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First-order versus second-order phase transformation in AuZn
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The first-order versus second-order nature of the phase transition in AuZn has been examined by first-principles
calculations. The calculated elastic constants of the high-temperature B2 phase have a large anisotropy, which
suggests a possible instability in this phase. The first-principles calculations were extended to finite temperature
by including vibrational and electronic contributions to the free energy. A small free-energy barrier was found
between the high- (B2) and low-temperature (R) phases, which indicates that this is a weak first-order phase
transition. Finally, we find that the calculated theoretical transformation temperature and entropy change (small
latent heat) are in excellent agreement with the experimental observations for a first-order transition. Based on
the entropy calculations for both phases, the high-temperature phase is found to be stabilized by the contribution
of low-energy phonon modes to the lattice entropy.

DOI: 10.1103/PhysRevB.88.024110 PACS number(s): 31.15.A−, 81.30.−t, 63.70.+h

I. INTRODUCTION

Around a concentration of 50%, the phase diagrams of the
β-brass alloys AxB1−x , where A is one of the Cu, Ag, or Au
noble metals and B is one of the divalent Zn or Cd metals,
have bcc-like β phases at high temperatures. In most of these
alloys, the β phase is site-disordered at high temperatures,
then orders into a CsCl-type (or B2) crystal structure as the
temperature is lowered, and finally undergoes a martensitic
transformation at even lower temperatures.1 In the special case
of the AuZn alloys, the site disorder seems to be absent and
the ordered CsCl crystal structure exists even up to the melting
temperature.2

What makes AuZn alloys more unusual in this class of
alloys, however, is that Lashley et al.3 have claimed to
have observed a continuous second-order phase transition at
exactly the stoichiometric x = 50% concentration rather than
the martensitic phase transformation seen off stoichiometry
(where x is either greater than or less than 50%). In this paper,
we attempt to understand and make sense of this and earlier
work for stoichiometric AuZn,1,3–9 in which this solid-solid
phase transformation was studied from the high-temperature
(austenite-like) CsCl phase structure to the low-temperature
(martensite-like) rhombohedral (R-phase) structure.10 It is
interesting to note that the complexity of this phase transition
has even led Darling et al.8 to conjecture that this point in
the phase diagram might be a “critical point” joining two
first-order curves (that occur away from stoichiometry) when
the phase diagram is plotted as a function of temperature and
concentration. While this might not be the precisely correct
technical description of this type of point in a phase diagram,
it does suggest how special the 50% concentration is compared
to other concentrations that appear to clearly have first-order
transitions. Why the 50% concentration AuZn material is so
special relative to other concentrations and related materials
is not completely clear at this point in time. We can only
conjecture that it might be related to the strong ordering
tendency observed in AuZn, possibly caused by the large
atomic-size mismatch between the Au and Zn atoms.

If the 50%-concentration transition is indeed second order,
this makes stoichiometric AuZn of even greater interest, since

the vast majority of all phase transformations in solid materials
are first-order phase transformations.11 In contrast to the
previous experimental work on AuZn that has proposed that
the low-temperature phase transformation is continuous, in this
paper we instead examine the question from a theoretical point
of view. As will be explained below, our calculations indicate
that the stoichiometric 50%-concentration material actually
exhibits a first-order phase transition, albeit with a very weak
free-energy barrier that masks this first-order character and
hence explains the experimental tendencies toward second-
order behavior. Our result is also consistent with the first-order
nature of the phase transformations away from the 50%
perfect stoichiometry. Based on our calculations, we consider
that all concentrations of the AuZn alloy have first-order
transformations. The only difference for the stoichiometric
50%-concentration material is that the transformation has a
smaller free-energy barrier than other concentrations.

To understand the dilemmas posed by the current ex-
perimental evidence in AuZn materials,3,7–9 it is useful to
briefly review the main differences in experimentally observed
physical properties between first- and second-order phase
transformations, which in this section we will abbreviate by
FOP and SOP, respectively, since we use this terminology so
heavily here. The traditional nomenclature for the order of a
phase transition was made by Ehrenfest, who labeled these by
the lowest derivative of the free energy that is discontinuous
at the transition temperature. Thus, FOPs have a discontinuity
in the first derivative of the free energy, and SOPs have a
discontinuity in the second derivative. In practice, for a solid,
this means that the volume and entropy are discontinuous in
a FOP and continuous in a SOP. This implies a latent heat
for the transition in a FOP and no latent heat in a SOP. In
addition, for FOPs, the specific heat is always finite at the
transition temperature, whereas it goes to infinity for SOPs
(this is often called a λ-like behavior with reference to the
prototype for this behavior in liquid helium). There is an
experimental controversy in AuZn about whether a λ-like
behavior has actually been observed for this material.

Most solid-solid phase transformations are first-order tran-
sitions that involve diffusion of the atoms from one crystal
structure to another. Martensitic phase transformations are a
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special subclass of first-order transitions that differ from the
general case in that they are diffusionless and displacive. The
diffusionless nature of the transition means that the atoms
move continuously from one crystal structure to the next during
the transition by coordinated “military” motions that are small
compared to nearest-neighbor distances. Hence, one can define
a microscopic path between the low- and high-temperature
phases that typically involves the coordinated positions of
many atoms in a supercell of the high-temperature phase.
Theoretically, this path is determined by minimizing the free
energy as the system continuously distorts from one phase
into the other. In the literature,12–15 there have been numerous
calculations of such martensitic paths, and we will provide an
example of this below for AuZn. In terms of transformation
kinetics, the atomic motions of these paths proceed near the
speed of sound in martensitic transformations and are usually
too fast to be experimentally observed. It appears as if the
lattice instantaneously changes from one crystal structure to
another when the material transforms.

Martensitic transitions are also displacive, which means
that the lattice is continuously deformed relative to the overall
shape of the crystal and usually with a change in crystal
symmetry. For example, a cubic lattice could continuously
distort into a tetragonal lattice by lengthening one direction of
the cube. The displacive nature of the transformation leads to
orientation relationships between the austenite and martensite
and consequently habit planes and other phenomenologies
in the metallurgical descriptions of these types of phase
transformations. The microscopic pathway of the transition
must, of course, include these shape deformations in a
continuous way.

For the rest of this paper, we specialize our discussion to
phase transitions that are both diffusionless and displacive,
since this is what is relevant to AuZn and its alloys. If the
transition can be characterized as first-order in the Ehrenfest
thermodynamic sense, it is martensitic. If it is continuous, we
will call it martensitic-like. In addition, for the rest of the
paper we will use the typical language of martensites for both
types of transformation, calling the high-temperature phase
austenite and the low-temperature phase martensite, and the
phase transformation temperature TM .

Within the context of martensitic and martensitic-like
transformations, the distinction between a first-order and
second-order phase transition can be reframed as asking
whether or not the continuous path of the atoms from
the austenite to the martensite has a free-energy barrier at
the phase-transformation temperature TM . If the free-energy
barrier exists, then the phase transformation will necessarily
be a martensitic first-order transition, and will involve a
discontinuous change of crystal structure at TM . If the
free-energy barrier does not exist, the phase transformation
will be a second-order transition and the equilibrium crystal
structure will continuously distort from the high-temperature
crystal structure to the fully developed low-temperature crystal
structure in a gradual manner as the temperature is lowered
(perhaps over a small temperature range). In addition, if
the transformation is continuous, then there cannot be a
simultaneous coexistence of both phases, which is a standard
phenomenological experimental indication for a martensitic
transformation.

The presence or absence of this free-energy barrier also
has important consequences for many of the other properties
of the phase transition. For example, having such a barrier
often leads to hysteresis at the transition temperature, since
the barrier forces nucleation behavior in order to convert one
phase to the other, and, in the absence of some kind of dirt
or defect that can serve as a nucleation center, it can lead
to undercooling or overheating to drive the conversion, since
thermal fluctuations may not be big enough to provide a driving
force to overcome the energy barrier. Another consequence,
which is an important signature of an FOP, is the simultaneous
coexistence of both phases (a “mixed-phase region”). In
contrast, a SOP can immediately convert since no free-energy
barrier needs to be overcome in order to cause the conversion,
and hence nucleation phenomena need not be considered. For
similar reasons, SOPs usually have divergent susceptibilities
and long-range power-law decays of correlations, where the
correlation length goes to infinity at the transition. Most of this
behavior is studied in the subject area of “critical phenomena,”
involving universality classes and critical exponents.

Another issue that is related to the energy barrier that
frequently arises in FOP/SOP discussions for these classes of
materials is that of phonon softening at the phase transition. If a
phonon mode goes to zero at the phase-transition temperature,
this implies that the crystal structure can continuously distort
without cost in free energy from the high-temperature parent
(higher symmetry) crystal phase to the “frozen phonon” crystal
structure of the low-temperature phase. Hence, there would be
no barrier to the phase transition and the transition might be a
SOP. The other possibility is an incomplete phonon softening,
where the phonon heads toward zero but never quite makes it
at the transition point, as might occur in AuZn. Krumhansl and
Gooding19 have shown that such a case can be a weak FOP
instead of a SOP.

From a theoretical point of view that is based on first-
principles electronic-structure calculations, such as we use,
it is much easier to distinguish between a FOP and a SOP
by calculating the free-energy barrier rather than relying on
the traditional continuity or discontinuity of derivatives of
the free energy. In this paper, we will show theoretically that
AuZn has a weak first-order phase transition. By “weak” we
mean that the energy of the transition temperature, kBT , or
the relevant thermal fluctuation energy, is larger than the free-
energy barrier between the two phases. Weak first-order phase
transitions can have very small latent heats, pseudocritical
phenomena, and other properties very similar to second-order
phase transitions. Essentially, the free-energy barrier between
the two phases is so small compared to the thermal fluctuations
that it can seem almost as if there is no energy barrier present,
and hence the material can appear to be very second-order-like
in its properties.

Therefore, the difference between a weak FOP and a SOP
could be extremely difficult to distinguish experimentally. For
example, a very weak FOP would have very large but finite
correlation lengths. If large enough, this might seem similar to
the infinite correlation lengths present in SOPs. This complex
situation is confused further if the material is not perfectly
pure and if defects may be present. Many papers have shown
(see, e.g., Refs. 16, 17, and 18) that a weak first-order transition
can sometimes mask a second-order phase transition, since it is
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TABLE I. Calculated lattice constants (a and c), elastic constants (Cij ), shear anisotropy (A, dimensionless), and bulk modulus B at zero
temperature and the comparison of these quantities with available experimental data.

Phase a (Å) c (Å) θ (deg) C44 (GPa) C ′ (GPa) A B (GPa)

B2 3.195 90 62.00 6.00 10.38 114.3
expt. (B2) 3.126,a 3.149b,c 90 66.60,b 62.26c 6.66,b 6.72c 10,b 9.26c 122.0,b 138.4c

R 7.816 5.545 89.99 120.0
expt. (R) 7.658a 5.476a 89.55a

aReference 5.
bReference 8.
cReference 35.

possible to convert a true second-order transition to a first-order
transition by the application of external fields, which could also
possibly include dirt or defect structures in the material. These
considerations explain the current ongoing controversy over
AuZn, where the true nature of the phase transition has been
strongly debated.

So far there has been no systematic theoretical study on
austenite and martensite phases of AuZn, and the number
of experimental studies are also limited. Hence, important
information, such as crystal lattice structure and phonon
densities of states, is lacking. In the present investigation, we
use first-principles methods to study the formation of the B2
and R phases in AuZn system. This paper is organized as
follow: Section II discusses the details of the calculations.
Section III contains the results for crystal parameters, elastic
properties, and phonon dispersion along the [110] direction
of austenite (B2) phase. Section IV deals with the thermal
properties and stability of the B2 and R phases at zero and finite
temperatures. A summary of our findings and a conclusion are
presented in Sec. V.

II. METHODOLOGY

Our electronic-structure calculations have been car-
ried out using the first-principles density-functional pseu-
dopotential packages VASP20–22 and SIESTA23,24 within the
generalized-gradient approximation (GGA) to the exchange-
correlation potential as parametrized by Perdew-Burke-
Ernzerhof (Ref. 25). In most of our calculations we have
used VASP, since SIESTA was only used to analyze the bonding
(Mulliken populations analysis) between the atoms.

In the VASP code, we used the projector augmented-wave
method26,27 with a cutoff kinetic energy of 346 eV. Electronic
degrees of freedom were optimized with a conjugate-gradient
algorithm, and both external and internal cell parameters are
fully relaxed. The crystal was represented by an 18-atom peri-
odic cell. A modified tetrahedron method28 (6 × 6 × 7 mesh)
was used for the k-point integration in the Brillouin zone.

The dynamical matrix calculations were performed using
a force-constant method with 36-atom, 54-atom (for B2
phonon dispersion calculations), and 72-atom unit cells with
a k-point sampling29 of 4 × 4 × 2, 8 × 8 × 8, and 4 × 2 × 2,
respectively. We used an atomic displacement of 0.0211 Å for
the entire phonon calculations presented in this work. The dy-
namical matrices were obtained from the Fourier transform of
the real-space force-constant matrices. The eigenfrequencies
and eigenvectors were obtained from a diagonalization of the

dynamical matrix. All of the force constants were calculated
for the lattice constant with the minimum total energy (i.e.,
the lattice constants for each different method that are given
in Table I).

The SIESTA calculations used norm-conserving pseudopo-
tentials in the Troullier-Martins form30 to remove the core
regions from the calculations. The basis sets for the va-
lence states are linear combinations of numerical atomic
orbitals.23,31,32 In the present calculations, we used double-zeta
polarized basis sets (two sets of valence s’s and p’s plus one
set of d’s). The charge density is projected on a real-space
grid with an equivalent cutoff of 150 Ry to calculate the
exchange-correlation and Hartree potentials.

III. HIGH-TEMPERATURE-PHASE CRYSTAL
STRUCTURE AND ELASTIC PROPERTIES

The austenite (or high-temperature) phase of AuZn is an
ordered body-centered-cubic (bcc-like CsCl-type or B2) struc-
ture. The equilibrium volume (lattice constant) was obtained
by fitting the total energy-volume data with Murnaghan’s
equation of state.33 The equilibrium lattice constants from the
zero-temperature VASP and SIESTA calculations are in very good
agreement with experiment, with VASP predicting a slightly
larger value (3.195 Å) while SIESTA predicts a smaller value
(3.059 Å). The difference is related to the different pseudopo-
tentials used, since the exchange-correlation potential used
was the same in both calculations.

Depending on the symmetry of the crystal structure,
calculations of the elastic constants require using different
distortions of the crystal structure. A lattice with cubic sym-
metry has three independent elastic constants: C11, C12, and
C44. For the AuZn B2 structure, the elastic constant C44 was
obtained from the monoclinic volume-conserving distortion,34

ε =

⎛
⎜⎝

0 δ/2 0

δ/2 0 0

0 0 δ2/(4 − δ2)

⎞
⎟⎠ ,

where the energy increase (per unit cell volume) is given by

E(δ) = 1
2C44δ

2 + O(δ4). (1)

Similarly, the shear modulus C ′ [C ′ = 1
2 (C11 − C12)] is

obtained from the tetragonal volume-conserving distortion,34

ε =

⎛
⎜⎝

δ 0 0

0 −δ 0

0 0 δ2/(1 − δ2)

⎞
⎟⎠ .
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FIG. 1. Calculated C44 and C ′ elastic parameters as a function of
k points.

The relation between the energy increase (per unit cell
volume) and the distortion δ is given by

E(δ) = 2C ′δ2 + O(δ4). (2)

The bulk modulus for a cubic crystal is equal to B =
(C11 + 2C12)/3 and can be obtained from the second derivative
of the energy-volume curve. C11 and C12 can be obtained from
the calculated bulk modulus and C ′. To ensure the convergence
of the elastic parameters with respect to the k-point sampling,
we have used 12 × 12 × 12, 16 × 16 × 16, 20 × 20 × 20, and
25 × 25 × 25 meshes. As is shown in Fig. 1, the elastic
parameters are converged for the 20 × 20 × 20 (8000 point)
mesh.

Calculated elastic constants (for the 25 × 25 × 25 mesh)
and the Zener anisotropy factor A (the ratio of C44 to C ′)
are given in Table I, and they are in excellent agreement
with experimental measurements.3,35 According to Zener,36

the large value of A is an indication of a structural instability
of the system and hence a tendency for a phase transfor-
mation. The AuZn system has a very low shear modulus
(Fig. 1). The origin of the small shear modulus can be
understood in terms of bonding between the atoms. A Mulliken
population analysis gives a weak metallic bonding between
the Au and Zn atoms. Furthermore, it indicates that there
are antibonding states for dz2 and dx2−y2 orbitals of a Zn
atom. A study of the charge density (Fig. 2) shows that
electrostatic interactions are partially shielded by valence
charges along the [001] directions. This effect, in addition
to the lack of any bonding along the high-symmetry [001]
directions, is why there is such a small resistance to a shear
distortion.

It should be noted that all of these first-principles electronic-
structure calculations are, of course, like all such calculations,
done at zero temperature, whereas the experimental data are
at finite temperature. However, the thermal corrections are
expected to be small for these properties. Later sections of
the paper will add finite-temperature corrections for other
properties.

FIG. 2. (Color online) Calculated charge density of AuZn for cuts
in [100], [010], and [001] planes.

IV. B2- TO R-PHASE TRANSFORMATION

A. Phase-transformation path at T = 0 K

Theoretical methods at finite temperature need to include
the effects of thermal vibrations, which are difficult to accu-
rately calculate. In contrast, there exist many first-principles
local-density approximation codes that can fairly precisely
calculate total-energy differences at zero temperature between
different crystal structures, and which also include algorithms
for determining the optimized structure for any constraint
placed on the system and hence along any given path. For
this reason, it is valuable to consider the minimum-energy
atomic pathway between the two phases at zero temperature
and the relevant energy barrier along this path.

In AuZn, there is strong evidence that the austenite and
martensite crystal structures are related by a “frozen phonon”
in the high-temperature phase. As we will show later, this is
not exactly accurate, since additional atomic distortions within
a larger unit cell of the low-temperature phase must also be
allowed to relax to exactly describe the low-temperature crystal
structure. Nonetheless, it is relevant to examine the phonon
spectra of the high-temperature crystal structure. This can be
calculated at zero temperature by electronic-structure methods
described above. For a continuous phase transformation, it is
often expected that this “frozen-phonon” mode will have a
significant temperature dependence, having a finite frequency
at high temperatures and then gradually softening all the way to
zero frequency at the phase-transition temperature. If this is the
case, our zero-temperature phonon mode should then have an
imaginary frequency (indicating an unstable crystal structure
with respect to the low-temperature phase). On the other hand,
if our zero-temperature phonon has a finite frequency, then it
is highly likely that there is no instability of this phonon mode
at higher temperatures, since our phonon calculations are for
the crystal structure that is stable at high temperatures.

The experimental phonon dispersion curves of the B2
phase along the [110] direction show a continuous softening
of the TA2 phonons as the temperature is reduced from
high temperatures, confirming the instability of the high-
temperature austenite phase. Calculated and measured TA2

phonon dispersion curves along [110] are shown in Fig. 3. All
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FIG. 3. (Color online) Calculated (solid lines) and experimental
phonon dispersion relations of the [110] branch. The red stars (*)
and crosses (×) are data of Ref. 6 for [110] phonons. The star is the
TA2 mode (taken from Fig. 1 of the reference for an alloy with a
concentration of 51.5 at. % of Zn and a temperature of 110 K) and the
cross is the LA mode (taken from Fig. 3 of the reference for an alloy
with a concentration of 48.5 at. % of Zn and at room temperature).
The green diamonds are the stoichiometric TA2 phonon data of Ref. 3
at 200 K. The blue square represents the phonon frequency (energy)
obtained from our frozen phonon calculation.

of our phonon calculations for B2 structure are done at the
theoretical minimum lattice constant (3.195 Å). The phonons
along TA2 direction are very sensitive to lattice constant values.
For example a choice of slightly large lattice constant (3.20 Å)
could produce imaginary phonons, instead of the positive low
frequency value we find for the soft phonon. Note that all
phonon calculations in this paper are for a 72-atom unit cell,
unless otherwise specified. For the experimental data at low
temperatures, it is difficult to find good phonon dispersion
curves. The TA2[110] phonon mode has been measured by
Lashley et al.3 at 200 and 300 K. For other phonons and other
temperatures, we have had to refer to Makita et al.,6 which
unfortunately only presents data at slightly off stoichiometry,
at 48.5 and 51.5 at. % Zn.

Our theoretical results predict an incomplete softening of
the phonons at q/qmax = ( 2

3 , 2
3 ,0) at zero temperature, which

is more pronounced than the higher-temperature experimental
measurements. Since we expect the zero-temperature results
to have the maximum instability toward the low-temperature
martensitic phase, our phonon calculations strongly suggest
that there is likely to be no soft mode or “frozen phonon” at
any temperature in AuZn in the austenite phase. The lowest
temperature for which the experimental phonon spectra have
been measured is 110 K, and the temperature dependence
of the spectra does not show any signs of softening to zero
frequency at any lower temperature, which is consistent with
our calculations.

The phonon calculations require a description of the crystal
structures. The martensite phase is a rhombohedral structure
(R phase). The conventional rhombohedral unit cell is formed
by 27 unit cells of the B2 austenite phase. However, this can
be reduced into a primitive hexagonal unit cell containing nine

Zn

x

y
z = [111]

_

Au

FIG. 4. The crystal structure of the martensite R phase. Arrows
indicate the directions of atomic displacements from the ideal B2
position.

B2 cells. The high-temperature B2 phase and its relation with
the R phase is shown in Fig. 4. The unit-cell vectors �a1, �a2,
and �a3 are along the [121], [11̄2̄], and [1̄11̄] directions of
the cubic B2 unit cell, respectively. The details of the crystal
structure and atomic positions are given in Ref. 5. The R

phase is a distorted B2 structure with P3 symmetry that has 18
atoms per unit cell. We have calculated the theoretical structure
by minimizing the total energy of the electronic structure as
a function of the internal atomic coordinates. The internal
positions of the atoms are given in Table II. The interplanar
distances between neighboring planes in the R phase (Fig. 4)
are not equal. The distance between the first-second, second-
third, third-fourth, fourth-fifth, fifth-sixth, and sixth-seventh
are 0.2, 0.2, 0.1, 0.2, 0.2, and 0.1 (in units of c/a), respectively.
This can be understood in terms of size mismatch between Au
and Zn atoms. The Au atom in the first plane and the Zn atom
in the fourth plane (Fig. 4) are displaced out of the planes
significantly (about 0.13 c/a unit), causing the nonuniform
distribution of planes. The transformation from the B2 to the
R phase and the crystal structure of the R phase are very
similar to that for the AuCd martensitic transformation.38

The phase transformation is a combination of external
(shear) and internal (shuffle) distortions, i.e., a shear of the
overall unit cell and internal atomic relaxations. It is not

TABLE II. Refined atomic positions for the R phase with P3
symmetry (International Table37 space-group number 143).

Site x y z

Au(1a) 0 0 0
Au(1b) 1/3 2/3 0.12957
Au(1c) 2/3 1/3 0
Au(3d) 0.33347 −0.01541 0.41295
Au(3d) 0.69291 0.01895 0.70528
Zn(1a) 0 0 0.5
Zn(1b) 1/3 2/3 0.63221
Zn(1c) 2/3 1/3 0.5
Zn(3d) 0.33332 −0.01881 0.91195
Zn(3d) 0.68291 0.01625 0.20599
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clear which one occurs first or if both occur simultaneously.
Because of the complicated displacements of the atoms and the
number of parameters involved in this process, the mechanism
(path) of the phase transformation in the AuZn system is not
yet completely understood.

However, the low-energy phonon of the TA2 branch at
q/qmax = ( 2

3 , 2
3 ,0) suggests the possible path and displacement

of atoms for this transformation. The displacement of atoms
along the z axis ([11̄1] of the B2 unit cell) corresponds to a
phonon with a wave vector of q/qmax = ( 2

3 , 2
3 ,0) and transverse

polarization (TA2). By a small perturbation of atoms along that
direction, our calculations show that the Au atom in the first
plane and the Zn atom in the fourth plane (Fig. 4) are displaced
by similar amplitudes, while the rest of the atoms remain very
close to their equilibrium positions. Using a frozen-phonon
approach, and by displacing only those two atoms, we can
calculate the phonon frequency (energy) for such a mode.

The calculated energy of the frozen phonon is in excellent
agreement with our results obtained from the direct method
(Fig. 3). Therefore, we expect that AuZn has the lowest energy
barrier in that direction. However, the displacement of only
those two atoms involved in the frozen phonon is less than the
number of available internal distortions of the atoms, while
still maintaining the R-phase symmetry, and additional atomic
relaxations must therefore be considered. In our calculations,
this is determined by allowing the other atoms to distort in any
way that is allowed by crystal symmetry that will lower the
total energy.

Figure 5 shows the different energy versus displacement
calculations for frozen-phonon and relaxed calculations. The
path that was followed in this figure was calculated by moving
the Zn atom in the fourth plane [Zn(1b)] and then allowing
other relaxations of the other atoms as described below in the
18-atom unit cell. The value for umax was determined from
the fully relaxed R phase that we have just described above.
Calculations of martensitic pathways for other materials12–15

0 0.2 0.4 0.6 0.8 1
Atomic displacements (u/umax)

-1.5

-1

-0.5

0

0.5

E
-E

B
2 (

m
eV

/a
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m
)

Frozen phonon
Internally relaxed
Fully relaxed

FIG. 5. (Color online) The energy difference at zero temperature
for a path involving the displacement of atoms from the B2 position
toward the R-phase atomic coordinates (see text for a more complete
description of how the path was determined). EB2 is the ground-
state energy of the B2 structure and umax is the maximum atomic
displacement (the difference between atomic position in the R and
B2 phases) for the Zn atom in the fourth plane.

have often used the more sophisticated and computationally
efficient nudged-elastic band method.39 The results should be
the same in either case, as long as the lowest-energy path is
found.

In the frozen-phonon calculations, only the two atoms of Au
and Zn in the first and fourth planes have been displaced with a
similar amplitude [Au(1b) and Zn(1b)]. Further investigations
confirmed that the small displacement of the Zn atom in the
fourth plane along [11̄1] of the B2 unit cell caused the Au
atom in the first plane to also displace in a similar direction
and with a similar amplitude (and vice versa), while the other
atoms remained close to their ideal B2 coordinates. Therefore,
in the next set of calculations, which are described in the figure
as “internally relaxed,” only the Zn atom in the fourth plane
was displaced and the positions (internal coordinates) of the
other 17 atoms were optimized by minimizing the total energy.
Finally, in the last set of calculations (“fully relaxed”), both the
internal atomic coordinates and the lattice constants (a, c, and
θ , cf. Table I) were relaxed. Note that for small-displacement
values, all of the energy calculations are very similar to each
other, i.e., the displacement of the Au atom in the first plane
and the Zn atom in the fourth plane along [11̄1] of the B2 unit
cell is the start of the phase transformation. Further movement
of those atoms requires the internal relaxation of atoms.

In Fig. 5 it is important to note for both the internally
and fully relaxed calculations that the energy barriers have
similar heights. Hence, the atoms can internally relax into the
R-phase atomic positions, and then the external relaxation can
occur or both the internal and external relaxation can happen
at the same time. In either case, the atomic shuffles (changing
the internal positions of the atoms within the unit cell) are
the dominant effect in the B2 to R phase transformation,
and the effective Landau free energy for this system can be
parametrized in terms of a shuffle parameter as the primary
order parameter.40,41

B. Phase transformation at finite temperature

In a second-order phase transformation, the order parameter
changes continuously between the two phases, in contrast to
the first-order one where it changes discontinuously, like a step
function.42 This steplike behavior is typical of reconstructive
transitions (with no group-subgroup relation between the
phases) between fully ordered phases. In the Landau model
for second-order phase transformations, at and below the
transition temperature, one should see a continuous change
of order parameter without any region of stability for both
phases (i.e., it is not possible for the austenite and martensite
to simultaneously coexist), requiring the complete softening of
the associated phonon.19 Our phonon calculations (at T = 0 K)
along the [110] direction (Fig. 3) showed a softening (but not
a complete one). This result is also indirectly verified by the
positive curvature of energy versus the atomic displacement
plot (Fig. 5), confirming the stability of the B2 phase even at
T = 0 K. However, the most important result is the existence
of a small barrier between the B2 and R phases (Fig. 5). This
barrier separates the B2 and R phases at zero temperature,
causing a region of coexistence for both phases, opposite to
what should happen in a second-order phase transformation.
Since the predicted height of the barrier is very small (about
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2 K), it is unlikely to be able to be detected experimentally,
and, at the transformation temperature, the B2 structure should
easily be able to transform into the R phase through normal
thermal fluctuations.

Ideally, in order to theoretically determine whether the
phase transformation is first or second order, the free-energy
path should be calculated at the transition temperature to exam-
ine whether a free-energy barrier exists (first-order transition)
or not (second-order transition). To do this, both external
and internal distortions of the unit cell and atomic positions
should be allowed to relax along the path. Since each point
(including all the possible relaxations) would require a separate
phonon calculation to determine the free energy (i.e., to include
the thermal vibrations), this would require a large number
of expensive calculations well beyond our current computer
resources. It is therefore important instead to make some
approximations to estimate whether the free-energy barrier
is likely to exist or not. We have already tested one limiting
case, that of zero temperature (see above). If there were no
energy barrier for this case (the most unstable case), it would
strongly indicate that the phase transformation at the transition
temperature also would have no energy barrier. However, since
we did find a small energy barrier for this case, our starting
position has to therefore be that of assuming a first-order
transition. Nonetheless, because the zero-temperature barrier
is so small, it is always possible that even for a transition
temperature as low as 64.5 K, the thermal entropy could reduce
or eliminate the free-energy barrier.

Since it is too computationally expensive to calculate the
full path, we have made the approximation that the lowest
free-energy path at the transition temperature is similar to
that at zero temperature. Thus, we have calculated the free
energy at the transition temperature for the path that has the
same identical lattice constants and internal atomic coordinates
that were found for the fully relaxed zero-temperature path
(cf. Fig. 5). Since the transformation temperature is very
low (64.5 K), we have used the Helmholtz free energy
(constant volume) instead of the Gibbs free energy. The
vibrational modes of the crystal are usually a much more
important contribution to the free energy of the system than the
electronic contribution. At high temperatures, near the melting
point, it is very important to include anharmonic effects on
the phonon spectra. However, in cases like AuZn where
the phase-transition temperature is low, the vibrational free
energy Fvib can be accurately calculated within the harmonic
approximation.43 This is given by

Fvib(T ) = 3kBT

∫
�

ln

{
2sinh

(
h̄ω

2kBT

)}
g(ω)dω. (3)

It would be useful to compare our total phonon density
of states (PDOS) g(ω) with experiment. Unfortunately, there
are no experimental measurements of the optical phonons for
AuZn systems, and even the acoustic phonons are measured
only along a few high-symmetry directions and for a limited
number of modes. Therefore, it is impossible to extract any
total PDOS from experimental measurements. Nonetheless,
based on the excellent agreement between experimental
measurement of the acoustic phonons of the B2 phase and the
calculated phonons in high-symmetry directions as depicted
in Figs. 3 and 6, we believe that the total PDOS presented
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FIG. 6. (Color online) The phonon dispersion curves of the AuZn
B2 phase. All the phonon experimental data shown (stars and crosses)
are taken from Ref. 6 at room temperature. The stars on the left side
of the figure are for the [111] LA phonon mode (from Fig. 2 of the
reference at a 51.5 atomic percentage of Zn). The stars and crosses
on the right side of the figure are the LA and TA2 [100] phonon
modes (from Fig. 3 of the reference at a 48.5 atomic percentage
of Zn).

here is likely to be very accurate. In Fig. 7, the results for
the total PDOS for the B2 and R phases at T = 0 K for 36-
and 72-atom cells are shown. The calculated phonon density
of states consists of two sets of bands separated by a gap
for both structures. The Au-related modes are at low energies
and those of Zn are at higher energies (frequencies). In the
B2 structure, the phonons in both bands are narrower than
the R phase. Increasing the size of the unit cell improved
the optical modes, while there was no significant change for
acoustic modes. Since the acoustic phonons contribute more
to the vibrational free energy (entropy) than the optical ones
do, as is shown later in the paper, the free-energy calculations
with the 72-atom unit cell are not much improved relative to
the 36-atom cell.

Another contribution to the total free energy of solids
comes from their electronic entropy. In this case, the electronic
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FIG. 7. (Color online) Total PDOS of B2 (top) and R (bottom)
phases calculated with 36- (blue dashed line) and 72- (black solid
line) atom cells.
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FIG. 8. (Color online) The Helmholtz free energy of the R

phase and the atomic displaced structures with respect to the B2
phase as a function of temperature. The calculated transformation
temperatures are 70 and 65 K for 36- and 72-atom cells, respectively
(cf. Fig. 9).

contribution to the free energy depends on the electronic
density of states as a function of volume, n(E). The occupation
of these states, given by the Fermi distribution

f (E,T ) = [e(E−Ef )/(KBT ) + 1]−1, (4)

determines their entropy,44,45

Sel(T ) = −kB

∫
[f lnf + (1 − f )ln(1 − f )]n(E)dE, (5)

and hence the electronic contribution to the free energy,
FE(T ,V ) = −T Sel(T ,V ). Although the electronic entropy
terms are not large, we have included them in our calculations
for completeness.

The free-energy path as a function of temperature is
depicted in Fig. 8 (see the description above for how the
path was determined). We find that including the vibrational
contribution to the free energy increases the barrier height
as a function of temperature from the T = 0 K value of
0.3 meV/atom, and hence the effect of temperature actually
tends to stabilize the first-order transformation relative to
a second-order continuous transition. In these calculations,
we used a 36-atom cell for calculating the phonons and the
Helmholtz free energy. As can be seen from Fig. 9, the
transition temperature obtained from the 36-atom cell phonon
calculations is comparable to that of the 72-atom cell, and is in
excellent agreement with what was measured experimentally.
The zero-temperature free energy in this figure differs from
that of the energy shown in Fig. 5 by the addition of the
zero-point energy contribution along the path. The calculated
barrier at temperatures close to the transition temperature is
about 1 meV/atom (11.5 K). Although it is possible that other
atomic distortions of the crystal structure could still lower
or remove this free-energy barrier, it would seem unlikely.
Hence, we believe that stoichiometric AuZn is indeed a weakly
first-order phase transformation at the transition temperature
(i.e., a finite free-energy barrier exists at this temperature).
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FIG. 9. (Color online) The total Helmholtz free-energy difference
between B2 and R phases as a function of temperature for 36- and
72-atom unit cells. The calculated transformation temperature for the
72-atom cell is at 68.5 K. The R phase is stable below this temperature,
while the B2 phase is more stable above it. The difference in
electronic energy between these two structures is shown by a solid
circle.

Finally, we have calculated the first-order AuZn phase-
transformation temperature and entropy to see how well they
compare with experiment. The vibrational entropy and specific
heat at constant volume were calculated by using the first and
second derivatives of the Helmholtz free energy.43

Figure 9 shows the difference between the Helmholtz free
energies of the B2 and R structures. The phonon DOSs are
calculated for 36- and 72-atom cells in order to consider the
finite-size effects on the transition temperature. Above 65 and
70 K, the B2 structure is more stable than the R phase for 36-
and 72-atom cells, respectively. By reducing the temperature
below these temperatures, the R phase forms. This result is
in excellent agreement with the observed temperature of 64.5
K.3,8 The slight difference can be caused by underestimating
the phonon frequency of the B2 phase along the [011] direction
(Fig. 3). The shift of acoustic phonons in the B2 phase to
lower frequencies with respect to the R structure (Fig. 7)
causes a higher vibrational entropy that stabilizes the austenite
phase at high temperatures. By lowering the temperature,
the vibrational entropy contribution yields the vibrational
and electronic energies, and the B2 structure transforms to
the lower-symmetry R phase. This is in complete agreement
with Zener’s studies on bcc materials with low shear (low
vibrational frequency) resistance.36

Calculated specific heat at constant volume as a func-
tion of temperature and its comparison with experimental
measurement are depicted in Fig. 10. However, the most
interesting finding is the discontinuity of vibrational entropy
at the transformation temperature (Fig. 11). The calculated
entropy change is 2.79 J/mol K for the 72-atom unit-cell
phonon calculations. Darling et al.8 experimentally estimated
the entropy change by integration of C/T from T1 = 47.5
K to T2 = 67.0 K and found a value of 2.02 J/mol K.
This is in very good agreement with our calculated value,
and the slight difference can be related to the nature of
calculations. We have also determined the entropy for the

024110-8



FIRST-ORDER VERSUS SECOND-ORDER PHASE . . . PHYSICAL REVIEW B 88, 024110 (2013)

0 50 100 150 200 250 300
T (K)

0

10

20

30

40

50

60

C
 (

J/
m

o
l)

R phase
B2 phase
Exp.

FIG. 10. (Color online) Calculated heat capacity of B2 (dashed
line) and R (solid line) phases as a function of temperature.
Experimental data (taken from Ref. 8) are shown by solid circles.

less accurate 36-atom unit-cell phonon calculations, and we
obtained a value of 2.46 J/mol K. The difference between the
smaller and larger unit-cell calculations is about 10%, which
suggests that our results are converged at least to this level in
unit-cell size.

In a temperature-induced second-order phase transforma-
tion, the presence of an external field breaks the symmetry and
can transform it into a first-order transition. However, the effect
of the external field on a weakly first-order transformation has
different consequences. In this case, the applied field could
shift the transformation temperature instead of suppressing
the transformation.18 Also, under certain conditions it can
transform a weakly discontinuous transformation into a con-
tinuous one. According to our first-principles calculations for
AuZn, the latent heat and the energy barrier for this martensitic
transformation are very small. Therefore, any external and/or
internal strain, such as pressure, impurities, or vacancies, could
have a significant impact and lead to a wrong conclusion about
the true nature of phase transformation in the AuZn system.
Hence, our conclusion that AuZn is a weakly first-order phase
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FIG. 11. (Color online) Calculated vibrational entropy of B2 and
R phases as a function of temperature. At transformation temperature
there is a small discontinuity in entropies (latent heat).

transition is for the pure material in the absence of defects.
If defects are present, the situation might be unclear. In any
case, it is probably difficult to experimentally determine the
difference between such a weakly first-order transition and a
true second-order transition.

V. SUMMARY

We have shown that the phase transition in AuZn is a
weak first-order transition with a small free-energy barrier
between the phases at the transition temperature that is much
smaller than the available thermal fluctuation energy. For this
reason, the phenomenology of the transition in many ways
exhibits properties associated more with a second-order phase
transition rather than a first-order transition. This result is
satisfying in that it no longer makes the 50% concentration
so special (for no apparent reason). With our result, we
have now shown that the AuZn system has a first-order
transition at all concentrations. The only difference for the
50% concentration is that the free-energy barrier is smaller
than for other concentrations. We can speculate that this is due
to the strong site-ordering tendency for stoichiometric AuZn
due to the large mismatch in the atomic sizes of the Au and Zn
atoms, but we have not demonstrated this.

In addition, we have performed first-principles calculations
for both the high- and low-temperature phases of stoichiomet-
ric AuZn. The lattice and elastic parameters were calculated
and compared with the available experimental data. The
phonon dispersion curves along high-symmetry directions
for the B2 phase were also calculated. We found that the
acoustic branches are in good agreement with experimental
measurements. In addition, the phonon density of states for
both the austenite (high-temperature) and martensite (low-
temperature) phases was theoretically determined.

It was shown that there is no complete softening of the
phonons for the B2 austenite phase as required by the Landau
model of second-order phase transitions. Also at zero temper-
ature, our first-principles calculations confirm the existence of
an energy barrier between the two phases, creating a region
of stability and coexistence for both of the phases. Estimates
of the changes in free energy at the transition temperature
strongly suggest that the free-energy barrier continues to exist
also at the phase-transition temperature.

Finally, we have calculated the relevant contributions to the
free energy of the austenite and martensite phases, with the
vibrational free energy obtained from first-principles calcula-
tions of the phonon spectra in the harmonic approximation,
and the electronic entropy free-energy contribution from
first-principles electronic-structure calculations. The resulting
phase-transition temperature and change in entropy were
found to be in excellent agreement with the experimental
measurements.

ACKNOWLEDGMENTS

This work was carried out under the auspices of the National
Nuclear Security Administration of the U.S. Department of
Energy at Los Alamos National Laboratory under Contract No.
DE-AC52-06NA25396. We also acknowledge the generous
amount of computer time provided by Texas Tech University
High Performance Computer Center.

024110-9



M. SANATI, R. C. ALBERS, T. LOOKMAN, AND A. SAXENA PHYSICAL REVIEW B 88, 024110 (2013)

*m.sanati@ttu.edu
1H. Pops and T. B. Massalski, Trans. Met. Soc. AIME 233, 728
(1965).

2Reference 1 presents phase diagrams around the 50% alloy
concentrations for Cu-Zn, Ag-Zn, and Au-Zn, including the low-
temperature regime needed to show the martensites. It also presents
more detailed information about this class of alloys that we have
summarized in this first paragraph.

3J. C. Lashley, S. M. Shapiro, B. L. Winn, C. P. Opeil, M. E.
Manley, A. Alatas, W. Ratcliff, T. Park, R. A. Fisher, B. Mihaila,
P. Riseborough, E. K. H. Salje, and J. L. Smith, Phys. Rev. Lett.
101, 135703 (2008).

4H. Okamoto and T. B. Massalski, Bull. Alloy Phase Diag. 10, 59
(1989).

5K. Krompholz and A. Weiss, Ber. Bunsenges. Phys. Chem. 82, 334
(1978).

6T. Makita, A. Nagasawa, Y. Morii, N. Minakawa, and H. Ohno,
Physica B 213-214, 430 (1995).

7B. Winn, S. M. Shaprio, J. C. Lashley, C. Opeil, and W. Ratcliff, J.
Phys. C 251, 012027 (2010).

8T. W. Darling, F. Chu, A. Migliori, D. J. Thoma, M. Lopez, J. C.
Lashley, B. E. Lang, J. Boerio-Goates, and B. F. Woodfield, Philos.
Mag. B 82, 825 (2002).

9J. C. Lashley, B. E. Lang, J. Boerio-Goates, and B. F. Woodfield, J.
Chem. Therm. 34, 251 (2002).

10The trigonal crystal structure was identified by Makita et al.,
Ref. 6, from x-ray powder-diffraction data. They also related this
martensitic crystal structure to that seen for AuCd alloys.

11H. B. Callen, Thermodynamics and an Introduction to Thermostat-
ics, 2nd ed. (Wiley, New York, 1985).

12D. R. Trinkle, R. G. Hennig, S. G. Srinivasan, D. M. Hatch, M. D.
Jones, H. T. Stokes, R. C. Albers, and J. W. Wilkins, Phys. Rev.
Lett. 91, 025701 (2003).

13D. R. Trinkle, D. M. Hatch, H. T. Stokes, R. G. Hennig, and R. C.
Albers, Phys. Rev. B 72, 014105 (2005).

14R. G. Hennig, D. R. Trinkle, J. Bouchet, S. G. Srinivasan, R. C.
Albers, and J. W. Wilkins, Nat. Mater. 4, 129 (2005).

15A. Lew, K. Caspersen, E. Carter, and M. Ortiz, J. Mech. Phys.
Solids 54, 1276 (2006).

16A. I. Larkin and S. A. Pikin, Zh. Eksp. Teor. Fiz. 56, 1664 (1969)
[Sov. Phys. JETP 29, 891 (1969)].

17G. A. Baker and J. W. Essam, Phys. Rev. Lett. 24, 447 (1970).
18M. A. Fradkin, Pis’ma Zh. Eksp. Teor. Fiz. 63, 594 (1996) [JETP

Lett. 63, 628 (1996)]; Phys. Rev. B 50, 16326 (1994).
19J. A. Krumhansl and R. J. Gooding, Phys. Rev. B 39, 3047 (1989).
20VASP 2003 at http://cms.mpi.univie.ac.at/vasp.

21G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
22G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
23D. Sanchez-Portal, P. Ordejón, E. Artacho, and J. M. Soler, Int. J.

Quantum Chem. 65, 453 (1997).
24E. Artacho, D. Sánchez-Portal, P. Ordejón, A. Garcı́a, and J. M.

Soler, Phys. Status Solidi B 215, 809 (1999).
25J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996).
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