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I. INTRODUCTION

One of the challenges for spin electronics is to find
easy and efficient methods to manipulate the magnetic order
parameter. For this reason, the current-induced spin transfer
torque (STT) has attracted a lot of attention by scientists
and engineers, since it promises control of magnetism by a
voltage bias without the need for external magnetic fields.1–3

This STT has been observed in metallic multilayer pillars
(spin valves) and magnetic tunnel junctions (MTJs). The
STT effect is caused by spin-polarized electrons that change
their angular and magnetic momentum direction by flowing
through noncollinearly magnetized layers. At sufficiently high
current densities, the torque felt by the magnetization can
overcome the magnetic damping and lead to precession and
ultimately switching. The STT on a magnetization consists of
two components. One is spanned by the magnetization and
spin-current polarization (in plane), while a second one is
normal to this plane (also called the effective field). In contrast
to metallic spin valves,4 both components can be of similar
magnitude in MTJs.5–8

In practice, the STT is employed in spin valves and MTJs
in which one layer is much thinner than the other (the
so-called free layer) such that magnetization dynamics are
easily induced. The other layer acts as polarizer for the electric
current, with magnetic moment pinned to one direction.
In such devices, the free layer can switch to a dynamical
state at certain critical system parameters. Among them we
find steady-state in-plane and out-of-plane oscillations of
the magnetization, switching between antiparallel (AP) and
parallel (P) configurations, static canted states, or even chaotic
motion.9,10

In symmetric MTJs with very thin tunneling barriers of
typically MgO, in which both magnetic layers consist of
the same material, e.g., in-plane magnetized CoFeB, large-
amplitude out-of-plane oscillations can be induced with-
out an external magnetic field.11 However, thicker MTJs
with interfacial perpendicular anisotropy may exhibit large-
amplitude oscillations as well.12 A similar effect has been

observed in single asymmetric (two electrodes are made
of different materials) in-plane magnetized13,14 and double
in-plane but noncollinearly magnetized metallic spin valves.15

Out-of-plane oscillations occur also in specially designed
symmetric spin valves with two strongly coupled free layers,16

asymmetric single spin valves with interfacial perpendicular
anisotropy,17 or standard symmetric and in-plane magnetized
valves, although then magnetic fields have to be applied.18

The origin of these oscillations differs. In MTJs, a major role
is played by the out-of-plane effective magnetic field that is
electrically induced by the tunneling through the MgO barrier.

Spin-transfer torques in MTJs, as well as in metallic
spin valves, can also be generated thermally.19 Slonczewski20

suggested using magnetic insulators for the polarizer that gen-
erates a thermal spin current under a temperature gradient by
the spin Seebeck effect,21 which then transfers spin momentum
into the thin free magnetic layer in a spin valve with possibly
very high efficiency. Heat currents across standard MTJs
also generate STTs.22 Temperature gradients in MTJs have
recently been generated electrically and optically. In Ref. 23,
a special heater line was employed to ensure a relatively
small but steady-state temperature gradient. Alternatively,
femtosecond laser pulses induce a time-dependent temperature
gradient.24,25 Their magnitude may be much larger (according
to simulations, up to �T ≈ 20 K can be achieved25) than for
the steady-state heating, but their duration is rather short
(on the order of picoseconds). Ab initio calculations show
that the magnitude of the thermal STT may be comparable
to that induced by an electric bias. However, the angular
dependence in thin layers may be skewed due to multiple
scattering involving interface states.22 In heat-assisted magne-
tization reversal, the next step in magnetic disk data storage
technology,26 large heat currents are generated that might
affect the switching characteristic of a multilayered magnetic
bit. Vice versa, it could be interesting to use these heat currents
to write information at small applied magnetic fields or reduced
heating. In both cases, it is important to understand and model
in detail the effects of thermal STTs.
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In this paper, we focus on the effect of thermally induced
STTs on the magnetization dynamics of MTJs, with emphasis
on the critical temperature needed to switch to a dynamical
state. We compare the skewed thermal torques corresponding
to MTJs with ultrathin MgO barriers with thicker junctions,
in which the torques are simple trigonometric functions of
the relative magnetization angles. We assume here that the
thermal STT is constant in time and thus do not address
the dynamics induced by femtosecond laser pulses.24 The
stationary limit allows us to determine stability conditions
by standard linearization of the system around equilibrium
points.

The paper is organized as follows. In Sec. II, our model for
the magnetization dynamics in MTJs is described. Section III
summarizes the input from ab initio calculations of thermal
torques. The method for obtaining stability criteria can be
found in Sec. IV. In Sec. V, the numerical results, as well as
the method of their analysis, are described. In this section, the
magnetic parameters of the free layer play a role as well. The
final summary and conclusions are given in the Sec. VI.

II. SPIN DYNAMICS MODEL

Figure 1 shows our model junction. It consists of two
ferromagnetic iron electrodes separated by a crystalline MgO
tunnel barrier.

The dynamics of the magnetization of the free layer �SR are
described by the Landau-Lifshitz-Gilbert (LLG) equation

d �SR

dτ
+ α �SR × d �SR

dτ
= ��a + ��T (1)

where ��a and ��T on the right-hand side are the torques
exerted on magnetizations of the free layer and α is the Gilbert
damping constant. ��a originates from the uniaxial and planar
anisotropies, while ��T is the heat flow-related torque. The
latter can be decomposed of an in-plane and out-of-plane con-
tribution ��T = �τ‖ + �τ⊥ = τ‖(�SR × �SL) + τ⊥ �SR × (�SR × �SL).
The above equation can be expressed in spherical coordinates
in dimensionless form.27 We then obtain two differential

FIG. 1. (Color online) Schematic model junction examined in
this paper. Green arrows indicate two magnetization vectors in the
fixed (L) and free (R) layers. Local coordinates in the free layer are
rotated by the angle θ with respect to that of the fixed layer. A positive
temperature gradient means that left electrode is hotter than the right
one.

equations for the polar θ and azimuthal φ angles:

dθ

dτ
= −α sin θ cos θ − hP cosφ sin θ

×(α cos θ cos φ + sin φ) − h‖ sin θ + αh⊥ sin θ
(2)

dφ

dτ
= − cos θ + hP cos φ(α sin φ − cos θ cos φ)

+αh‖ + h⊥.

where τ = t�k

1+α2 is the dimensionless time, �K = γHK is
the ferromagnetic resonance frequency, and HK the uniax-
ial anisotropy field. Apart from the dimensionless planar
anisotropy field hP = KP /K (planar anisotropy constant KP

normalized by uniaxial anisotropy constant K), the two
normalized components of thermal torques are also present in
Eq. (2), i.e., in-plane torque h‖ = τ‖/2Kdf and out-of-plane
torque h⊥ = τ⊥/2Kdf , where df is the thickness of the free
layer. We parameterize the angle dependence of the torques by
the parameters 
‖ and 
⊥ that measure the deviations from
the sine dependencies of the thermal torques28 as

τ‖(⊥)

τ
(0)
‖(⊥)

=
(


‖(⊥) cos2 θ

2
+ 1


‖(⊥)
sin2 θ

2

)−1

, (3)

which reduces to the trigonometric dependence when 
‖(⊥) =
1. In that limit, the torque moduli are symmetric around
θ = π/2 but skewed when 
‖(⊥) �= 1. In the next section, we
discuss these parameters in more detail.

MTJs with very thin barriers may exhibit enhanced Gilbert
damping α due to spin pumping.29 Based on the literature,29–32

we estimated the enhancement of damping in the free layer to
be �α ≈ 3 × 10−3, in accordance with preliminary electronic
structure calculations in which one of the layers is a normal
metal. We therefore disregard spin-pumping-related effects in
the following.

III. THERMAL TORQUES

As mentioned in previous sections, we focus here on
the possibility of manipulating the magnetization in MTJs
by heat currents induced by temperature gradients applied
across the junction. The thermal torques can be computed
by first principles using the Landauer-Büttiker formalism. The
relevant calculations have been carried out by Jia et al.22 The
authors’ approach assumes that the ferromagnetic layers in
the MTJ system is divided onto atomic monolayers. Next,
the transmission vector of the spin flowing between ith
and (i + 1)th in both directions �tLi+1,i , and vice versa in
�tRi,i+1, is calculated. Having the transmission coefficients, the
expression for the spin heat current between two layers can be
written as

�Ji+1,i = �T

16πT0

∫
dε(ε − εF ) · ∂f

dε

(�tLi+1,i(ε) + �tRi,i+1(ε)
)

(4)

where �T = TL − TR denotes the global temperature dif-
ference, f is the Fermi-Dirac distribution, and the mean
temperature of the junction is T0 ≡ (TL + TR)/2. The above
expression includes only the spin current induced by the
temperature gradient. We omit here the equilibrium spin
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FIG. 2. (Color online) Angular dependence of the (a) in-plane and (b) out-of-plane torques induced by a temperature gradient �T = 1 K
applied over the MTJ under open-circuit conditions. The average temperature of the junction is T0 = 300 K. The barrier consists of three
monolayers of MgO, corresponding to a thickness of 0.6 nm. Panel (a) shows, for comparison, a plot of the in-plane torques induced by an
electric bias of 0.75 mV computed by first principles (Ref. 33). The MgO thickness and other parameters are the same.

current that represents the nonlocal exchange coupling through
the tunnel junction. The thermally induced torque vector acting
on the ith layer of free layer is defined by

�Ti = �Ji,i−1 − �Ji+1,i . (5)

The total thermal torque vector within the free layer is given
by �τ = ∑N

i=0
�Ti , where the sum is over all atomic planes in the

free layer. In the model calculations, we focus on the thinnest
MgO barrier that can be grown coherently in real structures,
i.e., three atomic layers of MgO (∼0.6 nm of thickness).
According to the ab initio calculations, the angular dependence
of both thermal torque components is highly skewed; i.e.,
they deviate from the sine dependence expected for thick
tunnel junctions. In Fig. 2, we can see these dependencies
for both components of the torque �τ for T0 = 300 K and
�T = 1 K. We assume here that the amplitudes τ‖,⊥ from
Eq. (3) depend linearly on the temperature gradient �T . This
assumption agrees well with ab initio results for relatively
small temperature gradients �T/T0 	 1.

In Fig. 2, we also can see that thermal torques have
magnitudes comparable to the electrically induced ones. The
out-of-plane torque has higher skewness than the in-plane
component. Estimated values of skewness coefficients from
Eq. (3) are 
‖ = 3.55, and 
⊥ = 29.8. The first value is
relatively high in comparison to the ones in standard metallic
spin valves with electrically induced torques.34 A large 


implies that thermal torques are larger for the AP than the P
configuration, i.e., when the charge current is suppressed.22

The high STT is related to resonant tunneling through the

TABLE I. Character of stationary points in terms of the signs of
a and b and eigenvalues μ.

a b μ1,2 Equilibrium

− − Imaginary Stable focus
+ − Imaginary Unstable focus
Real + μ1,2 < 0 Stable center
Real + μ1,2 > 0 Unstable center
Real + μ1 < 0 < μ2 Saddle

barrier and multiple scattering between interfacial states that
play a similar role as the spin accumulation in metallic spin
valves, leading to more efficient spin transfer per transmitted
electron. In the P configuration, transmission is relatively
high, multiple scattering is suppressed, and the torque is
much smaller. In the next sections, we discuss how the torque
skewness modifies the dynamical system described by the LLG
equation and affects the solutions and critical temperatures for
AP → P(P → AP) switching.

IV. CALCULATION OF EQUILIBRIUM POINTS AND
THEIR STABILITIES

The calculations presented in this section are based on the
method for charge current-induced magnetization dynamics.35

Here, we introduce new aspects related to the angular torque
dependence. In other words, we express the dynamical
matrices, as well as their eigenvalues, as a function of

FIG. 3. (Color online) The stability diagram for equilibrium
points (a) θ = 0 and (b) θ = π . The x and y axes are the in-plane and
out-of-plane torque amplitudes h‖ and h⊥, respectively. The black
dashed line indicates the thermal torque components with skewness
coefficients derived from ab initio calculations for Fe|MgO(3ML)|Fe.
�T is changing from −100 K to +100 K for θ = 0 and from −60 K
to 60 K for θ = π . Negative �T means that the fixed electrode
(polarizer) is cooler than the free one. An increase of �T toward
negative or positive values corresponds, respectively, to moving from
the origin to the top left or bottom right corner of the diagram along
the dotted black line.
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the 
‖,⊥ coefficients. Each system, described by a set of
differential equations (SDE) in the form d �x/dt = f (�x), can be
characterized by the type and stability of equilibrium points
that are defined by setting the right side of the SDE equal
to 0, i.e., f (�x) = 0. It is easy to check that for the LLG
Eq. (2), two main equilibria exist at the north and south poles:
θ = 0 and θ = π . These two points correspond to P and AP
magnetizations. We can find other equilibria on the unit sphere.
The stability of each equilibrium point is parameter dependent.
Studying the influence of the parameters on the stability of the
equilibria (stability diagrams) provides us initial information
about the dynamic behavior of the MTJ without having to carry
out full-scale dynamical calculations. In the next subsections,

we show how the stability can be determined by linearizing
the set of nonlinear differential equations.

A. Linearization and dynamical matrices

The standard linearization procedure begins by finding the
points of equilibrium. First, we rewrite LLG Eq. (2) into the
matrix form35

(
θ̇

φ̇

)
= �K

1 + α2

(
1 α

− α
sin θ

1
sin θ

) (
vθ

vφ

)
= �K

1 + α2
Â · v̂ (6)

where

v̂ =
(

vθ

vφ

)
=

⎛
⎝ − h‖ sin θ


‖ cos2 θ
2 + 1


‖ sin2 θ
2

− hpsinφ cosφ sin θ

− cos θ sin θ − hp cos θ cos2 φ sin θ + h⊥ sin θ


⊥ cos2 θ
2 + 1


⊥ sin2 θ
2

⎞
⎠ (7)

Next, we solve the equation for static solutions: (
vθ

vφ

)
=

(
0

0

)
(8)

For θ = 0 and θ = π , the above equalities hold, so the main equilibria located at the poles of the unit sphere. Direct linearization
of the LLG equation around these points is prohibited by the singularity of the spherical surface mapping onto the plane.35 We
follow the method proposed in Ref. 35 that relies on transforming from spherical coordinates into local and nonsingular ones.
We express the LLG equation in new coordinates in order to determine the so-called dynamical matrix, which is responsible for
the dynamical properties near the poles. First, we linearize the right hand of LLG Eq. (6) around θ = 0:(

θ̇

φ̇

)
=

(− h‖θ

‖

+ αh⊥θ

⊥

+ θ (−α − αhP cos2 φ − hP cos φ sin φ)

−1 + αh‖

‖

+ h⊥

⊥

− hP cos2 φ + αhP sin φ cos φ

)
(9)

At this stage, we can introduce the new nonsingular coordinates35

x = θ sin φ

y = θ cos φ
(10)

with time derivatives (
ẋ

ẏ

)
=

(
sin φ θ cos φ

cos φ −θ sin φ

) (
θ̇

φ̇

)
= J

(
θ̇

φ̇

)
. (11)

The above equation can be rewritten using the new coordinates into the linearized LLG equation near the θ = 0 point:(
ẋ

ẏ

)
=

⎛
⎝ − (
⊥h‖+
‖α(
⊥−h⊥))


‖
⊥
− (−α
⊥h‖+
‖(
⊥+
⊥hP −h⊥))


‖
⊥

− (α
⊥h‖+
‖(h⊥−
⊥))

‖
⊥

− (
⊥h‖+
‖α(
⊥+
⊥hP −h⊥))

‖
⊥

⎞
⎠ (

θ sin φ

θ cos φ

)
. (12)

D̂0 in (
ẋ

ẏ

)
= D̂0

(
x

y

)
(13)

is the dynamical matrix near the north pole. Near the θ = π point,(
θ̇

φ̇

)
=

(

‖h‖δθ + α(−
⊥h⊥δθ − δθ − hP δθ cos2 φ) + hP δθ sin φ cos φ

1 + 
⊥h⊥ + hP cos2 φ + α(
‖h‖ + hP cos φ sin φ)

)
(14)

where δθ ≡ θ − π . With35

x = −δθ sin φ

y = −δθ cos φ
(15)
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and (
ẋ

ẏ

)
=

( −sin φ −δθ cos φ

−cos φ δθ sin φ

) (
θ̇

φ̇

)
(16)

the linearized LLG equation at the θ = π point reads (
ẋ

ẏ

)
= D̂π

(
x

y

)
, (17)

where the dynamical matrix is now

D̂π =
( −α + 
‖h‖ − α
⊥h⊥ 1 + 
‖h‖α + hP + 
⊥h⊥

−(1 + α
‖h‖ + 
⊥h⊥) (
‖h‖ − α(1 + hP + 
⊥h⊥))

)
(18)

For the other equilibria, we do not have to introduce new coordinates, because their linearization is straightforward. However,
we have not been able to obtain analytical solutions and therefore resorted to numerics. As before, we start with Eq. (6). Because
θ �= 0,π , we can divide it by sin θ and rewrite it into⎛

⎜⎝
{

‖ cos2 θ

2 + 1

‖

sin2 θ
2

}
(−hP cos φ sin φ)

h⊥−cos θ

(

⊥ cos2 θ

2 + 1

⊥ sin2 θ

2

)
hP cos θ

(

⊥ cos2 θ

2 + 1

⊥ sin2 θ

2

)
⎞
⎟⎠ =

(
h‖

cos2 φ

)
. (19)

We can square upper equation and substitute cos2 φ and sin2 φ by expressions obtained from the lower one. The θ angles of the
equilibrium points obey {

h⊥ − cos θB (θ )

hP cos θB (θ )

}[
hP cos θB (θ ) − h⊥ + cos θB (θ )

hP cos θB (θ )

]
A (θ ) =

(
h‖
hP

)2

(20)

where

A (θ ) ≡
{

‖cos2 θ

2
+ 1


‖
sin2 θ

2

}
, B (θ ) ≡

{

⊥cos2 θ

2
+ 1


⊥
sin2 θ

2

}
Solving Eq. (20) and the second one in Eq. (19) numerically, we find the equilibrium angles θ and φ. In order to determine their
stability, we multiply matrices Â and v̂ from Eq. (6), leading to the LLG equation:(

θ̇

φ̇

)
= �K

1 + α2

(
Vθ

Vφ

)
(21)

Linearizing Eq. (21): (
θ̇

φ̇

)
= �K

1 + α2

( ∂Vθ

∂θ

∂Vθ

∂φ

∂Vφ

∂θ

∂Vφ

∂φ

) (
dθ

dφ

)
= �K

1 + α2
D̂3

(
dθ

dφ

)
(22)

with dynamical matrix

D̂3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

− 2
‖h‖ cos θ

1+
2
‖+(
2

‖−1) cos θ
− 2
‖(
2

‖−1)h‖ sin2 θ

{1+
2
‖+(
2

‖−1) cos θ}2

+α
(− cos2 θ + 2
⊥h⊥ cos θ

1+
2
⊥+(
2

⊥−1) cos θ
− hP cos2 θ cos2 φ

+ sin2 θ + 2
⊥(
2
⊥−1)h⊥ sin2 θ

{1+
2
⊥+(
2

⊥−1) cos θ}2 + hP cos2 φ sin2 θ
)

−hP cos θ cos φ sin φ

⎤
⎥⎥⎥⎥⎥⎦ [−hP sin θ (cos 2φ − α cos θ sin 2φ)]

⎡
⎣ sin θ

(
1 − 2
‖αh‖(1−
2

‖)

{1+
2
‖+(
2

‖−1) cos θ}2

− 2
⊥h⊥(1−
2
⊥)

(1+
2
⊥+(
2

⊥−1) cos θ)2 + hP cos2 θ
)
⎤
⎦ [hP (α cos 2φ + cos θ sin 2φ)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

B. Stability of equilibria

In the previous subsection, we derived the dynamical matrices whose eigenvalues identify the nature or the stationary point.
We can calculate these quantities by solving the equation

det|D̂ − μ| = 0 → μ2 − μ(D11 + D22) + (D11D22 − D12D21) = 0 (24)

Eigenvalues are given by

μ1,2 = (D11 + D22) ±
√

(D11 + D22)2 − 4(D11D22 − D12D21)

2
(25)
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where subscripts indicate components of the dynamic matrix D̂. Eigenvalues have the general form

μ1,2 = a ±
√

b (26)

The signs of a and b identify the kind of equilibrium. A short summary can be found in Table I.
We found analytic expressions for the eigenvalues at two main equilibria θ = 0 and θ = π . For the north pole (θ = 0), we get

μ1,2 = −
{

2
⊥h‖ + 
‖α(
⊥(2 + hp) − 2h⊥)

2
‖
⊥

±
√

−4α2
2
⊥h2

‖ + 4α
⊥h‖(
⊥(2 + hp) − 2h⊥) + 
2
‖(
2

⊥
(−4 − 4hp + α2h2

p

) + 4
⊥(2 + hp)h⊥ − 4h2
⊥)

2
‖
⊥

}
(27)

and for the south pole (θ = π ):

μ1,2 = − 1
2

{
2α − 2
‖h‖ + αhp + 2α
⊥h⊥

±
√

−4 − 8α
‖h‖ − 4α2
2
‖h

2
‖ − 4hp − 4α
‖h‖hp + α2h2

p − 8
⊥h⊥ − 8α
‖
⊥h‖h⊥ − 4
⊥hph⊥ − 4
2
⊥h2

⊥
}

(28)

Eigenvalues for the other stationary points have to be cal-
culated numerically. In the next section, we present stabilities
of the stationary states and their evolution with respect to the

FIG. 4. (Color online) (a) The appearance and movement of
nonpolar stationary points when the temperature gradient increase
on the (φ, θ ) plane, and (b) their θ angle position for �T > 0.
Apart from the two main equilibrium points (θ = 0, π ), six other
equilibria (grouped in three pairs with period of φ = π ) have been
found: two foci near the south pole (θ ≈ 3.11; φ ≈ π/2, 3/2π ), two
saddles (θ ≈ π/2; φ ≈ π/2, 3/2π ), and two foci located at θ ≈ π/2;
φ ≈ π , 2π .

temperature gradient (i.e., thermal torques). We consider two
cases: a skewed thermal torque with 
‖ = 3.55 and 
⊥ =
29.8 that represents thin tunnel barriers and a symmetric one
(
‖,⊥ = 1), which corresponds to thicker barriers with seven
or more monolayers of MgO.

FIG. 5. (Color online) (a) The time average of the Sz component
and (b) the first harmonic frequency with respect to �T . Two
types of precessional states, in-plane oscillations and out-of-plane
oscillations, are presented in the insets I and II, respectively.
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V. RESULTS

A. Magnetic parameters of the free electrode

Here we focus on the effects of thermal torques on
the free magnetic layer dynamics. As mentioned before,
the magnitude of these torques depends on the temperature
gradient. However, the dynamics of the free layer also depends
on its magnetic properties. We used here one set of magnetic
parameters that correspond to the discussed Fe/MgO/Fe
tunnel junction. We assumed here that the saturation magneti-
zation is MS = 1 T, uniaxial anisotropy field μ0HK = 49.9 T,
dimensionless planar anisotropy hp = 20, damping coefficient
α = 0.01, and thickness of the free electrode df = 2 nm. We
also assume that the torques are absorbed by the magnetic
layers, which is the case when they are thicker than a few
monolayers.

B. Method of analysis

While our detailed results are given in the next sections,
we present here some general remarks about the method,
illustrated by the stability diagrams for the θ = 0, π points
in Fig. 3. The axes are the magnitudes of in-plane and out-
of-plane thermal torques, while the different types of stability
(Table I) can be distinguished by the color of the shading.
The location of the other stationary points are indicated on
the (θ , φ) plane in Fig. 4. We plot also the polar position of
these points with respect to the temperature gradient in Fig. 5.
More information on the spin dynamics can be gained by
computing 〈Sz〉, i.e., the time average of the z component of

the magnetization, defined as

〈Sz〉 = 1

t ′
∑

i

Sz(ti) (29)

where t ′ denotes the total simulation time of the dynamical
steady state and ti corresponds to temporal discretization step
within t ′.36 Moreover, to cover all possible solutions of the
LLG equation, we repeat the calculations of 〈Sz〉 for different
initial conditions θ0 and φ0 over the whole (θ , φ) plane, i.e.,
θ ∈ (0,π ),φ ∈ (0,2π ). We randomize initial conditions for
a uniform probability distribution at least 13 times, which
should be sufficient to observe all possible solutions for a
given temperature gradient �T . We observe that for some
�T , more than one solution may coexist, which may be
interpreted as a dynamical hysteresis. The frequency is another
useful characteristic of a dynamical state. We calculate Fourier
transforms of the time evolution of the 〈Sz〉 component,
and we plot the first harmonic frequency at least 13 times
for each gradient temperature in the same manner as for
〈Sz〉. For precessional states, the first harmonic has a finite
frequency. For static P, AP or canted states containing a
constant magnetization component, the first harmonic is at
zero frequency.

C. Ultrathin MgO barriers

Figure 3 is the stability diagrams for the θ = 0 and θ = π

stationary points. The bold dotted straight lines indicate the
magnitude of thermal in-plane and out-of-plane torques from

FIG. 6. (Color online) The evolution of the spin-vector trajectory in the (φ, θ ) (φ angle period equals 2π ) plane. Red points indicate saddle
points. (a) The stable in-plane oscillations are visible. (b) The switching from the AP to the P state is presented. In (c) and (d), the inverse
homoclinic bifurcation is shown.
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the product of the first-principles results for ultrathin tunnel
junctions for the torkance times �T . The thermal torques
vanish with the temperature gradient �T = 0, and θ = 0 and
θ = π points are stable foci; i.e., they attract the magnetization
vector. Each of these points has its own basin of attraction;
i.e., the spin vector may tend toward the 0 point or π point,
depending on the point from which we start. In other words, for
�T = 0, we have two stable solutions. First, let us discuss what
is happening when �T increases toward positive values. In this
case, the north pole [Fig. 3(a)] remains stable even for large
temperature gradients. However, at �T ≈ + 2.7 K, the south
pole [Fig. 3(b)] changes its stability and becomes a saddle
point, which at �T ≈ + 56 K changes its type to an unstable
focus, suggesting that for �T > 0, the magnetization of the
free electrode always favors the P configuration. However, we
have to take into account the other stationary points in Fig. 4.

For �T ≈ 2.7 K, a new equilibrium stationary point appears
near θ =π [Fig. 4(b)] that is a stable focus. This means that
the stability loss of the south pole is accompanied by the
attraction of this new point. Therefore, a near-AP configuration
remains stable despite the south pole’s instability. This causes
an increase in the critical value of �T at which the dynamics
of the free electrode’s magnetization can be induced. The latter
appears only at �T ≈ + 4.7 K, where the new focus becomes
unstable. That change can be associated with a so-called Hopf
bifurcation,37 which appears when a stable point becomes
unstable, creating a limit cycle. In Fig. 5(a), we can see the
time-averaged 〈Sz〉 calculated as described in Sec. V B. The
computed first harmonic frequency of the steady dynamical
state is shown in [Fig. 5(b)]. At �T ≈ + 4.7 K, 〈Sz〉 deviates
from −1 and increases while �T is growing to +12.9 K. At
the same time, the first harmonic may have nonzero value; i.e.,
for + 4.7 K < �T < + 12.9 K, a precessional state appears.
There are still two solutions: one is the P state, and the other
is a precessional state. The latter state oscillates in plane
around an unstable focus located near π [see the insets in
Fig. 5(b)].

Above a temperature gradient equal to +12.9 K, we do
not observe in Fig. 4(b) any change in stability of equilibria
points. However, we can see in Fig. 5 that for +12.9 K <

�T < + 43 K, there is only one stable solution—the P state.
In this range of �T , we can talk about thermally induced
switching from the AP to the P state. Let us now answer
the question: what is happening as �T is near +12.9 K? In
Figs. 6(a) and 6(b), we find that answer. At gradient tem-
perature �T ≈ +12.9 K, the stable limit cycle (precessional
state) collides with a saddle point, which suppresses stable
precessions. Such behavior is an example of a homoclinic
bifurcation37 reported previously for metallic spin valves.38

In this range of �T , another limit cycle can be found. It
is located around an unstable focus (θ ≈ π/2; φ ≈ π , 2π ).
Our calculations show that for �T < +43 K, this limit cycle
is unstable. In Figs. 6(c) and 6(d), the inverse homoclinic
bifurcation can be observed at +43 K. For this temperature
gradient, an unstable limit cycle [corresponding to out-of-
plane oscillations; see the inset in Fig. 5(b)], disconnects
from the saddle point, giving the stable limit cycle this time.
Above + 43 K, we have also two stable solutions: P state and
out-of-plane oscillations. The change of the π -point character
at �T ≈ + 56 K, visible in Fig. 3(b), does not affect the

FIG. 7. (Color online) (a) Multiple mean of 〈Sz〉 component and
(b) polar position of the other equilibria (saddle and unstable focus)
for the negative temperature gradients.

dynamical behavior. This point was an unstable saddle and
remains an unstable focus.

Now, we discuss briefly the case of �T < 0. From
Fig. 3(b), we find that the π point is a stable focus for
even large temperature gradients. Contrary to that point, the 0
point changes its stability from a stable to an unstable focus
∼�T ≈ − 61 K [Fig. 3(a)]. We can see 〈Sz〉 [Fig. 7(a)] and
polar position of equilibria [Fig. 7(b)] with respect to negative
temperature gradients. This time, only two pairs of nonpolar
equilibria are present: two saddles (θ ≈ π/2; φ ≈ π , 2π ) and
two unstable foci (θ ≈ π/2; φ ≈ π/2, 3/2π ). The dynamics
is determined only by the stability of the polar equilibria:
θ = π and θ = 0. For �T > −61 K, two stable solutions
coexist: the P state and the AP state. Above the critical value
�T ≈ −61 K, only one stable solution remains, i.e., the AP
state. The change of the north pole’s stability does not create
a stable limit cycle. Rather, it is an example of a so-called
subcritical Hopf bifurcation.37 The limit cycle around the
unstable focus observed earlier for positive gradients (as out-
of-plane oscillations) does not occur either. Thus, we observe
neither a homoclinic bifurcation nor a collision of a stable limit
cycle with a saddle point. We suppose that this limit cycle exists
but is unstable even for large negative temperature gradients.

D. Thick MgO barriers

In this subsection, we show what is happening when the
angular skewness of the STT is reduced to a trigonometric
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FIG. 8. (Color online) The stability diagrams for stationary points
(a) θ = 0 and (b) θ = π for the standard torques in thicker barriers
(
‖ = 
⊥ = 1).

function for thicker MgO barriers22 by setting 
‖,⊥ = 1.0
(regular angle dependence). For thicker junctions, the torque
amplitudes are much smaller, but for better comparison we
fix τ

(0)
‖(⊥) to the values for the MgO thin barriers. This helps

identifying the effects of skewness with possible relevance for
device design.

In Fig. 8, the changes in types of polar points can be seen.
The 0 point is stable for all positive temperature gradients
[Fig. 8(a)]. Similarly, the π point is stable for all negative
temperature gradients [Fig. 8(b)]. The stability of the latter
changes at �TC1 = +16.9 K. Then the south pole point is no
longer the stable focus but rather changes to the unstable focus.
The north pole point loses its stable character (stable focus)
at �TC1 = −16.9 K and becomes unstable focus. Nonpolar
points are depicted in Fig. 9. The two types of nonpolar
stationary states can be found at angle θ ≈ π /2. These points

are the saddle point and unstable focus. They do not change
their stabilities with increasing �T toward positive or negative
values [Figs. 9(b) and 9(d)]. In contrast to the thin barrier limit,
the position of the saddle point changes significantly with �T .
If we look at the plots of 〈Sz〉 in Fig. 9(a), we can see that for
�T < 16.9 K, two solutions are stable P and AP states. At
16.9 K 〈Sz〉 deviates from −1, what means that π point has
lost its stable character. This is Hopf bifurcation of this point.
It provides the appearance of a stable limit cycle around the π

point. Evidence of that limit cycle (corresponding to in-plane
precessions) is nonzero values of the first harmonic frequency
[see the inset in Fig. 9(a)]. This periodic solution and the P state
are two stable state in that range of �T . However, the in-plane
oscillations disappear at �T ≈ +19.1 K. Then the limit cycle
collides with the saddle point, losing its stable character. This
is homoclinic bifurcation, as already known from the case
described in Sec. V C [Figs. 10(a) and 10(b)].

For regular thermal torques, the range of �T where the
in-plane oscillations are present is very narrow. It is connected
to the significant replacement of the saddle point, which
moves toward the π point [see Fig. 9(b)]. This is the reason
homoclinic bifurcation occurs for smaller amplitudes of the
in-plane oscillations in the regular case than in the skew
one. For �T > 19.1 K, the only stable solution of the LLG
equation is the P state. For negative temperature gradients
(−16.9 K < �T < 0 K), we find two stable solutions: the AP
and P states [see Fig. 9(c)]. At �T ≈ −16.9 K, the 0 point is no
longer stable. It becomes the unstable focus. Contrary to the
skew case, for negative �T , we recognize supercritical Hopf
bifurcation with a stable limit cycle. For �T < −19.1 K, only
the AP state is stable.

FIG. 9. (Color online) Multiple 〈Sz〉 components and replacement of the nonpolar equilibria for (a) and (b) positive and (c) and (d) negative
temperature gradients for regular thermal torques. Insets: First harmonic frequency dependence on �T .
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FIG. 10. (Color online) (a) and (b) Homoclinic bifurcation for
regular thermal torques. Blue lines indicate the free electrode
magnetization’s motion on the φ-θ plane. Red points are the positions
of the saddle points.

VI. SUMMARY

We found that the strong skewness of the angular depen-
dence of thermal torques in ultrathin MTJs modifies their dy-
namics. We found bifurcations occurring under a temperature
gradient. The out-of-plane oscillations exist for skew torques
only. Next, the skewness excites in-plane oscillations at a much
smaller �T than do the regular ones. Furthermore, the range
of �T for which these in-plane oscillations are present is
much narrower for regular compared with skew torques. This
is caused by pinning of the saddle point in the latter case
and an easier replacement of that point in the former case.
Next, the switching from the AP to the P state occurs for
smaller �T for skewed torques, but from the P to AP state
a regular torque is more efficient. Finally, we conclude that

TABLE II. Critical temperature bias calculated for regular and
skew (with parameters from first principles) thermal torques with the
same amplitudes. The values in parentheses hold for negative �T .

Critical �T Critical �T

Behavior (skew case) (regular case)

In-plane oscillations +4.7 K +16.9 K (−16.9 K)
inducing (not observed)

AP to P switching +12.9 K +19.1 K
Out-of-plane oscillations +43 K not observed

inducing (not observed) (not observed)
P to AP switching −61 K −19.1 K

the critical �T in ultrathin junctions is not governed only by
stability of the 0 and π points. Instead, other stationary points
may emerge and “delay” the �T for which dynamics (and
switching) can be induced. Consequently, a naive comparison
of thermal torques with an electrically induced one in order to
estimate critical �T values may fail. This “delay” is found to
be ∼2 K (but it can be different for other skewness parameters).
Our calculated critical switching temperature differences are
collected in Table II.

We conclude that skew thermal torques may introduce
device design problems with thermally driven switching by
the much larger �T needed to switch from the P to AP state
than from the P to AP state. Thicker junctions with symmetric
thermal torques are more useful in principle than the thinner
ones with very skew torque ones. However, in contrast to
the results in Table II, thicker junctions have much smaller
absolute torkances with critical temperature differences that
are likely to be too large to be practical.
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