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Dynamical density and spin response functions of two-dimensional correlated fermion systems:
Self-consistent second-order perturbation theory
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Dynamical density and spin responses of a two-dimensional fermion system are studied with the self-consistent
second-order perturbation theory using a model Hamiltonian. Special attention is paid to the density response
at a large wave vector, where it was reported that a sharp mode develops below the particle-hole continuum in
two-dimensional liquid 3He. We find that at a large wave vector, a peak in the dynamical density structure factor
shifts to lower energy as interaction sets in, but it is not sharp enough to represent a well-defined mode because
of the strong damping effect of the quasiparticles. We point out that it is necessary to treat the large damping
effect properly in explaining the propagating mode found in two-dimensional liquid 3He.
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I. INTRODUCTION

Recently, Godfrin et al.1,2 performed an inelastic neutron
scattering experiment on monolayer liquid 3He adsorbed on
graphite. They succeeded in observing the particle-hole (p-h)
continuum spectrum characterizing the Fermi liquid state of
two-dimensional (2D) liquid 3He. At a small wave vector,
q = kF, where kF is the Fermi wave vector, they found that
the spectrum has a peak at a frequency higher than the p-h
continuum threshold. They ascribed it to the zero sound mode.
The zero sound mode was found to enter the p-h band at an
intermediate wave vector. At a larger wave vector, q � 3kF, a
sharp peak in the spectrum was found below the p-h band. This
implied that the zero sound mode reappeared outside the p-h
band at a large wave vector. Then, the dispersion relation of
the zero sound mode could be very similar to the phonon-roton
dispersion curve in superfluid 4He. A theoretical analysis was
also given in Refs. 1 and 2, supporting this interpretation. At
present, it appears that this interpretation works satisfactorily,
but these experimental findings warrant more studies with
various approaches.

The purpose of this study is to calculate the dynamical
response functions of a 2D interacting fermion system and find
the possible collective mode dispersion. It is well known that
the low-energy and long-wavelength dynamics of bulk liquid
3He is well described with the Landau Fermi liquid theory. The
Landau Fermi liquid theory is also applicable to 2D fermion
systems if the lattice effect is negligible. The zero sound mode
at a small wave vector is indeed well explained with the Fermi
liquid theory (or its extension). However, dynamics at large
wave vectors and high energies is not necessarily described
with the phenomenological Fermi liquid theory. In this paper,
starting from a model Hamiltonian, we study the dynamics of
a 2D interacting fermion system microscopically.

The most conventional microscopic approach to the study
of dynamical responses is the random phase approximation
(RPA) combined with the effective interaction potential. The
effective potential can be obtained phenomenologically.3,4 A
model with frequency- and wave-vector-dependent effective
mass has also been used in the calculation of dynamical
responses of liquid 3He.5 These approaches are essentially

an extension of the Landau Fermi liquid theory, and the
applicability to high-energy and short-wavelength dynamics
is questionable.

Extension of the simple RPA has been an important
subject. Dynamical correlations beyond the RPA, that is, pair
fluctuations, have been considered with the correlated-basis-
functions (CBF) theory, and the effective interaction and the
dynamic structure factor were calculated with this approach.6–8

Theoretical interpretation presented in Refs. 1 and 2 was
based on this theory, where the exchange effect, which is
often neglected in the RPA, was not fully considered, either.
On the other hand, when the exchange effect is considered,
pair fluctuations are neglected.9 Recently, the theory has been
extended with the inclusion of the exchange effects in addition
to the dynamic self-energy corrections.10

Another microscopic approach is the T -matrix theory. It has
indeed been elaborately applied to bulk liquid 3He, and the
effective interaction and dynamical response functions were
calculated.11–14 In this approach, full self-consistency between
the single-particle Green’s function and the self-energy has not
been achieved. For example, the self-consistency is achieved
only for on-shell self-energy.11–14 A fully self-consistent
calculation would be a numerically formidable task at present.
The T -matrix theory was also applied to 2D 3He, but it is not
a self-consistent calculation, either, and far from complete.15

Thus, study of dynamical responses in liquid 3He beyond the
RPA has much room for improvement now.

In this paper, we take a semi-phenomenological approach
and start from model interaction potential with a soft core.
The model potential is chosen quite arbitrarily, and we can
draw only qualitative conclusions from this study. However,
we study the correlation effect systematically and self-
consistently. The interaction potential is treated with the
self-consistent second-order perturbation theory (SCSOPT)
and the self-energy effect is self-consistently considered. Here,
not only the real part but also the imaginary part of the
self-energy (the damping rate) are calculated. Moreover, the
vertex corrections for dynamical response functions are also
considered as correctly as possible so that the sum rules are
satisfied. Moreover, in the calculation, the exchange terms are
fully considered. Thus, the present calculation includes the
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effect of the correlation and the exchange processes, although
the direct quantitative relevance to real 3He is limited.

First, with the RPA,16 we study the effect of the exchange
terms and point out the importance of the spatial dependence
of the interaction potential V (r). Suppose that the Hamiltonian
of an interacting spin-1/2 fermion system is given as

H =
∑
k,σ

εkc
†
k,σ ck,σ + 1

2

∑
q

V (q)

×
∑

k,k′,σσ ′
c
†
k+q,σ c

†
k′−q,σ ′ck′,σ ′ck,σ , (1)

where ck,σ (c†k,σ ) is an annihilation (creation) operator of a
fermion of momentum k and spin σ , εk is the kinetic energy,
and V (q) is the Fourier transform of the model potential V (r),
which is assumed to be short ranged and dominantly repulsive.
We are concerned with dynamical density and spin response
functions. The dynamical density susceptibility χc(q,ω + iδ)
is defined by

χc(q,ω + iδ) = i

N

∫ ∞

0
dtei(ω+iδ)t

∑
σ,σ ′

〈[nσ (q,t),nσ ′(−q,0)]〉,

(2)

where N is the fermion number, the square bracket is the
commutator, and

nσ (q) =
∑

k

c
†
k,σ ck+q,σ . (3)

The dynamical spin susceptibility χs(q,ω + iδ) is defined by

χs(q,ω + iδ) = i

N

∫ ∞

0
dtei(ω+iδ)t

×
∑
σ,σ ′

σσ ′〈[nσ (q,t),nσ ′(−q,0)]〉. (4)

In the RPA, we can readily calculate the dynamical suscepti-
bilities if the exchange terms are neglected,

χc(q,ω + iδ) = 2P
(0)
0 (q,ω + iδ)

1 + 2V (q)P (0)
0 (q,ω + iδ)

(5)

and

χs(q,ω + iδ) = 2P 0
0 (q,ω + iδ), (6)

where P
(0)
0 (q,ω + iδ) is the Lindhard function,

P
(0)
0 (q,z) = 1

N

∑
k

f (ξk) − f (ξk+q)

z + ξk+q − ξk

, (7)

where ξk = εk − μ with μ being the chemical potential and
f (x) is the Fermi distribution function. Without the spin
dependence of the interaction potential, the spin susceptibility
is unchanged by the interaction in this approximation. In
the long-wavelength region, q � kF, ReP (0)

0 (q,ω) < 0 for
ω > vFq and logarithmically diverges as q → 0 with a fixed
value of ω/vFq, where vF is the Fermi velocity. This divergence
necessarily gives rise to the zero sound mode in the q → 0 limit
for V (q = 0) > 0. On the other hand, in the short-wavelength
region, q > 2kF, ReP (0)

0 (q,ω) > 0 at ω < vF(q − 2kF), that
is, below the p-h band. If V (q) remains positive at q > 2kF,

no collective mode appears in the density channel in the
short-wavelength region. For a density collective mode to
appear below the p-h band without the exchange processes,
V (q) must be negative at q � 2kF.

In the presence of the exchange processes, the dynamical
susceptibilities cannot be calculated in a closed form. To obtain
qualitative understanding, we make a further approximation.
To consider only interaction between fermions around the
Fermi surface in 2D, we approximate the interaction V (k − k′)
as

V (k − k′) � V (kF − k′
F) = V

(
cos

(
θkF − θk′

F

))
= v0 +

∑
m	=0

vm

(
cos mθkF cos mθk′

F
+ sin mθkF sin mθk′

F

)
,

(8)

where θk is the angle of k measured from the x axis, v0 =∫ 2π

0 dθV (cos θ )/(2π ) = 〈〈V 〉〉, etc. Neglecting vm (m 	= 0), we
obtain

χc(q,ω + iδ) = 2P
(0)
0 (q,ω + iδ)

1 + [2V (q) − 〈〈V 〉〉]P (0)
0 (q,ω + iδ)

(9)

and

χs(q,ω + iδ) = 2P 0
0 (q,ω + iδ)

1 − 〈〈V 〉〉P (0)
0 (q,ω + iδ)

. (10)

It is natural to assume that V (q) is a decreasing function
of q. Therefore, V (q) > 〈〈V 〉〉 > 0 at q � kF, but V (q) can
be smaller than 〈〈V 〉〉 for larger q. It is then possible that
2V (q) − 〈〈V 〉〉 < 0 for larger q even if V (q) > 0, and a density
collective mode can appear in the short-wavelength region as
was suggested in Refs. 1 and 2. At the same time, we can
see that the exchange terms can cause the enhancement of the
dynamical spin susceptibility. We thus see that the exchange
terms have important effects on the dynamical density and
spin responses and that the dynamical density response can be
significantly affected by the q dependence of V (q).

Although we can obtain some qualitative understanding
of the dynamical responses using the RPA, it is far from
satisfactory. Indeed, the results obtained with the RPA were
found to disagree with experimental results.7,8 In this study,
we study the qualitative changes in the dynamical response
functions caused by the correlation effect beyond the RPA. The
finite range of interaction potential and the exchange processes
must also be important as in the RPA.

In the next section, we introduce a model system of interact-
ing 2D fermions and give a formulation for the calculation of
dynamical responses. In Sec. III, we present numerical results,
and the last section is devoted to summary and discussion.
Some technicalities are detailed in the Appendix. A short
account of the present study was published in Ref. 17.

II. MODEL AND THEORY

It is easier to perform a self-consistent perturbation
calculation using a lattice model than using a continuous
model. To avoid the lattice effect, it is necessary to consider
the dilute limit. We thus consider a dilute Hubbard-type
model on a square lattice whose lattice constant is a. If
one discussed, for example, the solid-liquid transition of 2D
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3He, a triangular lattice would be more appropriate. However,
the lattice structure does not matter for the present purpose.
In addition to the on-site repulsive interaction, we consider
repulsive interaction between fermions at different sites,

H =
∑
k,σ

εkc
†
k,σ ck,σ + U

∑
i

ni↑ni↓ +
∑

n

∑
(i,j )n

V (n)ninj ,

(11)

where

εk = −2t(cos kxa + cos kya), (12)

ni =
∑

σ

niσ =
∑

σ

c
†
i,σ ci,σ , (13)

and (i,j )n stands for the nth neighbor pairs. For simplicity, we
put V (1) = V (2) = V1 and V (3) = V (4) = V2. Then, the Fourier
transform of the potential Vn can be written as

V (q) = 2V1[cos kxa + cos kya

+ cos(kx + ky)a + cos(kx − ky)a]

+ 2V2[cos 2kxa + cos 2kya

+ cos(2kx + ky)a + cos(2kx − ky)a

+ cos(kx + 2ky)a + cos(kx − 2ky)a]. (14)

To avoid the lattice effect, we consider the dilute limit,
n � 0.112, where n is the total fermion number per lattice
point. In this case, the Fermi surface is almost circular and the
Fermi wave vector is given by

kFa � 3
√

2π

16
= 0.265π. (15)

The bare Fermi energy ε
(0)
F is given as

ε
(0)
F = εkF + 4t � 0.674t. (16)

In this study, we show numerical results at T = 0.04t unless
otherwise stated, and

T � 0.06ε
(0)
F . (17)

To proceed beyond the RPA, we use the second-order
perturbation theory. In addition to the Hartree 
(H)

σ and Fock
terms 
(F)

σ (k), we consider the second-order self-energy term

(2)

σ (k) shown in Fig. 1. We use the imaginary-time formalism
and k is the abbreviation for (k,iεn), where εn is a fermionic
Matsubara frequency. Using the self-energy 
σ (k) = 
(H)

σ +

(F)

σ (k) + 
(2)
σ (k), the single-particle Green’s function Gσ (k)

is expressed as

Gσ (k) = [iεn − ξk − 
σ (k)]−1. (18)

The self-energy 
σ (k) is also expressed in terms of Gσ (k)
and has to be self-consistently determined. This is the

Σ(2)(k)  = +

FIG. 1. Diagrams for the second-order self-energy 
(2)(k). Solid
lines represent the single-particle Green’s function G(k) and dotted
lines the interaction [U or V (q)].

Pμ = = +

Pμ = =

γσσ’ = = ][

+

+++

+

+

δσσ’

(a)

(b)

(c) (1) (2) (3) (4)

(5) (6)

FIG. 2. (a) Polarization function Pμ(q) [=χμ(q)/2] in terms of
irreducible polarization function P μ(q). (b) Irreducible polarization
function P μ(q) in terms of the p-h irreducible vertex γμ(k,k′; q).
(c) p-h irreducible vertex γσσ ′ (k,k′; q) in the second-order perturba-
tion theory. Solid lines represent the single-particle Green’s function
Gσ (k) and dotted lines the interaction [U or V (q)].

self-consistent second-order perturbation theory (SCSOPT).
Explicit expression of 
(2)(k) is given in the Appendix. Once
the single-particle Green’s function is calculated, we can
compute dynamical response functions. In the computation,
we have to consider the vertex corrections corresponding to the
self-energy so that the resultant dynamical response functions
satisfy the conservation laws, for example, the f -sum rule.
Diagrammatic expressions for the dynamical density and spin
susceptibilities, χc(q) and χs(q), are given in Fig. 2.

Figure 2(b) represents an integral equation for the full
4-point vertex function �μ(k,k′; q) or equivalently the 3-point
vertex function μ(k; q) [see Eqs. (A12)–(A16)]. Unfortu-
nately, in the presence of V (q), this integral equation is
extremely difficult to solve, because the equation is not a
convolution equation. If it were a convolution equation, we
could efficiently solve it using the fast Fourier transformation
(FFT). To be able to apply the FFT, we have to make
approximations to the integral equation. First, we neglect (3)
and (4) in Fig. 2(c), and then apply a “local” approximation
to diagrams (2), (5), and (6). For example, diagram (5) is
expressed with the following integral,∑

k′′
[U + V (k′′ + q)][U + V (k′′)]G(k − k′′)G(k′ − k′′),

(19)

where (and in the following) spin indices are neglected. We
cannot use the FFT for this integral. Then we approximate it
by averaging the interaction potential,

[U + V (k′′ + q)][U + V (k′′)]

→ 1

NL

∑
k′′

[U + V (k′′ + q)][U + V (k′′)]

= U 2 + W (q), (20)

where

W (q) = 1

NL

∑
k

V (k + q)V (k), (21)
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with NL being the total number of lattice points. We can then
apply the FFT to diagram (5). Further details are explained
in the Appendix. The resultant approximate integral equations
for the three-point vertex functions are

μ(k; q) = 1 +
∑
k′

γμ(k,k′; q)G(k′ + q)G(k′)μ(k′; q),

(22)

where

γc(k,k′; q) � [2U 2 + 2UV (k − k′) + V (k − k′)2

+ 2W (q)]P0(k − k′) − [U 2 + 2W (q)]

×K0(k + k′ + q) + γ (2)(q ′), (23)

and

γs(k,k′; q) � [2UV (k − k′) + V (k − k′)2]P0(k − k′)
+U 2K0(k + k′ + q) + γ (2)(q ′), (24)

where

P0(q) = −
∑

k

G(k + q)G(k), (25)

K0(K) =
∑

k

G(K + k)G(−k), (26)

γ (2)(q ′) =
∑

r

e−iq ′r
∑

J

V (n)2G(r)G(r)δr,δJ
, (27)

q = (q,iωm), q ′ = (q,i(εn + εn′ + ωm)), and
∑

k =
(1/NL)

∑
k T

∑
n. See also the Appendix for the definitions

of J and δJ . A more detailed description of the procedure
to calculate dynamical response functions is given in the
Appendix.

Here, we should note that, in the presence of the vertex
corrections, the irreducible polarization function P μ(q) can
be expressed as

P μ(q) = P0(q) + �Pμ(q). (28)

Neglecting the exchange processes, the dynamical density
susceptibility is expressed by

Pc(q) = P0(q) + �Pc(q)

1 + [U + 2V (q)][P0(q) + �Pc(q)]
. (29)

We can then rewrite the denominator as

1 + Ṽc(q)P0(q), (30)

where

Ṽc(q) = [U + 2V (q)]

[
1 + �Pc(q)

P0(q)

]
; (31)

that is, the vertex correction is partly equivalent to the in-
troduction of energy-dependent complex effective interaction
Ṽμ(q).

We assess the validity of the approximations for irreducible
vertices with two methods. We introduce the dynamical
structure factors C(q,ω) and S(q,ω),

C(q,ω) =
∫ ∞

−∞

dt

2πN
eiωt

∑
σ,σ ′

〈�nσ (q,t)�nσ ′(−q,0)〉, (32)

where �nσ (q,t) = nσ (q,t) − 〈nσ (q,t)〉, and

S(q,ω) =
∫ ∞

−∞

dt

2πN
eiωt

∑
σ,σ ′

σσ ′〈nσ (q,t)nσ ′(−q,0)〉. (33)

They are related to dynamical susceptibilities through the
fluctuation-dissipation theorem,

M(q,ω) = 1

π
[1 + fB(ω)]Imχμ(q,ω + iδ) (M,μ = C,S),

(34)

where fB(x) is the Bose distribution function, fB(x) =
1/(eβx − 1). It is well known that response functions in the
imaginary-time representation are expressed in terms of the
dynamical structure factors as

χμ(q,τ ) =
∫ ∞

−∞
dωe−τωM(q,ω) (M,μ = C,S). (35)

From this, we can derive the compressibility sum rule,

χc = χc(q → 0,iω = 0) =
∫ β

0
dτχc(q → 0,τ )

= 2
∫ ∞

−∞

dω

ω
C(q → 0,ω). (36)

We can also obtain a similar relation for the spin susceptibility.
We can then use the compressibility sum rule to check the
validity of the approximation. The compressibility χc can
be calculated by solving the self-consistent equation for two
slightly different values of the chemical potential μ, χc =
∂n/∂μ. By comparing this and χc(q = 0,iω = 0), which can
be calculated with Eqs. (A8)–(A16), we can check the validity
of the approximation for the irreducible vertices.

Another method is to check the f -sum rule. The present
theory, SCSOPT, is a conserving approximation and the
calculated response functions must satisfy the f -sum rule.
The f -sum rule reads

〈〈ω〉〉C = 〈〈ω〉〉S = F (q), (37)

where

〈〈ω〉〉μ =
∫ ∞

−∞
dωωM(q,ω) (M,μ = C,S) (38)

and

F (q) = 1

2N

∑
k

[εk+q + εk−q − 2εk]
∑

σ

Gσ (k,0−). (39)

In particular, for εk = k2/(2m), F (q) = q2/(2m). Note that we
have defined susceptibilities (and structure factors) as those per
particle (not per lattice point). Therefore, the f -sum rule can
be rewritten as

− ∂

∂τ
χc(q,τ )

∣∣∣∣
τ=0

= − ∂

∂τ
χs(q,τ )

∣∣∣∣
τ=0

= F (q). (40)

Note that

∂n

∂τn
χμ(q,τ )

∣∣∣∣
τ=0

= (−1)n
∫ ∞

−∞
dω ωnM(q,ω)

= (−1)n〈〈ωn〉〉μ. (41)
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[See Eq. (35).] A merit of this form of the f -sum rule, Eq. (40),
is that we can calculate it without analytic continuation from
the imaginary axis to the real axis.

We have found that the compressibility sum rule is satisfied
very accurately and the effect of the vertex corrections is not
very significant. However, for the counterpart for the spin
density, the equality is well satisfied only with the vertex
corrections. We have also found that the vertex corrections
make the f -sum rule be satisfied satisfactorily. Thus, we
have confirmed that the present approximation for the vertex
corrections works well. More details are given in the Appendix.

Finally, we note that the structure factors C(q) and S(q) are
equal to the response functions at τ = 0,

M(q) =
∫ ∞

−∞
dωM(q,ω) = χμ(q,τ = 0). (42)

We mainly use a lattice whose size is NL = 128 × 128
and M = 1024 Matsubara frequencies. We have also carried
out a few calculations using a larger lattice (NL = 256 ×
256) and found that results are unaffected by the finite-size
effect. Results obtained on the imaginary axis are analytically
continued to the real axis with the Padé approximation.

III. RESULTS

We mainly show results obtained v1 = V1/(4πt) =
0.5u and v2 = V2/(4πt) = 0.2u, where u = U/(4πt). Here,
1/(4πt) is the density of states per lattice point and spin in
the dilute limit. We also use other parameters having different
ratio, for example, with negative v2, but qualitative feature
remains intact as long as v1, |v2| is much smaller than u. The
wave vector dependence of U + V (q) is shown in the inset of
Fig. 3.

Figure 3 shows the quasiparticle dispersion E(k) deter-
mined by solving the equation

E(k) = εk − μ + 
(k,E(k)) (43)

and the damping rate γ (k),

γ (k) = −2Im
(k,E(k)). (44)

0 1 2

0

2

0 1 2 3
0
1
2
3

[U
+

V
(q

)]
 /(

4π
t)

q / kF

k / kF

E
(k

)/
ε F(0

) ,
γ(

k)
/ε

F(0
)

FIG. 3. (Color online) Quasiparticle dispersion E(k) (solid dots)
and the damping rate γ (k) (open dots) for u = 0.30. Solid line stands
for the free dispersion ξk = εk − μ. The inset shows the wave-vector
dependence of the interaction U + V (q) with u = 0.30,v1 = 0.15,
and v2 = 0.06.

The dispersion is narrowed by the interaction. The effective
mass m∗ can be calculated by

m∗

m
=

1 − ∂

∂ω

∣∣
k=kF,ω=0

1 + m

h̄2kF

∂

∂k

∣∣
k=kF,ω=0

. (45)

For u = 0.30, m∗/m � 1.4, and for u = 0.50, m∗/m � 2.5.
The effective mass is enhanced by the correlation, but is not so
much enhanced as in 2D 3He at ρ = 4.9 nm−2 (m∗/m � 4),18

where the neutron experiment was performed. It should also
be noted that the damping becomes large as the wave vector
deviates from the Fermi wave vector and is comparable to the
(bare) Fermi energy at |k − kF| � kF. This large damping was
also found in previous studies.11,12 Although the dispersion
at large wave vectors is little affected by the interaction,
quasiparticles are far from free particles. They suffer from
strong damping. In addition to the mass enhancement, this
damping also significantly affects the dynamical structure
factors at large wave vectors as we shall see.

A. Dynamical structure factors C(q,ω) and S(q,ω)

Figure 4 shows the dynamical structure factors C(q,ω),
Eq. (32), and S(q,ω), Eq. (33), at q = 0.5kF. We also show the
dynamical structure factor in the noninteracting case. We can
see that a peak develops in C(q,ω) above the p-h continuum
in the noninteracting case. This peak corresponds to the zero
sound mode. In Fig. 5(a), C(q,ω) for different values of u is
shown. As u increases, the peak position shifts to a higher
energy, its intensity decreases, and the width increases. It can
also be seen that the effect of vertex correction is essential to
obtain the zero sound peak [Fig. 5(a)]. In the limit of q → 0,
the width of the zero sound mode should vanish, but it can be
finite at a small but finite wave vector. We should note that the
height and width of the peak can be quantitatively affected by
the partial neglect of vertex corrections. As is shown in the
Appendix, the effect of the partial neglect is most serious in
the long-wavelength limit.

A peak, the paramagnon peak, also develops in the spin
fluctuation spectrum S(q,ω) [Fig. 5(b)]. The peak appears
in the continuum and has finite width. In inelastic neutron
scattering, one can observe a spectrum of a two-peak structure

0 1 2
0

0. 5

1

ω / εF
(0)

M
(q

,ω
)

ε F(0
) q=0.5 kF

C(q,ω)

S(q,ω)

u=0.30

FIG. 4. (Color online) Dynamical structure factors C(q,ω) (solid
line) and S(q,ω) (dashed line) at u = 0.30 and q = 0.5kF. For
comparison, the result at u = 0 is also shown (dash-dotted line).
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FIG. 5. (Color online) (a) Dynamical structure factor C(q,ω)
at q = 0.5kF for different values of u: u = 0.0 (dash-dotted line),
0.10 (blue line), and 0.30 (red line). Dotted line shows the result at
u = 0.30 without vertex corrections. (b) Dynamical structure factor
S(q,ω) at q = 0.5kF for different values of u: u = 0.0 (dash-dotted
line), 0.10 (blue line), and 0.30 (red line). Dotted line shows the result
at u = 0.30 without vertex corrections.

in the long-wavelength region. The relative strength of the
peaks depends on the ratio of intensities of coherent and
incoherent scatterings.

We note that the p-h threshold (in the noninteracting
case) has little relevance once the interaction sets in. There
is no marked structure at the threshold. This is because of
the multiple scattering. Mathematically, the effect appears
through (the imaginary part of) the self-energy and the vertex
corrections. Crudely speaking, the imaginary part of the
self-energy (damping) simply smears the spectrum. The vertex
corrections can partly cancel out the effect damping and lead
to the correct spectrum. This is clearly seen in Fig. 5(a), for
example. To obtain the correct spectrum, both effects have to
be properly considered.

Figure 6 shows the dynamical structure factors at q =
2.0kF. At this wave vector, the p-h continuum extends to ω = 0.
C(q,ω) and S(q,ω) are similar in shape, and the intensity shifts
to low energies. The effect of vertex corrections is found to be
still significant as can be seen in Figs. 7(a) and 7(b).

Finally, we show C(q,ω) and S(q,ω) at a short wavelength,
q = 3.0kF, in Fig. 8. For comparison, the spectrum in the
noninteracting case is also shown. The spectrum at u = 0.0 has
lower and upper thresholds and is asymmetric. This asymmetry
is caused by the lattice effect. Although we consider the dilute
limit, the lattice effect is inevitable in the large-wave-vector
and high-energy region. In the continuum model, the spectrum
in the noninteracting case is more symmetric at q = 3kF.

As the interaction increases, we find that the peak in C(q,ω)
shifts to low energy (see also Fig. 9), and the spectrum becomes

0 5 10
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0. 1
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ω / εF
(0)

M
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,ω
)

ε F(0
) q=2.0 kF

C(q,ω)

S(q,ω)

u=0.30

FIG. 6. (Color online) Dynamical structure factors C(q,ω) (solid
line) and S(q,ω) (dashed line) at u = 0.30 and q = 2.0kF. For
comparison, the result at u = 0 is also shown (dash-dotted line).

finite even below the lower threshold of the p-h continuum
because of the multiple scattering. Note that at q = 3kF,
quasiparticles far away from the Fermi surface, k − kF � kF,
which suffer from large damping, contribute to the spectrum.
In the parameter region we studied, we cannot find a peak
developing below the lower threshold, but the intensity is
clearly accumulating at lower energies. The present peak
reflects development of short-range density correlation, but its
width is so large that it does not correspond to a well-defined
mode such as the roton mode in superfluid 4He. See also the
next subsections.
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FIG. 7. (Color online) (a) Dynamical structure factor C(q,ω) at
q = 2.0kF for different values of u: u = 0.0 (dash-dotted line), 0.10
(blue line), and 0.30 (red line). Dotted line shows C(q,ω) at u = 0.30
without vertex corrections. (b) Dynamical structure factor S(q,ω) at
q = 2.0kF for different values of u: u = 0.0 (dash-dotted line), 0.10
(blue line), and 0.30 (red line). Dotted line shows S(q,ω) at u = 0.30
without vertex corrections.
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FIG. 8. (Color online) Dynamical structure factors C(q,ω) (solid
line) and S(q,ω) (dashed line) at u = 0.30 and q = 3.0kF. For
comparison, the result at u = 0 is also shown (dash-dotted line).

The peak position in S(q,ω) is similar to that in C(q,ω).
Therefore, only a single peak will be observed in neutron
scattering at this wave vector. In other words, not only density
fluctuations but also spin fluctuations can contribute to a single
peak at low frequencies.

The effect of vertex corrections is also evident at q = 3.0kF

(Fig. 9), but is modest compared with long-wavelength regions.
For example, only the peak height is found to be modestly
changed by the vertex corrections.19

B. Collective mode dispersion

We plot the peak frequency of C(q,ω) [S(q,ω)] and its
FWHM (full width at half maximum) �(q) in Fig. 10(a)
[Fig. 10(b)]. It can be seen that the zero sound mode appears
just above the p-h threshold in the long-wave regime and
it enters the continuum at q � kF. Then, the peak broadens
significantly [Epeak(q) � �(q)] and cannot be regarded as a
well-defined mode any more. It is remarkable that Epeak(q)
exhibits a downturn and has a minimum at q � 2kF. As u

increases, the minimum shifts to a larger q, but it is still in
the continuum at u = 0.50. Thus, we find no well-defined
density collective mode in the short-wavelength regime, but
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q=3.0 kFu=0.30
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FIG. 9. (Color online) Dynamical structure factor C(q,ω) at q =
3.0kF for different values of u: u = 0.0 (dash-dotted line), 0.30 (red
lines), and 0.50 (blue lines). Dotted lines show results without vertex
corrections.
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FIG. 10. (Color online) (a) The peak frequency Epeak(q) (closed
dots) of C(q,ω) as a function of q at u = 0.30. Small dots represent
the results at u = 0.50. Open squares stand for the FWHM �(q) at
u = 0.30. Dotted region is the p-h continuum in the noninteracting
case. (b) The peak frequency Epeak(q) (closed dots) of S(q,ω) as a
function of q at u = 0.30. Open squares stand for the FWHM �(q).
Dotted region is the p-h continuum in the noninteracting case.

the dispersion of the obtained peak frequency is in qualitative
agreement with the experimental finding.

In contrast to the case with C(q,ω), the peak in S(q,ω) is in
the continuum for any q. However, in the long-wavelength
regime, �(q) < Epeak(q), and the mode is well defined
(the paramagnon mode). As q increases, �(q) significantly
increases and the mode is no longer well defined. In contrast to
the case with C(q,ω), Epeak(q) has no clear downturn although
it has an inflection point.

C. Structure factors C(q) and S(q)

Finally, we discuss the structure factors C(q) and S(q).
Figure 11 shows the change in the structure factors caused by
the interaction, �M(q) = M(q)u>0 − M(q)u=0 (M = C,S).
It can be seen that the density fluctuations are suppressed in
the long-wavelength region, but are enhanced at q > 2.0kF.
Without interaction, the structure factor M(q) is given by23

M(q) =
{

2
π

[
q

2kF

√
1 − (

q

2kF

)2 + arcsin q

2kF

]
, 0 � q < 2kF,

1, q � 2kF.

(46)

At 0 � q � 2kF, M(q) is convex upward. Therefore, the
minimum in �C(q) at q � 1.2kF causes a weak shoulder
structure in C(q) at a small wave vector. A peak in C(q)
at a large wave vector implies that the interaction tends to
enhance crystalline ordering whose characteristic wave vector
is larger than 2kF. For the interaction strength studied here, the
enhancement is weak, but if this short-range order develops
further, the enhancement of C(q) at large wave vectors will
become significant. Correspondingly, �(q) at q > 2kF will
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FIG. 11. (Color online) Difference �M(q) between structure
factor M(q) at finite u and at u = 0, �M(q) = M(q)|u>0 − M(q)|u=0.
(a) M = C and (b) M = S. Closed dots represent results at u = 0.10,
squares at u = 0.30, and open dots at u = 0.50. The inset shows C(q)
at u = 0.30.

decrease and the peak C(q,ω) at q > 2kF will also become
prominent. Indeed, in the previous theoretical studies using
realistic interaction potential,22,24 a more prominent peak
in C(q) is observed at q � 3kF, in fair agreement with
experiment.24

On the other hand, the spin structure factor S(q) is
enhanced, in particular, in the long-wavelength region by
the interaction. At q � 2kF, the enhancement is insignificant,
and S(q) and C(q) are similar in magnitude in this region,
in agreement with the results in the previous sections. This
behavior of S(q) is qualitatively consistent with the results
obtained with the diffusion Monte Carlo method.22

IV. SUMMARY AND DISCUSSION

We have calculated the dynamical responses of an interact-
ing 2D fermion system treating the short-ranged interaction
with the self-consistent second-order perturbation theory
(SCSOPT). At a small wave vector, we have found a peak in the
dynamical density structure factor C(q,ω) corresponding to
the zero sound, and also a peak in the dynamical spin structure
factor S(q,ω) corresponding to the paramagnon mode. On
the other hand, at a large wave vector, q = 3.0kF, we have
found that the spectrum extends beyond the p-h threshold in
the noninteracting case. A peak in C(q,ω) shifts to a lower
frequency as interaction strength increases. However, the peak
is not so sharp, and it does not correspond to a well-defined
propagating mode.

Now, we discuss the relevance of the present results to
the experimental finding by Godfrin et al. and its theoretical
interpretation.1,2 They found a clear peak in the neutron
spectrum at ω � 2.5ε

(0)
F , which is below the p-h threshold, at

q � 3kF. The width of the peak was found to be smaller than or

equal to the experimental energy resolution, �E = 0.1 meV �
0.5ε

(0)
F . A peak found at q = 3kF in C(q,ω) in this study

is located at ω � 5ε
(0)
F , at an energy much larger than that

found in the experiment. Although we found a downturn of
the peak frequency as a function of wave vector, the width of
the peak is so large that it cannot be considered a well-defined
mode. This discrepancy must mainly stem from the use of a
model Hamiltonian. For example, at a large wave vector, the
lattice effect is inevitable. Moreover, our model interaction
potential may not be a good approximation to a realistic
effective potential. If the low-energy mode found by Godfrin
et al. is similar in nature to the roton mode in superfluid 4He,
as is suggested by the authors, it is likely that it represents
the tendency of the system towards crystallization.21 It is
clear that as we have not taken account of the hard-core
effect, we underestimate the tendency of the system towards
crystallization, that is, the structure factors C(q,ω) and C(q)
at large wave vectors. The experimental finding implies that
2D 3He has stronger short-ranged crystalline ordering than the
present effective Hamiltonian describes.

On the other hand, we can make a few points from the
present study. One is that, as the quasiparticles far away
from the Fermi surface suffer from strong damping, the
p-h threshold in the noninteracting case has little relevance
(except in the long-wavelength limit), and the spectrum
extends outside the threshold without any significant structures
at the threshold. This is in contrast to the result of the
dynamical many-body theory used in Refs. 1 and 2. In the
dynamical many-body theory, an energy-dependent effective
interaction is introduced, and the RPA expression of C(q,ω)
is generalized with energy-dependent effective interaction.
However, the damping effect on the quasiparticle dispersion
is not considered (at least explicitly), and the p-h threshold
remains intact even in the presence of the interaction. The
intensity then accumulates just above the lower p-h threshold
at q � 3kF. Introduction of the damping necessarily makes
the spectrum extend beyond the p-h thresholds and also
make the spectrum broad. Indeed, in Ref. 10, the effect of
the damping is partially considered and the broadening of
the peak is observed. In the present study, we find that the
damping rate γ (k) � ε

(0)
F at |k − kF| � kF. This large damping

was also obtained in the previous theoretical studies of bulk
3He,11–13 and it resulted in the smooth dynamical structure
factor without marked structures at the threshold.12,13 With this
large damping, it might be difficult for a well-defined mode to
evolve at a large wave vector. Actually, in those studies,11–13 the
self-consistency of the Green’s function (or the single-particle
energy) and the self-energy was only partially achieved. It
is possible that the full self-consistent T -matrix calculation
will result in smaller damping of quasiparticles and a sharp
peak in C(q,ω) at large wave vectors. At any rate, it must be
necessary to consider both the self-energy effect and the vertex
corrections self-consistently.

Another point implied by the present study is the impor-
tance of the spin fluctuations. Indeed, the spin susceptibility
is significantly enhanced in 2D,18 and the effect of spin
fluctuations was found to be important in enhancing the
effective mass in the quantum Monte Carlo simulation.22

It is then natural that the spin fluctuations also contribute
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significantly to the dynamical structure factor. The dynamical
spin structure factor S(q,ω) is indeed found to be dominant
over C(q,ω) at a small wave vector. S(q,ω) contributes to
the neutron scattering cross section as an incoherent part. The
ratio of the incoherent part to the coherent part C(q,ω) is
estimated to be approximately 0.25 in bulk 3He.25 If it is
similar in magnitude in 2D, then we can observe two peaks
in the neutron cross scattering cross section at small wave
vectors, as was indeed observed in 3D,5 if the background
subtraction can be precisely performed. On the other hand, at
large wave vectors, S(q,ω) is found to be similar in magnitude
to C(q,ω) in the present study. Although it is possible that the
C(q,ω) is dominant over S(q,ω) with more realistic potential,
quantitative agreement will be obtained only after taking
account of the spin fluctuations. It should be noted that the
exchange processes must be considered in calculating S(q,ω)
reliably as was mentioned in the Introduction.

To summarize, it is still a challenging problem to explain
the surprising finding of Godfrin et al.1,2 The existence of a
sharp mode at a large wave vector implies the development
of short-range crystalline order. We believe that much more
effort will be necessary to explain it microscopically.
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APPENDIX: SELF-ENERGY AND VERTEX CORRECTIONS

The Hartree term is expressed as


(H )
σ = Un−σ + V (0)n. (A1)

The Fock term is expressed as


(F )
σ (k) =

∑
k′

V (k − k′)Gσ (k′). (A2)

Using the Fourier transformation, we find


(F )
σ (k) = 2V (1)Gσ (δ(1),0−)(cos kx + cos ky)

+ 2V (2)Gσ (δ(2),0−)[cos(kx + ky) + cos(kx − ky)]

+ 2V (3)Gσ (δ(3),0−)(cos 2kx + cos 2ky)

+ 2V (4)Gσ (δ(4),0−)[cos(2kx + ky)

+ cos(2kx − ky) + cos(kx + 2ky)

+ cos(kx − 2ky)], (A3)

where δ(n) is the position of one of the nth neighbors.
In the coordinate space, the second-order self-energy 
(2)

σ

is expressed as


(2)
σ (r) = −U 2Gσ (r)G−σ (r)G−σ (−r)

−
∑

J

UV (n)Gσ (r)G−σ (rJ+,τ )G−σ (−rJ+,−τ )

−
∑

J

V (n)UGσ (r)G−σ (rJ−,τ )G−σ (−rJ−,−τ )

−
∑

J,J ′,σ ′
V (n)V (n′)Gσ (r)Gσ ′(rJ+J ′−,τ )

×Gσ ′ (−rJ+J ′−,−τ )

(0,0 )

(r, τ)

(r+ δ
(n)
i  , τ)

(δ
(n ’)
i ’  , 0)

V
(n’)

V
(n)

FIG. 12. Diagram for a second-order self-energy term in the
coordinate representation. Solid lines represent the single-particle
Green’s function G(k) and dotted lines the interaction.

+
∑
J,J ′

V (n)V (n′)Gσ (rJ+,τ )Gσ (rJ ′−,τ )

×Gσ (−rJ+J ′−,−τ ), (A4)

where r = (r,τ ), J = (n,j ), J ′ = (n′,j ′),

rJ± = r ± δJ = r ± δ
(n)
j , (A5)

and

rJ sJ s ′ = r + sδJ + s ′δJ ′ , s,s ′ = ±, (A6)

with δJ = δ
(n)
j being vectors connecting the nth neighbor pairs;

j = 1 ∼ 4 for n = 1,2,3 and j = 1 ∼ 8 for n = 4. Corre-
spondingly, J runs from 1 to 20. The diagram corresponding
to the last term is shown in Fig. 12. 
σ (k) is readily obtained
from 
σ (r) with the Fourier transformation.

The full polarization function Pμ(q) [=χμ(q)/2] is ex-
pressed in terms of irreducible polarization function P μ(q)
as

Pc(q) = P c(q) − P c(q)[U + 2V (q)]Pc(q)

+ 1

N

∑
k

1

N

∑
k′

P c(q; k)V (k − k′)Pc(q; k′) (A7)

[Fig. 2(a)]. The third term on the right-hand side represents
the exchange processes. The spin polarization function Ps(q)
satisfies a similar equation except for the replacement of
−[U + 2V (q)] by +U . Equation (A7) can be rewritten as

Pc(q) = P c(q) − P c(q)[U + 2V (q)]Pc(q)

+
∑

J

P c;J (q)V (n)Pc;J (q), (A8)

where

Pc;J (q) = 1

N

∑
k

eik·δJ Pc(q,k). (A9)

Here, we abbreviate (n,j ) by J and δJ = δ
(n)
j . The equation

for Pc;J (q) is similarly obtained,

Pc;J (q) = P c;J (q) − P c;J (q)[U + 2V (q)]Pc(q)

+
∑
J,J ′

P c;J,J ′ (q)V (n′)Pc;J ′ (q), (A10)

where

P μ;J,J ′ (q) = 1

N

∑
k

e−ik·(δJ −δJ ′ )P μ(q; k), (A11)
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J = (n,j ), and J ′ = (n′,j ′). Equations (A8) and (A10) are
equations in an Nnn × Nnn matrix form; in the present case,
Nnn = 21.

Irreducible polarization functions P μ(q) and P μ;J (q) are
expressed in terms of three-point vertex functions μ(k,q) and
μ;J (k; q) as

P μ(q) = −
∑

k

Gσ (k + q)Gσ (k)μ(k; q), (A12)

P μ;J (q) = −
∑

k

Gσ (k + q)Gσ (k)μ;J (k; q), (A13)

and

P μ;J,J ′ (q) = −
∑

k

eik·δJ Gσ (k + q)Gσ (k)μ;J ′(k; q). (A14)

Three-point vertex functions satisfy the following integral
equations [Fig. 2(b)],

μ(k; q) = 1 +
∑
k′

γμ(k,k′; q)G(k′ + q)G(k′)μ(k′; q)

(A15)

and

μ;J ′ (k; q) = e−ik·δJ ′ +
∑
k′

γμ(k,k′; q)

×G(k′ + q)G(k′)μ;J ′ (k′; q). (A16)

Once p-h irreducible vertices γμ(k,k′; q) are obtained, we can
calculate three-point vertex functions  by solving Eqs. (A15)
and (A16). We then find irreducible polarization functions P μ

using Eqs. (A12)–(A14). Finally, we obtain Pμ(q) by solving
the matrix equation, Eqs. (A8) and (A10). Now that irreducible
vertices are given in Fig. 2, we can in principle calculate Pμ(q).
However, there is still a technical difficulty, and we resort to a
further approximation.

We can efficiently solve integral equations that are of a con-
volution form, F (k) = ∑

k′ K(k ± k′)H (k′)F (k′), using the
fast Fourier transformation (FFT). Unfortunately, the integral
equations for ’s does not necessarily take a convolution form.
In general, γ (k,k′; q) is not a function of k ± k′. This stems
from terms involving V (q). With only U , the integral equation
for μ(k; q) is a convolution form and can be easily solved.
Thus, we make further approximations for γ (k,k′; q). As the
problem is concerned only with wave vectors, we suppress
frequencies (or imaginary times) in the argument of γ . First,
we take Fourier transformation of γμ(k,k′; q) (see Fig. 13),

γμ(R,R′; r) = 1

N3
L

∑
k,k′,q

ei(k·R−k′·R′+q·r)γ (k,k′; q). (A17)

k+q,σ k’+q,σ’

k’,σ’k,σ

γσσ’(k,k’;q) γσσ’(R,R’;r)

0

R

r

R’+r

FIG. 13. p-h irreducible vertex function γ (k,k′; q) and its Fourier
transform γ (R,R′; r).
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i0

0 r=δ J

R R’+δ J’

V(n)

V(n’)

0 r=δ J

R R+δ J

V(n)
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FIG. 14. Approximations for p-h irreducible vertices
γ

(i)
σσ ′ (R,R′; r) (i = 2,5, and 6).

We can easily show that, if r and R (or R′) are indepen-
dent of each other and if γμ(R,R′; q) = 0 for R ± R′ 	= 0,
then γμ(k,k′; q) = γμ(k ± k′; q). We can readily see that
γ (1)

σσ (R,R′; r) = γ (1)
σσ (R,R; 0)δR,R′δr,0; that is, it automatically

satisfied the condition R = R′. We need no approximation for
this term,

γ
(1)
σσ ′(k,k; q) = δσσ ′γ (1)(k − k′)

= δσσ ′[U + V (k − k′)]2P0(k − k′). (A18)

γ (2)
σσ involves only V (q). In coordinate space, it is expressed

as in Fig. 14. We see that R = r + δJ ′ and R′ = δJ − r; that
is, r and R are not independent of each other. In this case,
γ (2)

σσ cannot be a function of k ± k′ even if we restrict to the
case R = ±R′. We then apply a local approximation to γ (2),
that is, n = n′ and δJ = −δJ ′ = r . Then γ (2)

σσ (k,k′; q) becomes
independent of k and k′,

γ
(2)
σσ ′(k,k′; q) � δσσ ′γ (2)

σσ (q ′)

= δσσ ′
∑

r

e−iq ′r
∑

J

V (n)2Gσ (r)Gσ (r)δr,δJ
,

(A19)

where q ′ = (q,i(εn + εn′ + ωm)). We cannot approximate
γ (3,4)

σσ (k,k′; q) to be of a desired form and therefore simply
neglect them. For γ

(5)
σσ ′ , we put R = R′ and obtain

γ
(5)
σσ ′(k,k′; q) = [δσ−σ ′U 2 + W (q)]P0(k − k′), (A20)

where

W (q) = 1

NL

∑
k

V (k + q)V (k) =
∑

J

V (n)2 cos(q · δJ ).

(A21)
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FIG. 15. (Color online) Compressibility and spin susceptibility as
functions of interaction strength u. Black symbols represent results
obtained from single-particle Green’s function, and red symbols those
obtained from response functions. Stars stand for results without
contributions from vertex corrections.

No approximation is made for terms proportional to U 2.
Finally, for γ

(6)
σσ ′ , we put R = −R′ and find

γ
(6)
σσ ′(k,k′; q) = −[δσ−σU 2 + W (q)]K0(k + k′ + q). (A22)

Again, no approximation is made for the term proportional to
U 2.

Finally, we obtain

γc(k,k; q) = γ↑↑(k,k′; q) + γ↑↓(k,k′; q)

= [2U 2 + 2UV (k − k′) + V (k − k′)2

+ 2W (q)]P0(k − k′) − [U 2 + 2W (q)]

×K0(k + k′ + q) + γ (2)(q ′) (A23)

and

γs(k,k′; q) = γ↑↑(k,k′; q) − γ↑↓(k,k′; q)

= [2UV (k − k′) + V (k − k′)2]P0(k − k′)
+U 2K0(k + k′ + q) + γ (2)(q ′). (A24)

To assess the validity of the approximation made for vertex
corrections, we have checked the compressibility sum rule
and f -sum rule. Figure 15 shows the compressibility and
uniform spin susceptibility. We can obtain these quantities
by calculating the single-particle Green’s function. We can
also calculate them as a static limit of response functions.
Both results must agree in the conserving approximation, but
as we have made approximations for the vertex corrections,
the agreement will not be perfect. Figure 15 shows that

0 1 2 3
0
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4

6

0 1 2 3
0

0.1

χμ(q,τ)tS

C

τ t

q / kF

u=0.30

F
(q

),
 <

<
 ω

 >
>

C

FIG. 16. (Color online) Check of the f -sum rule: Solid line stands
for F (q) defined by Eq. (39), and closed symbols represent the first
moment of the dynamic structure factor C(q,ω). Open symbols stand
for the results without contributions from vertex corrections. Dots
and squares represent results obtained with different fitting methods
(see text). The inset shows χμ(q,τ ) at q = 0.25kF for small τ .

the agreement is almost perfect for the density response
function. Actually, for the compressibility, the effect of vertex
corrections is insignificant. For the spin response function,
slight disagreement is found, but the vertex corrections sig-
nificantly improve the agreement. Indeed, without the vertex
corrections, the uniform susceptibility diverges at u � 0.3.
The spin susceptibility is found to decrease at u � 0.4.
This is an artifact of the second-order perturbation theory.
The SCSOPT tends to underestimate the spin susceptibility
(in the dilute Hubbard model), and the calculated spin
susceptibility decreases for large u in contrast to the exact
results.20

We have also checked the f -sum rule. Figure 16 compares
F (q) defined by Eq. (39) and 〈〈ω〉〉C = −∂χC(q,τ )/∂τ |τ=0 at
u = 0.30. They must agree if the approximation is conserving.
In fact, the value of the derivative at τ = 0 depends on how
it is calculated numerically. In Fig. 16, we show two results
obtained in different ways. One is obtained using the two points
at τ = 0 and β/M (squares), which gives the lowest bound of
the first moment. The other is obtained by fitting a cubic curve
to the five points at τ = iβ/M (i = 0 to 4) (dots). We find that
〈〈ω〉〉C � 〈〈ω〉〉S, if the method of fitting is the same. Therefore,
in Fig. 16, we show only the first moment of C(q,ω). We
see that 〈〈ω〉〉C is slightly larger than F (q) although the vertex
correction significantly improves the degree of agreement. As
F (q) is vanishing as q → 0, the deviation becomes relatively
larger in the long-wavelength region.
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