j4, the energy per unit cell is

E = −2(j1 cos ψ + j3 cos 3ψ) cos α

− 2(j2 cos2 ψ − j4 sin2 2ψ) cos2 α

+ j2 − j4 − j ′
2 cos 2ψ − j ′

4 cos 4ψ. (B4)

Setting ∂E/∂(cos α) = 0 to minimize (B4), we see that the
optimal angle α∗ is given by

cos α∗ = − 1

2 cos ψ

j1 + j3(4 cos2 ψ − 3)

j2 − 4j4 sin2 ψ
. (B5)

Notice the symmetry under reversing the signs of j1 and j3 and
α ↔ π − α. Of course, a necessary condition is that the right-
hand side of (B5) lies in (0, + 1) (recall that 0 � α � π/2 by
definition), otherwise α∗ is pinned to 0 or π/2, which would
be a planar spiral (or possibly a collinear state, depending on
the value of ψ).

Plugging (B5) into (B4) leaves ψ = q/2 as the only
variational parameter:

E = 2j 2
3

j4

(
j1−3j3

4j3
+ cos2 ψ

)2

j2−4j4

4j4
+ cos2 ψ

− j ′
2 cos 2ψ

− j ′
4 cos 4ψ − j2 − j4. (B6)

If we drop the secondary couplings, Eq. (B 2) reduces to

E = 1

2

j 2
1

j2
− j ′

2 cos 2ψ. (B7)

Since (B7) is linear in cos 2ψ , its ground state is given by
ψm = mπ/2, with m integer. If m is odd, then Eq. (B7)
breaks down, since (B5) is singular. What actually occurs
here is that the sublattices have adopted an antiferromagnetic
structure, decoupling the sublattices. Because the sublattices
are decoupled, α is arbitrary (representing the freedom of the
decoupled sublattices to rotate relative to each other). The
energy for such a configuration is E = j2 + j ′

2. Conversely, if
m is even, then the ground state is a splayed state (assuming
that |j1| < |2j2|). That means a commensurate, planar state
(using the xz plane, or collinear if α∗ is trivial). Thus, with
only primary couplings, even though the two sublattices are
inequivalent, we cannot obtain a noncoplanar spiral.

When we turn on (not too large) secondary couplings,
those commensurate states will remain stable out to the
critical coupling, at which the optimal wave vector bifurcates.
Therefore we expand (B 2) in powers of δ ≡ ψ − ψm about
both kinds of stationary point64 to find

E(δ) = (j1 + j3)2

2j2
− j ′

2 − j ′
4 − j2 − j4

+
[

2
(j1+j3)2

j 2
2

j4−4(j1 − j3)
j1

j2
+2j ′

2+8j ′
4

]
δ2,

(B8a)

E

(
π

2
+ δ

)
= 1

2

(j1 − 3j3)2

j2 − 4j4
+ j ′

2 − j ′
4 − j2 − j4

+
[

4
j1 − 3j3

j2 − 4j4
j3 + 2

(
j1 − 3j3

j2 − 4j4

)2

j4

− 2j ′
2 + 8j ′

4

]
δ2. (B8b)
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The commensurate state becomes unstable to δ �= 0 when
the coefficient of the quadratic term goes negative, so the
conditions to induce instability are

E(δ) : 0 � (j1 + j3)2

j 2
2

j4 − 2
(j1 − j3)

j2
j3 + j ′

2 + 4j ′
4, (B9a)

Eπ
2

: 0 �
(

j1 − 3j3

j2 − 4j4

)2

j4 + 2
j1 − 3j3

j2 − 4j4
j3 − j ′

2 + 4j ′
4.

(B9b)

Combined with the requirement that | cos α| < 1 in (B5), (B 2)
gives the minimum necessary conditions for the existence of
an alternating conic state.

1A. Yoshimori, J. Phys. Soc. Jpn. 14, 807 (1959); J. Villain, J. Phys.
Chem. Solids 11, 303 (1959); T. A. Kaplan, Phys. Rev. 116, 888
(1959).

2T. A. Kaplan and N. Menyuk, Phil. Mag. 87, 3711 (2006).
3C. L. Henley, Phys. Rev. Lett. 62, 2056 (1989).
4E. F. Shender, Sov. Phys. JETP 56, 178 (1982).
5C. L. Henley and B. E. Larson, arXiv:0811.0955; B. E. Larson and
C. L. Henley (unpublished).

6X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989).
7S. Sachdev (private communication).
8L. Messio, B. Bernu, and C. Lhuillier, Phys. Rev. Lett. 108, 207204
(2012).

9Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura,
Science 291, 2573 (2001).

10A. Kalitsov, B. Canals, and C. Lacroix, J. Phys. Conf. proc. 145,
012020 (2009).

11M. Taillefumier, B. Canals, C. Lacroix, V. K. Dugaev, and P. Bruno,
Phys. Rev. B 74, 085105 (2006).

12N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong,
Rev. Mod. Phys. 82, 1539 (2010).

13C. L. Henley, Ann. Phys. (NY) 156, 368 (1984).
14S.-W. Cheong and M. Mostovoy, Nat. Mater. 8, 13 (2007).
15T. Kimura, Ann. Rev. Mater. Sci. 37, 387 (2007).
16T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys. Rev. B 73,

220401 (2006).
17D. Khomskii, Physics 2, 20 (2009).
18Y. J. Choi, J. Okamoto, D. J. Huang, K. S. Chao, H. J. Lin, C. T.

Chen, M. vanVeenendaal, T. A. Kaplan, and S. W. Cheong, Phys.
Rev. Lett. 102, 067601 (2009).

19R. Moessner and J. T. Chalker, Phys. Rev. Lett. 80, 2929 (1998);
Phys. Rev. B 58, 12049 (1998).

20S. T. Chui, Phys. Rev. B 15, 307 (1977).
21P. Reed, J. Phys. A 10, 1745 (1977).
22D. Tahara, Y. Motome, and M. Imada, J. Phys. Soc. Jpn. 76, 013708

(2007).
23M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69,

064404 (2004).
24T. S. Pickles, T. E. Saunders, and J. T. Chalker, Europhys. Lett. 84,

36002 (2008).
25R. Shankar, F. J. Burnell, and S. L. Sondhi, Ann. Phys. (NY) 324,

267 (2008).
26H. Takizawa, T. Yamashita, K. Uheda, and T. Endo, J. Phys.

Condens. Matter 14, 11147 (2002).
27D. Fruchart and E. F. Bertaut, J. Phys. Soc. Jpn. 44, 781 (1978).
28S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, and S. Shamoto,

Phys. Rev. B 77, 020409 (2008).
29T. Hamada and K. Takenaga, J. Appl. Phys. 111, 07A904 (2012).

30T. Koyama, H. Yamashita, Y. Takahashi, T. Kohara, I. Watanabe,
Y. Tabata, and H. Nakamura, Phys. Rev. Lett 101, 126404 (2008).

31V. H. Tran, W. Miiller, and Z. Bukowski, Phys. Rev. Lett. 100,
137004 (2008).

32T. Nagamiya, “Helical Spin Ordering: 1 Theory of Helical
Spin Configurations,” in Solid State Physics edited by F. Seitz,
D. Turnbull, and H. Ehrenreich (Academic Press, New York and
London, 1967), Vol. 20, p. 306.

33J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
34A “generalized” L-T method for non-Bravais lattices was intro-

duced by Ref. 39 (see also Ref. 40) and applied to spinels with both
A and B sites magnetic (Refs. 2 and 35). However, this method
involves site-dependent variational parameters, so one must already
understand the pattern of the ground state in order to make it into a
finite problem; in practice, this method appears quite similar to our
method (Sec. V and Appendix B 2) of projecting a layered structure
to a one-dimensional chain.

35D. H. Lyons and T. A. Kaplan, Phys. Rev. 120, 1580 (1960).
36J. Samuel Smart, Effective Field Theories of Magnetism (W. B.

Saunders, Philadelphia, 1966), Chap 8.
37D. Bergman, J. Alicea, E. Gull, S. Trebst, and L. Balents, Nat. Phys.

3, 487 (2007).
38S. Okumura, H. Kawamura, T. Okubo, and Y. Motome, J. Phys.

Soc. Jpn. 79, 114705 (2010); A. Mulder, R. Ganesh, L. Capriotti,
and A. Paramekanti, Phys. Rev. B 81, 214419 (2010).

39D. H. Lyons, K. Dwight, T. A. Kaplan, and N. Menyuk, Phys. Rev.
126, 540 (1962).

40M. J. Freiser, Phys. Rev. 123, 2003 (1961).
41L. R. Walker and R. E. Walstedt, Phys. Rev. Lett. 38, 514 (1977).
42C. L. Henley, Ann. Phys. (NY) 156, 324 (1984).
43C. L. Henley, Can. J. Phys. 79, 1307 (2001).
44V. Elser, I. Rankenburg, and P. Thibault, Proc. Natl. Acad. Sci. USA

104, 418 (2007).
45This is not quite the magnetic structure factor, since that includes

interferences between different sublattices.
46However, while every encompassing state is more general than the

state it encompasses, not every more general state will encompass
a particular ground state. For example, the asymmetric conic is
more general than the splayed ferromagnet (both of these states
are defined in Sec. V), but it does not encompass the splayed
ferromagnet; there is, however, a third class that encompasses both
these classes.

47For one-dimensional chains (see Sec. V B), we may use the “end-
to-end” spin plot, where the tail of each spin vector is on the head
of the previous spin vector. The advantage is that images are not so
obscured by overlaying of different vectors, and spatial information
is captured, in particular, defects where the state has “buckled.”

024407-21

http://dx.doi.org/10.1143/JPSJ.14.807
http://dx.doi.org/10.1016/0022-3697(59)90231-8
http://dx.doi.org/10.1016/0022-3697(59)90231-8
http://dx.doi.org/10.1103/PhysRev.116.888
http://dx.doi.org/10.1103/PhysRev.116.888
http://dx.doi.org/10.1080/14786430601080229
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://arXiv.org/abs/arXiv:0811.0955
http://dx.doi.org/10.1103/PhysRevB.39.11413
http://dx.doi.org/10.1103/PhysRevLett.108.207204
http://dx.doi.org/10.1103/PhysRevLett.108.207204
http://dx.doi.org/10.1126/science.1058161
http://dx.doi.org/10.1088/1742-6596/145/1/012020
http://dx.doi.org/10.1088/1742-6596/145/1/012020
http://dx.doi.org/10.1103/PhysRevB.74.085105
http://dx.doi.org/10.1103/RevModPhys.82.1539
http://dx.doi.org/10.1016/0003-4916(84)90038-1
http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1146/annurev.matsci.37.052506.084259
http://dx.doi.org/10.1103/PhysRevB.73.220401
http://dx.doi.org/10.1103/PhysRevB.73.220401
http://dx.doi.org/10.1103/Physics.2.20
http://dx.doi.org/10.1103/PhysRevLett.102.067601
http://dx.doi.org/10.1103/PhysRevLett.102.067601
http://dx.doi.org/10.1103/PhysRevLett.80.2929
http://dx.doi.org/10.1103/PhysRevB.58.12049
http://dx.doi.org/10.1103/PhysRevB.15.307
http://dx.doi.org/10.1088/0305-4470/10/10/009
http://dx.doi.org/10.1143/JPSJ.76.013708
http://dx.doi.org/10.1143/JPSJ.76.013708
http://dx.doi.org/10.1103/PhysRevB.69.064404
http://dx.doi.org/10.1103/PhysRevB.69.064404
http://dx.doi.org/10.1209/0295-5075/84/36002
http://dx.doi.org/10.1209/0295-5075/84/36002
http://dx.doi.org/10.1016/j.aop.2008.06.005
http://dx.doi.org/10.1016/j.aop.2008.06.005
http://dx.doi.org/10.1088/0953-8984/14/44/442
http://dx.doi.org/10.1088/0953-8984/14/44/442
http://dx.doi.org/10.1143/JPSJ.44.781
http://dx.doi.org/10.1103/PhysRevB.77.020409
http://dx.doi.org/10.1063/1.3670052
http://dx.doi.org/10.1103/PhysRevLett.101.126404
http://dx.doi.org/10.1103/PhysRevLett.100.137004
http://dx.doi.org/10.1103/PhysRevLett.100.137004
http://dx.doi.org/10.1103/PhysRev.70.954
http://dx.doi.org/10.1103/PhysRev.120.1580
http://dx.doi.org/10.1038/nphys622
http://dx.doi.org/10.1038/nphys622
http://dx.doi.org/10.1143/JPSJ.79.114705
http://dx.doi.org/10.1143/JPSJ.79.114705
http://dx.doi.org/10.1103/PhysRevB.81.214419
http://dx.doi.org/10.1103/PhysRev.126.540
http://dx.doi.org/10.1103/PhysRev.126.540
http://dx.doi.org/10.1103/PhysRev.123.2003
http://dx.doi.org/10.1103/PhysRevLett.38.514
http://dx.doi.org/10.1016/0003-4916(84)90037-X
http://dx.doi.org/10.1139/p01-097
http://dx.doi.org/10.1073/pnas.0606359104
http://dx.doi.org/10.1073/pnas.0606359104


SOPHIA R. SKLAN AND CHRISTOPHER L. HENLEY PHYSICAL REVIEW B 88, 024407 (2013)

Occasionally, the end-to-end plot is illuminating even in higher
dimensions, the sequence of spins being defined by a raster scan
that goes down rows—limited to one of the sublattices—running in
one of the coordinate directions. For example, the double-twist state
(see Sec. VI) was discovered from common-origin and end-to-end
plots.

48E. Rastelli, A. Tassi, and L. Reatto, Physical B & C 97, 1 (1979);
E. Rastelli and A. Tassi, J. Phys. C: 19, L423 (1986).

49J. N. Reimers, A. J. Berlinsky, and A. C. Shi, Phys. Rev. B 43, 865
(1991).

50D. H. Lyons and T. A. Kaplan, J. Phys. Chem. Solids 25, 645
(1964); H.-J. Schmidt and M. Luban, J. Phys. A: Math. Gen. 36,
6351 (2003).

51J.-C. Domenge, P. Sindzingre, C. Lhuillier, and L. Pierre, Phys.
Rev. B 72, 024433 (2005).

52J.-C. Domenge, C. Lhuillier, L. Messio, L. Pierre, and P. Viot, Phys.
Rev. B 77, 172413 (2008).

53Spin configurations on a cuboctahedron were studied
by J. Schulenburg, A. Honecker, J. Schnack, J. Richter, and H.-J.
Schmidt, Phys. Rev. Lett. 88, 167207 (2002).

54We did not include the asymmetric conic spiral in Table I since we
will see that it is only found on the phase boundary between two
other states. For the octahedral lattice, then, it appears only as a
randomly chosen member of a family of highly degenerate states
(using the classification of Sec. II D), rather than a genuine ground
state.

55Due to the complexity of the double-twist state, the phase bound-
aries of the double-twist state shown in Fig. 8 were not generated

by variationally optimizing a parametrized Hamiltonian and finding
absolute minima. Instead, we show the phase boundary from the
“Luttinger-Tisza phase diagram,” i.e., the boundary of the region of
parameter space in which (q,q,0) was the optimal wave vector. As
argued in Sec. II A, that will produce a phase diagram topologically
similar to the true phase diagram.

56Around the tricritical-type points where the transition switches from
first-order to degenerate, there are alternating conic states only
slightly higher in energy than the helimagnetic states, so that a
sliver of alternating conic spiral may be spuriously identified here
if numerical results are not checked analytically.

57L. Messio, C. Lhuillier, and G. Misguich, Phys. Rev. B 83, 184401
(2011).

58M. Lapa, B. S. thesis, Cornell University, 2012; M. Lapa and C. L.
Henley (unpublished).

59D. Tsuneishi, M. Ioki, and H. Kawamura, J. Phys. Condens. Matter
19, 145273 (2007).

60T. Nakamura and D. Hirashima, J. Magn. Magn. Mater. 310, 1297
(2007).

61G.-W. Chern and R. Moessner, and O. Tchernyshyov, Phys. Rev. B
78, 144418 (2008).

62M. Matsuda, J.-H. Chung, S. Park, T. J. Sato, K. Matsuno,
H. Aruga-Katori, H. Takagi, K. Kakurai, K. Kamazawa, Y. Tsunoda,
I. Kagomiya, C. L. Henley, and S.-H. Lee, Europhys. Lett. 82, 37006
(2008).

63A. Ikeda and H. Kawamura, J. Phys. Soc. Jpn. 77, 073707 (2008).
64There are just two kinds of stationary points since (B7) has period

π .

024407-22

http://dx.doi.org/10.1016/0378-4363(79)90002-0
http://dx.doi.org/10.1088/0022-3719/19/19/006
http://dx.doi.org/10.1103/PhysRevB.43.865
http://dx.doi.org/10.1103/PhysRevB.43.865
http://dx.doi.org/10.1016/0022-3697(64)90174-X
http://dx.doi.org/10.1016/0022-3697(64)90174-X
http://dx.doi.org/10.1088/0305-4470/36/23/306
http://dx.doi.org/10.1088/0305-4470/36/23/306
http://dx.doi.org/10.1103/PhysRevB.72.024433
http://dx.doi.org/10.1103/PhysRevB.72.024433
http://dx.doi.org/10.1103/PhysRevB.77.172413
http://dx.doi.org/10.1103/PhysRevB.77.172413
http://dx.doi.org/10.1103/PhysRevLett.88.167207
http://dx.doi.org/10.1103/PhysRevB.83.184401
http://dx.doi.org/10.1103/PhysRevB.83.184401
http://dx.doi.org/10.1088/0953-8984/19/14/145273
http://dx.doi.org/10.1088/0953-8984/19/14/145273
http://dx.doi.org/10.1016/j.jmmm.2006.10.473
http://dx.doi.org/10.1016/j.jmmm.2006.10.473
http://dx.doi.org/10.1103/PhysRevB.78.144418
http://dx.doi.org/10.1103/PhysRevB.78.144418
http://dx.doi.org/10.1209/0295-5075/82/37006
http://dx.doi.org/10.1209/0295-5075/82/37006
http://dx.doi.org/10.1143/JPSJ.77.073707



