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Strong-coupling analysis of scanning tunneling spectra in Bi2Sr2Ca2Cu3O10+δ
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We study a series of spectra measured in the superconducting state of optimally doped Bi2Sr2Ca2Cu3O10+δ

(Bi-2223) by scanning tunneling spectroscopy. Each spectrum, as well as the average of spectra presenting the
same gap, is fitted using a strong-coupling model taking into account the band structure, the BCS gap, and the
interaction of electrons with the spin resonance. After describing our measurements and the main characteristics
of the strong-coupling model, we report the whole set of parameters determined from the fits, and we discuss
trends as a function of the gap magnitude. We also simulate angle-resolved photoemission spectra, and compare
with recent experimental results.
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I. INTRODUCTION

The two main single-electron spectroscopies, angle-
resolved photoemission1 (ARPES) and scanning tunneling
microscopy2 (STM), have considerably improved during the
last decades, mainly motivated by the quest for reliable data
in the study of cuprate high-temperature superconductors.
A growing body of high-quality spectroscopic data is now
available for the cuprates, especially for compounds of the
bismuth family, which offer clean surfaces. These refined
experiments on high-quality crystals may be able to deliver the
intrinsic line shape of the one-electron spectra. Nonetheless,
very few studies have undertaken a detailed line-shape study of
the various spectral features by means of a microscopic model.
Following pioneering studies,3,4 the STM data analysis has
remained mostly qualitative, or based on phenomenological
approaches. In a few cases, a BCS d-wave model including
a realistic band structure5 and/or a phenomenological scat-
tering rate6 turned out to be appropriate. Such cases are
the exception rather than the rule: These models will not
capture, in particular, the “dip” feature ubiquitously present
at energies above the superconducting gap. By analogy with
phonon-related effects in classical superconductors,7,8 the
dip, also recently observed in pnictide superconductors,9,10

is generally attributed to a collective mode. In order to analyze
the phenomenon, an extension of the Eliashberg formalism
to d-wave superconductors has been proposed.11 Different
interpretations, based on phonons,12,13 an energy-dependent
gap function,14 gap inhomogeneities,15 or a charge-density
wave order,16 have also been put forward.

In the superconducting state, the cuprates present a low-
energy magnetic excitation known as the spin resonance.
This excitation is observed below the superconducting crit-
ical temperature, Tc, by inelastic neutron scattering, as a
strong enhancement of the spin susceptibility around the
antiferromagnetic vector Q = (π/a,π/a). First discovered
in YBa2Cu3O6+x (Y-123)17,18 at an energy �s = 41 meV,
it was later observed in most cuprates, including the single-
layer compounds HgBa2CuO4+δ

19 and Tl2Ba2CuO6+δ ,20 the
two-layer Bi2Sr2CaCu2O8+δ (Bi-2212),21–23 and the electron-
doped material Pr0.88LaCe0.12CuO4−δ .24 The (π,π ) resonance
energy ranges from 10 to 60 meV, roughly correlated with Tc as
�s ≈ 5.3kBTc.25 It is found in both underdoped and overdoped
materials,26 and was also detected above Tc in Y-123.27 The

resonance has been interpreted as a spin-1 exciton, bound
below the continuum of electron-hole excitations, gapped by
the superconducting pairing.28 One of the open questions
concerns the role played by spin fluctuations, and particularly
by the (π,π ) resonance, in the pairing phenomenon.29,30

Being related to pair formation or not, the (π,π ) resonance
is a collective spin excitation, which must somehow interact
with the charge degrees of freedom and induce renormal-
ization and damping of the Bogoliubov quasiparticles in the
superconducting state. This interaction affects the one-electron
spectra and is observable in the single-electron spectroscopies.
Although the strength of this interaction has been a matter
of controversy,31,32 there is evidence that peculiar signatures
observed in photoemission,33–36 tunneling,37–41 and optical
conductivity42,43 result from this interaction. Yet, a firm
consensus has not been reached: Optical phonons often exist
in the cuprates at similar energies, and distinguishing the
effects of the two kinds of excitations has proven difficult.
The spin resonance, being localized near (π,π ), leads to an
anisotropic scattering rate and a strong dip.39 But similar
effects can be induced by phonons, provided that the electron-
phonon coupling is strongly anisotropic.12 A possible way of
determining the origin of the dip feature is to study its evolution
with doping, to be compared with the doping dependence of
the spin resonance and phonons, both directly measured by
neutron scattering.

In a d-wave superconductor, one of the signatures of
the coupling to a collective mode is a minimum, so-called
dip, in the electron density of states (DOS), occurring at an
energy Ed , which is separated from the energy �p (of the
coherence peak) by the mode energy.44 In contrast, for s-wave
superconductors, the signature is a change of curvature of the
DOS, leading to a peak in the DOS derivative.45,46 Scanning
tunneling microscopy/spectroscopy (STM/STS) allows one to
measure the gap in the excitation spectrum, as well as the
dip, with sub-meV and atomic resolutions, and to track their
spatial variations in inhomogeneous materials.40 It is therefore
an ideal tool to investigate the properties of the dip and
the relationship between the gap and the resonance energy.
The three-layer compound Bi2Sr2Ca2Cu3O10+δ (Bi-2223) is
well suited for such studies. It can be cleaved and offers
atomically flat surfaces for STM investigations. Bi-2223 has
the highest optimal Tc of the bismuth family, 111 K, a gap in the
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30–60 meV range, and a very strong dip as revealed by
tunneling47 and photoemission.48–50

In this paper, we study Bi-2223 STS spectra by means of
least-squares fits to a strong-coupling model consisting of the
Van Hove singularity (VHS) associated with the saddle point
of a two-dimensional tight-binding band, a d-wave BCS gap,
and a coupling to the (π,π ) resonance.44 The results of similar
studies were reported previously.39,40 Here, we describe our
fits in detail, we fit average as well as local spectra, we provide
and discuss the complete set of model parameters, and we use
these parameters to simulate ARPES data. The motivation for
performing direct fits to cuprate STS data is twofold. The first
aim is to demonstrate that in spite of its simplicity, the model
captures quantitatively the main characteristics of the data for
optimally doped Bi-2223: a V-shaped gap at low energy, tall
coherence peaks and very pronounced dips, both significantly
electron-hole asymmetric. Second, the quality of these fits
provides further evidence that the STS tunneling conductance
measures the full electron local DOS (LDOS),5 rather than
an effective quasiparticle DOS deprived of band-structure and
self-energy effects.51

In Sec. II, we describe the growth and characterization of
the samples, present the measurement method, and discuss
the main features of the spectra. Section III is dedicated to the
model. We use different conventions than Ref. 44 for the model
parameters. For definiteness, we describe and discuss our
model in detail. We also explain the fitting method. In Sec. IV,
we present our results and the trends in fitted parameters.
We discuss the values of the most important parameters in
Sec. V, compare with values obtained using other experimental
techniques, and present simulations of ARPES intensities.
Finally, Sec. VI is a summary of the results and implications
of the present study.

II. EXPERIMENTAL DETAILS

A. Sample growth and characterization, STM measurements

The Bi-2223 crystals were grown by the traveling-solvent
floating-zone method, as described in Ref. 52. In order to
achieve optimal doping (OPT), the crystals were annealed
during 10 days at 500 ◦C in 20 bar oxygen partial pressure.
This thermal treatment produced a sharpening of the super-
conducting transition with respect to the as-grown condition.
We considered the peak position in the temperature derivative
of the low-field susceptibility and in magnetization data as
the criteria to determine Tc. Both determinations yielded the
same Tc = (110.5 ± 0.5) K.53 The transition width, estimated
as the FWHM of the susceptibility and magnetization peaks,
typically ranges between 0.6 and 2 K from sample to sample.
The structural and superconducting properties of OPT crystals
of the same batch as the ones studied here are reported in
Refs. 53–56. X-ray diffraction measurements have revealed
the purity and the high crystalline order of the samples.55

Resistivity measurements showed a single and sharp su-
perconducting transition. The sample growth and thermal
treatment parameters were optimized, in order to suppress
the intergrowth of the Bi-2212 phase. For the OPT samples
studied here, Bi-2212 intergrowth, if present, represents less
than 1% of the sample volume.53
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FIG. 1. (Color online) Decrease of the tunnel current with
increasing tip-sample distance z for one of our junctions (circles).
The solid line is an exponential fit. Inset: Same data on a log scale.

For the measurements, we used a home-built STM with
ultrahigh-vacuum environment and 3He base temperature.57

Electrochemically etched iridium tips served as the ground
electrode. The bias voltage V was applied to the sample,
such that negative (positive) bias refers to occupied (empty)
sample states. Differential-conductance spectra were acquired
using a lock-in.2 The dI/dV measurements were performed
at fixed tip-sample distance, determined by regulation current
and voltage of 0.6 nA and 600 mV, and a lock-in excitation
amplitude of 2 mV. The samples were cleaved at room
temperature at 1–5 × 10−9 mbar pressure, and cooled down
to 2 K in 10 hours time. High-quality tunnel junctions were
obtained in this way, as illustrated in Fig. 1. In a high-quality
junction, the current depends exponentially on the relative
tip-sample distance, namely I ∝ e−2κz. The decay constant κ

is related to the apparent barrier height φ = h̄2κ2/(2m). Our
tunnel junctions have typically φ = 3–4 eV, much larger than
the regulation voltage. We started all our runs of measurements
with tests like the one shown in Fig. 1.

B. Data statistics and systematics of spectral features

As largely documented in the literature, Bi-based cuprate
samples, even with a sharp superconducting transition, present
inhomogeneous spectroscopic properties on the surface.2 The
nanoscale variations of typical spectral features in Bi-2223
were studied previously by mapping the local dI/dV curves.40

It was found, in particular, that the local gap �p presents
spatial variations in register with the crystalline structure. The
present paper is focused on studying relevant spectral features
as a function of �p. Since the results in several OPT samples
are similar, for the present study we considered 150 spectra
measured at different locations of a given OPT sample. The
local dI/dV curves were sorted by half the peak-to-peak gap
�p = (�+

p − �−
p )/2, where �+

p (�−
p ) is the energy of the

coherence peak at positive (negative) bias. Figure 2 shows
the set of spectra, as well as the average spectra for each �p

(the latter were already published in Ref. 39). The standard
deviation to the average is also shown as a function of bias. It
is generally ∼5%, except close to the coherence peaks where
it increases up to 20%. This is a hallmark of the lock-in
technique, which is most reliable for slowly varying I (V )
curves.
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FIG. 2. (Color online) The complete experimental data set considered in this study. The raw Bi-2223 tunneling conductance spectra were
grouped according to their peak-to-peak gap �p , and were normalized in order to have the same spectral weight in the range of the figure
(black curves). The red curves are the average spectra, and the shaded blue curves show the standard deviation of the distribution of tunneling
conductances at each bias. The vertical bars indicate a weak feature, possibly related to the VHS of the inner-layer band (see Sec. III).

The prominent spectral features of Bi-2223 are evident
from the average dI/dV curves in Fig. 2. All spectra present
a d-wave shape at low bias, very well developed coherence
peaks, and a dip at energies larger than �p . Another remarkable
property is a strong electron-hole asymmetry, characterized by
a stronger dip and a greater spectral weight for the occupied
states. This is manifested by higher coherence peaks and an
enhanced conductance background at negative bias. Observed
in most high Tc’s, this phenomenology contrasts with the
electron-hole symmetric spectra of classical superconductors.

The electron-hole asymmetry evolves monotonically with
�p. The conductance background for occupied states becomes
steeper on decreasing the gap. The trend is particularly evident
when considering data in a bias range one order of magnitude
larger than �p. This evolution may be due to a variation of
the correlation effects with the pairing strength.51 Since our
model does not consider such correlations, we will restrict
our fits to the bias interval [−150, + 150] mV. Moreover, the
asymmetry in the height of the coherence peaks systematically
increases when decreasing �p. We discuss the role of the VHS
in this phenomenology in Secs. III C and V. The line shape
of the coherence peaks also follows a monotonic trend. The
peaks sharpen and become taller on approaching the Fermi
energy. The evolution of the dip is of particular importance
for this work. This feature is strongly developed in Bi-2223,
in comparison to other Bi-based cuprates, and is noticeably
electron-hole asymmetric. The energy difference between the
dip minimum and the coherence peak maximum decreases
on increasing the gap,40 as we will discuss in the following
sections.

Finally, the low-energy conductance is similar for all values
of �p. Close to the Fermi level, the spectra are electron-hole
symmetric and present a slightly rounded shape. A V-shaped
conductance is characteristic of a d-wave superconductor at
zero temperature. Some rounding off and a finite zero-bias
conductance are expected when considering thermal and mea-

surement broadening—the latter due to the finite amplitude
of the lock-in excitation and to electronic noise—and some
residual impurity scattering. Our fitting procedure takes these
factors into account.

III. STRONG-COUPLING MODEL
AND FITTING PROCEDURE

A. STM tunneling conductance and LDOS

The theory of tunneling in superconductors was origi-
nally meant for planar junctions involving classical s-wave
superconductors, with a structureless normal-state DOS.45

The theory of Tersoff and Hamann for the STM,58 on the
other hand, was not developed for superconductors. The
approach of Ref. 58 can be extended to describe STM
measurements in superconductors,2 and leads to the paradigm
that the differential conductance is a measure of the thermally
broadened electron LDOS:

dI (r)

dV
= M

∫ ∞

−∞
dωdε N (r,ω)[−f ′(ω − ε)]gσ (ε − eV ).

(1)

This expression applies if the current is dominated by single-
particle tunneling. N (r,ω) is the sample LDOS at the position
r of the STM tip, f ′ is the derivative of the Fermi function, and
M is a tip-dependent constant. An extra Gaussian broadening
by the function gσ takes into account the finite experimental
resolution, with σ the half width at half maximum. In addition
to electronic noise, the sources of broadening are the lock-in
ac modulation and the averaging of several similar spectra (see
Sec. II). The strict proportionality of dI/dV and N (r,eV ) is
recovered in the limits of zero temperature and σ = 0, where
both −f ′ and gσ become delta functions.

If the work function is much larger than the typical energies
of interest (in our case, 3 eV compared with 0.1–0.2 eV;
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see Fig. 1), all Bloch waves decay exponentially outside the
sample surface with a similar decay constant κ . The LDOS
at r reduces to N (r,ω) ∝ exp(−2κz)N (ω), with N (ω) the
bulk two-dimensional DOS, assumed translation invariant in
the (x,y) plane for simplicity. Consistently, the current must
decrease exponentially with z, as confirmed in Fig. 1. The z

dependence is irrelevant in spectroscopic measurements, and
N (r,ω) in Eq. (1) can be replaced by N (ω), with a redefinition
of the constant M . We then calculate the two-dimensional DOS
as the integral of the electron spectral function:

N (ω) = 2

N

∑
k

(−1/π )Im G11(k,ω). (2)

G11 is the first component of the Green’s function in the
Nambu representation, and N is the number of k points
in the two-dimensional Brillouin zone. In a superconductor
characterized by a BCS gap �k and inelastic scattering
processes, it is convenient to write G11 in terms of the 2 × 2
matrix self-energy �̂(k,ω), in the form

G11 =
[
ω − ξk + i
 − �11 −

(
�k + �12

)2

ω + ξk + i
 − �22

]−1

.

(3)

�11(k,ω) and �22(k,ω) describe the renormalization and
damping of the Bogoliubov quasiparticles in the electron and
hole branches, respectively, while the “anomalous” self-energy
�12(k,ω) describes scattering effects in the pairing channel.
The expression of �̂ is provided in the next subsection.
If �̂ = 0, Eq. (3) reduces to the BCS Green’s function,
with ξk ≡ εk − μ the noninteracting electron dispersion, μ

the chemical potential, and 
 a phenomenological scattering
rate.59 We use a tight-binding model for the band εk, which
reads (setting the lattice parameter a ≡ 1)

εk ≡
∑

r

t(|r|) eik·r

= 2t1(cos kx + cos ky) + 4t2 cos kx cos ky

+ 2t3(cos 2kx + cos 2ky) + 4t4(cos 2kx cos ky

+ cos kx cos 2ky) + 4t5 cos 2kx cos 2ky. (4)

Note that our conventions for the signs and magnitudes of the
hopping amplitudes ti differ from those used in Ref. 44. The
d-wave gap is �k = �0(cos kx − cos ky)/2.

Bi-2223 has three CuO2 layers per unit cell, hence three
bands at the Fermi level.60 Recent photoemission studies
suggest that the bands form a nearly degenerate doublet,
attributed to the outer CuO2 layers, and a single band
associated with the inner CuO2 layer.61,62 The inner-layer
band is seen ∼70 meV (∼200 meV) below the doublet in the
nodal (antinodal) direction. We found that a one-band model
focusing on the doublet, with fewer adjustable parameters
than a three-band model, is sufficient to fit the spectra in
the range |ω| < 150 meV. This can be understood, since the
doublet carries 2/3 of the spectral weight, and the VHS of the
inner-layer band lies ∼200 meV below that of the doublet, at
the border of our measurement window. We expect that the
modifications induced in the theoretical spectrum by using a
multiband description would be marginal at low energies. That

said, we note that the average spectra in Fig. 2 systematically
present a weak structure at negative bias, between −215 and
−225 mV, which might be the signature of the inner-layer
VHS. Although a definitive assessment is not possible at this
stage, this observation confirms that possible multiband effects
are likely to be small.

B. Bogoliubov quasiparticles coupled to spin fluctuations

The theoretical investigation of the coupling between
Bogoliubov quasiparticles and spin fluctuations began with
the study of the superfluid transition in 3He (see Ref. 63 and
references therein), and was revived after the discovery of
high-Tc superconductors.64–66 The minimal model to describe
the effects of this coupling is

�̂(k,ω) = − 1

N

∑
q

1

β

∑
i�n

g2χs(q,i�n)

× Ĝ0(k − q,iωn − i�n)

∣∣∣∣
iωn→ω+i0+

. (5)

Ĝ0 is the 2 × 2 Nambu-BCS-Matsubara Green’s function in
the absence of coupling, χs is the spin susceptibility, iωn and
i�n are the fermionic and bosonic Matsubara frequencies,
respectively, β = (kBT )−1 is the inverse temperature, and g

is the coupling parameter. Equation (5) can be obtained from
perturbation theory in the electron-spin coupling;67 it can also
be viewed as a simplified, non-self-consistent version of a
conserving strong-coupling theory.68

Following Ref. 44, we use a separable phenomenological
expression for χs in the superconducting state. In the energy
range of interest (below ∼ 150 meV), we assume that the spin
response is dominated by a resonance at energy �s , near the
antiferromagnetic vector Q = (π,π ):

χs(q,i�n) = Ws F (q)
∫ ∞

−∞
dε

I (ε)

i�n − ε
. (6)

We choose the real functions F (q) and I (ε) such that
(1/N)

∑
q F (q) = ∫ ∞

0 dε I (ε) = 1. Ws thus stands for the
momentum and frequency integrated spectral weight of the
resonance:

Ws = 1

N

∑
q

∫ ∞

0
dω (−1/π ) Im χs(q,ω). (7)

The function F (q) is Lorentzian-like, peaked at q = Q, with
half width at half maximum �q:

F (q) = F0

sin2
(

qx−Qx

2

) + sin2
( qy−Qy

2

) + (�q/4)2
. (8)

The constant F0 ensures the normalization of F (q). In Ref. 44,
the resonance was assumed to be sharp in energy, so that
its energy distribution was I (ε) = δ(ε − �s) − δ(ε + �s).
Indeed, neutron scattering measurements suggest that the
resonance is resolution limited in Y-123.17 We use a slightly
more general form,

I (ε) = I0
[
L
s

(ε − �s) − L
s
(ε + �s)

]
, (9)

where L
(ε) = (
/π )/(ε2 + 
2) is a Lorentzian, and I0

ensures the normalization of I (ε). The form (9) accounts for a
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finite lifetime τs ∼ 
−1
s of the spin mode. Neutron scattering

experiments indicate that the resonance is somewhat broader
in Bi-2212 (Ref. 21) and Bi-2223 (Ref. 69) than in Y-123,
and would be consistent with 
s ≈ 4–8 meV. Alternatively,
Eq. (9) may be regarded as a way to incorporate the observed
dispersion of the resonance,70 which broadens the mode into
a band of width 
s .

It is convenient to write the Matsubara Green’s function in
Eq. (5) using the spectral representation,

Ĝ0(k,iωn) =
∫ ∞

−∞
dε

Â(k,ε)

iωn − ε
. (10)

Taking into account the phenomenological scattering rate 


appearing in Eq. (3), the spectral function can be expressed in
terms of Lorentzian functions,

Â(k,ε) = ûkL
(ε − Ek) + v̂kL
(ε + Ek), (11)

where

ûk = 1

2

(
1 + ξk

Ek

�k
Ek

�k
Ek

1 − ξk
Ek

)
, v̂k = 1 − ûk, (12)

and Ek =
√

ξ 2
k + �2

k. After inserting Eqs. (6) and (10) in
Eq. (5), one performs the sum over Matsubara frequencies
with the standard technique,71 and using Eqs. (9) and (11),
one obtains the self-energy on the real-frequency axis:

�̂(k,ω) = α2

N

∑
q

F (q)[ûk−qB(ω,Ek−q)

+ v̂k−qB(ω, − Ek−q)]. (13)

We have introduced the dimensionless coupling constant
α2 ≡ (g/�)2WsI0, with � a characteristic energy scale of the
model, which we take as the nearest-neighbor hopping t1. For
definiteness, the function B(ω,E) is derived in the Appendix.
The self-energy (13) is a convolution in momentum space, and
can therefore be efficiently evaluated numerically on dense
k-point meshes, using fast Fourier transforms.

The use of a coupling constant α comprising the spectral
weight of the resonance, instead of the coupling g, is more
convenient for our purposes. The strength of the self-energy
effects—hence the strength of the dip in the tunneling
spectrum—is governed by the product g2Ws , and Ws strongly
depends on the momentum width �q of the resonance. In
the original formulation,44 both g and �q strongly affect the
dip, whereas here, the dip is controlled mostly by α, and
depends weakly on �q. As the model parameters will be
determined by least-squares fits, we expect a simpler landscape
by avoiding that different parameters have the same influence
on the theoretical spectrum.

C. Discussion of the model

The model has fifteen parameters, including the multiplica-
tive constant M in Eq. (1), thirteen of which are determined
by least-squares fitting. The two fixed parameters are the
temperature (set to the experimental value T = 2 K) and the
Gaussian broadening σ (set to 4 meV). We constrain the
scattering rate 
 to be larger than 1 meV for the numerical
stability of the momentum sum in Eq. (2). The scale of the
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FIG. 3. (Color online) Evolution of the theoretical tunneling
spectrum with varying five model parameters. The base parameters
are (all energies in meV) M = 1, 
 = 2, t1−5 = (−250,80,0,0,0),
μ = −320, �0 = 40, �s = 40, 
s = 5, �q = 1.5/a, α = 0.6, and
they correspond to the middle red curve in each series. The k-point
mesh contains 1024 × 1024 points. In (a), the chemical potential is
varied to move the Van Hove singularity from −80 to +80 meV; the
thin lines show the corresponding noninteracting DOS (i.e., with
�0 = 0 and α = 0). (b), (c), and (d) show the result of varying
the resonance energy �s , q-space width �q, and the coupling α,
respectively. The effect of changing 
s is illustrated by the thin curves
in (b).

d-wave gap is set by �0 and modified by the coupling to the
spin resonance, as discussed further below.

The band parameters t1−5 and the chemical potential μ

determine the noninteracting DOS, the band filling, and the
Fermi surface. The tunneling spectrum is very sensitive to the
energy of the VHS given by the dispersion at the M point
(π,0), ξM = 4(−t2 + t3 + t5) − μ, as illustrated in Fig. 3(a).
Four trends can be observed: The energy of the VHS affects
(1) the difference in height of the two coherence peaks, (2) the
electron-hole asymmetry of the dip, (3) the overall height of the
coherence peaks, and (4) the half peak-to-peak gap �p. (1) is
due to the superconducting gap, pushing the VHS farther down
if initially at negative energy, and farther up in the opposite
case. The coherence peak closest to the VHS thus carries
more spectral weight. One notices that some electron-hole
asymmetry remains when ξM = 0, because a finite t2 breaks
the electron-hole symmetry of the noninteracting DOS. (2)
is a consequence of the dip being reinforced by the VHS
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and therefore strongest at negative energy if ξM < 0, and vice
versa.39 (3) reveals the contribution of the VHS to the weight
of the coherence peaks, tallest when ξM = 0. Lastly, (4) is a
consequence of d-wave symmetry, implying that the maximum
gap on the Fermi surface decreases as the distance between
the Fermi crossing in the antinodal direction and the M point
increases.

Varying the resonance energy �s has three main effects, as
shown in Fig. 3(b): (1) The dip minimum moves with respect
to the closest coherence peak, (2) the height of the coherence
peaks changes, and (3) the gap �p varies. (1) indicates that the
scattering is strongest near the energy �0 + �s : Bogoliubov
quasiparticles at this energy can easily decay by emitting a
(π,π ) mode, because there are many final states available near
the gap-edge energy �0. One can figure out the typical energy
dependence of the scattering rate by using the limit (A8) for
the function B, and averaging Eq. (13) over the Brillouin zone.
One arrives at

−Im �̄11(ω) = π

2
(αt1)2[θ (ω − �s)N0(ω − �s)

+ θ (−ω − �s)N0(ω + �s)], (14)

where N0(ω) is the d-wave BCS DOS. Since N0(ω) peaks at
ω ≈ ±�0, −Im �̄11(ω) peaks at ω ≈ ±(�0 + �s). Due to the
confinement of the resonance around (π,π ), the amplitude of
the scattering rate has a marked momentum dependence.44,46

Still, Eq. (14) correctly captures the qualitative energy de-
pendence at all momenta. The effect (2)—increase of the
peaks’ height with increasing �s—can also be understood
based on Eq. (14): The scattering rate is zero for |ω| <

�s , since Bogoliubov quasiparticles cannot decay, and thus
the coherence peaks are not broadened if �s > �p. The
broadening is strongest when the peak in −Im �̄11 coincides
with �p, i.e., when �s → 0. The origin of trend (3) is in the
renormalization of the quasiparticle energies, encoded in the
real part of the self-energy. The latter is linear at low energy,
Re �̄11(ω) ≈ −λ̄ω, and the energy levels are renormalized by
a factor 1/(1 + λ̄). Performing the Brillouin-zone average as
above leads to

λ̄ = (αt1)2 1

2

∫ ∞

−∞
dε

N0(ε)

(|ε| + �s)2
. (15)

If the Fermi point in the antinodal direction is close to the
M point, the scale �p is given to a good approximation by
�0(1 + �M)/(1 + λM). λM is the renormalization at the M
point, which is typically 30% larger than the Brillouin-zone
average λ̄, and �M = Re �12(M,0)/�0 gives the contribution
of the spin resonance to pairing. �M is a decreasing function of
�s . This can be seen by estimating the Brillouin-zone average
of Re �12(k,0)/�k, which gives

�̄ ≈ (αt1)2
∫ ∞

0
dε

N0(ε)

ε(ε + �s)
. (16)

Equation (16) is accurate in the limit �q → 0 and for an
electron-hole symmetric band. Looking at the �s dependence
of �̄, one expects a decrease of �p with increasing �s .
However, this is overcompensated by the faster decrease of
λ̄ with �s [see Eq. (15)], and the net result is a slight increase
of �p with increasing �s , as seen in Fig. 3(b). This figure also

illustrates the effect of increasing 
s , namely, a broadening
mostly confined to the neighborhood of the dip minimum.

Figure 3(c) shows that the momentum width of the
resonance affects the gap renormalization. If �q � a−1, �M

wins over λM, and �p > �0, while the opposite happens if
�q � a−1. The precise value of �q where this change of
behavior takes place depends on the other model parameters.
For �q → 0, the renormalizations at M can be evaluated as

λM = (αt1)2

(EM + �s)2
, �M = (αt1)2

EM(EM + �s)
(�q = 0),

(17)

and indeed �M > λM in this case (EM =
√

ξ 2
M + �2

0). In
the opposite limit, �q → ∞ or F (q) ≡ 1, the self-energy
becomes momentum independent. We then simply get

λM = λ̄, �M = 0 (�q = ∞), (18)

and the gap is reduced by a factor 1/(1 + λ̄). The vanishing of
�M is due to the d-wave symmetry of �k. We emphasize that
the variation in Fig. 3(c) is performed at fixed spectral weight
of the resonance, meaning that the bare coupling g decreases
as �q increases, and α remains unchanged. The value of �q

also influences the height of the coherence peaks: They are
strongly broadened when the renormalized gap is larger than
�s , as in Fig. 3(b).

Finally, changing the dimensionless coupling α produces
three effects, as seen in Fig. 3(d). Increasing α (1) digs
the dip, (2) reduces the gap, and (3) lowers the coherence
peaks without broadening them. The fact that the scattering
rate is proportional to α2 [Eq. (14)] explains (1). (2) is
due to the fact that �q > a−1 (�M < λM) in Fig. 3(d),
as discussed previously; since both �M and λM are ∝ α2,
(1 + �M)/(1 + λM) decreases with increasing α. Finally, the
effect (3) reflects the removal of low-energy spectral weight
by the coupling to the resonance. This weight is transferred
to the “hump,” but also over larger energy scales, to the band
edges. This is demonstrated in Fig. 4, showing the data of
Fig. 3(d) on an expanded energy range. We further note that
part of the spectral weight removed in the dip is also pushed to
lower binding energies and, under certain conditions, can lead
to shoulders on the sides of the coherence peaks.

We close this section with a few general remarks. Unlike in
the conventional strong-coupling theory, the model used here
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FIG. 4. (Color online) Same data as Fig. 3(d) on an expanded
energy range covering the whole bandwidth. Part of the low-energy
spectral weight is transferred to the band edges.
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does not offer simple relationships between the parameters and
prominent features in the tunneling spectrum. Each feature
is controlled by several parameters. For instance, the gap
�p depends on �0, ξM, �s , �q, and α, as illustrated in
Fig. 3. A direct readout of the parameters by inspection of
the spectra is possible qualitatively, but fitting is required for
extracting accurate values. One peculiarity of the spectrum,
however, can be attributed to a single cause: the electron-hole
asymmetry—of the coherence peaks’ height, dip strength, and
conductance background—has only one source: the electron-
hole asymmetry of the noninteracting DOS. Therefore, the
qualitative inference of an asymmetric normal DOS can
be made by direct inspection of the spectra. Finally, we
emphasize that although the contribution of the anomalous
self-energy to pairing is always positive, �p may eventually
turn out to be smaller than �0, due to the normal self-energy
renormalization. Namely, the coupling to the spin resonance
contributes positively to pairing, but can nevertheless reduce
the preexisting gap.

D. Fitting procedure and variance of the parameters

The 13-parameter landscape is too complex for a brute-
force fitting approach. The reason is that the theoretical
spectrum depends on properties of the noninteracting DOS,
such as the position and asymmetry of the VHS, that are not in
one-to-one correspondence with the set of hopping amplitudes
ti .72 A least-squares fit starting with random values of the
parameters will almost certainly end in a local minimum,
where the ti values do not satisfy physical requirements such as
the order of magnitude of the bandwidth. The fit must therefore
be guided with a pinch of physical intuition, in order to avoid
such minima.

In a first step, we have considered the average spectra of
Fig. 2. For each of them, we searched a set of parameters
which (i) is a minimum of the least-squares function,73 (ii)
corresponds to a band with the properties shared by all Bi-
based cuprates—band minimum at 
, band maximum at (π,π ),
VHS at M—and (iii) gives a holelike Fermi surface centered
at (π,π ). The actual procedure was to search good parameters
for the spectra with �p = 36 and 54 meV (this required a
bit of trial and error), and then to use interpolations between
these parameters as seeds to fit the average spectra with inter-
mediate gaps. The fits were restricted to the energy window
|ω| < 150 meV.

In a second step, we calculated the distributions of the
parameters associated with the sample inhomogeneity, and
leading to the fluctuations of individual spectra around the
average (see Fig. 2). We fitted all individual spectra, using
as seeds the values obtained for the corresponding average
spectrum, and leaving all parameters free to vary without
constraint. Figure 5 shows all individual fits for one of the
series in Fig. 2, and the distributions of fitted values for three
important parameters. For all parameters, we find that the
average of the distribution coincides with the value obtained
by fitting the average spectrum, within the standard deviation
(see Fig. 8 below). This justifies the use of average spectra to
cope with the fluctuations seen in Figs. 2 and 5.
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FIG. 5. (Color online) Series of experimental spectra with a peak-
to-peak gap �p = 44 meV (yellow circles), and fits to the strong-
coupling model (red lines). The histograms show the distributions
of fitted values for the energy of the VHS, the BCS gap, and the
spin-resonance energy. Similar results are obtained for all series in
Fig. 2. The standard deviations of the distributions reflect the sample
inhomogeneity, and are given for all parameters in Table I.

IV. RESULTS

Figure 6 presents the results of our fits to the average
spectra, and Table I lists the set of fitted parameters, as well as
the standard deviations. The model can reproduce the relative
values of the conductance at zero bias, on the coherence peaks,
and on the background, as they vary with increasing �p. It
also captures the electron-hole asymmetry of the coherence
peaks, and the decrease of this asymmetry with increasing �p.
The electron-hole asymmetry of the dip can be followed as a
function of �p, even when the coherence peaks have become
almost symmetric, at �p = 54 meV. Good fits can also be
achieved in the full energy range of Fig. 2, at the price of a
slight deterioration of the fit at low energies, especially for
the largest gaps. The progressive inadequacy of the model for
increasing energy range can have various causes. The presence
in the experimental spectrum of components not considered
in the model is one possibility, for instance, the contribution
of the inner-layer band, or an enhanced spectral weight of
the occupied states due to correlations.47 Another possibility
would be additional scattering mechanisms at high energy, in
particular by the continuum of spin fluctuations.44

Before discussing the parameters, we emphasize three
assertions which are supported by the quality of the fits in
Fig. 6. First, STS measures the local electron DOS, including
band-structure effects: It is not possible to subtract or divide
out the noninteracting DOS by normalization. Second, the
presence of the Van Hove singularity in the noninteracting
DOS is crucial to reproduce the various asymmetries of the
spectra: This is the only source of electron-hole asymmetry in
the model. Third, a coupling to the spin resonance can explain
quantitatively the redistribution of spectral weight around the
dip energy. The tight localization of the resonance around
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FIG. 6. (Color online) Average spectra of Fig. 2 (circles) and fits with the model described in Sec. III (red curves). The parameters are
given in Table I.

(π,π ), as opposed to optical phonons that span the whole
Brillouin zone, plays a key role in producing the correct line
shape of the dip.

Table I shows that large uncertainties are associated with
the ti’s. This illustrates the weak sensitivity of the theoretical
spectrum to the band parameters (see Sec. III D). The nearest-
neighbor hopping t1 varies between −140 and −256 meV:

These numbers fall within the range of published values for
Bi-based cuprates.44,74–76 The hopping t3 (second neighbor
along the Cu-Cu direction) is negative like t1, as expected from
symmetry considerations. Likewise, the diagonal hoppings t2
and t5 are both positive, or the latter is almost zero (we consider
the small negative values of order 1 meV as insignificant). We
do not try to interpret the variations of the ti with increasing

TABLE I. Model parameters: For each experimental gap �p and each parameter, the first column gives the value obtained by fitting the
average spectrum (Fig. 6); the number in parentheses is the standard deviation of the values obtained by fitting all individual spectra, as
illustrated in Fig. 5.

�p Parameters of the dispersion

(meV) μ (meV) t1 (meV) t2 (meV) t3 (meV) t4 (meV) t5 (meV)

36 −165 (56) −180 (43) 32 (24) −11 (10) 2.2 (8.6) −1.6 (3.7)
38 −125 (111) −161 (79) 21 (36) −14 (17) 5.8 (9.3) −1.4 (6.3)
40 −101 (105) −140 (85) 3 (46) −23 (21) 11.9 (15.5) −3.4 (4.1)
42 −116 (51) −162 (46) 18 (26) −17 (13) 4.3 (9.2) −0.8 (3.5)
44 −237 (108) −206 (217) 56 (50) −36 (93) −10.3 (39.9) 27.9 (42.0)
46 −306 (73) −179 (66) 59 (43) −79 (49) −22.6 (12.6) 56.6 (16.6)
48 −340 (108) −206 (109) 60 (52) −97 (55) −26.3 (9.3) 67.0 (24.9)
54 −305 (146) −256 (87) 58 (44) −88 (73) −35.4 (15.9) 62.9 (25.6)

Scattering rate, BCS gap, and spin resonance


 (meV) �0 (meV) �s (meV) 
s (meV) �q (a−1) α

36 2.0 (0.7) 42.7 (1.0) 36.8 (0.9) 1.6 (1.1) 1.39 (0.11) 0.73 (0.14)
38 2.1 (0.6) 45.0 (3.7) 34.5 (2.5) 0.5 (1.1) 1.46 (0.34) 0.79 (0.19)
40 1.0 (0.9) 47.9 (3.4) 34.4 (2.3) 1.7 (2.1) 1.54 (0.38) 0.97 (0.29)
42 1.0 (0.9) 52.5 (4.9) 29.9 (3.2) 1.7 (2.1) 1.65 (0.49) 0.81 (0.18)
44 3.6 (2.4) 48.6 (7.3) 33.7 (4.5) 4.2 (5.4) 1.15 (0.60) 0.70 (0.27)
46 6.6 (1.7) 59.7 (6.4) 21.6 (9.9) 18.6 (7.0) 1.68 (0.69) 1.16 (0.32)
48 7.6 (1.8) 60.4 (5.9) 23.1 (9.1) 15.1 (7.2) 1.80 (0.62) 0.97 (0.38)
54 8.5 (1.7) 70.7 (6.3) 19.2 (6.8) 13.7 (8.0) 2.17 (0.58) 0.79 (0.35)
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�p, because these variations are comparable with the typical
uncertainties. In fact, the fitted hopping amplitudes should be
regarded as a parametrization of the low-energy DOS, rather
than an accurate determination of the microscopic Hamilto-
nian. We will see that two properties of the dispersion which
characterize the low-energy DOS, e.g., the VHS energy and
the Fermi velocity, show comparatively smaller uncertainties,
and a systematic trend with increasing �p.

The scattering rate 
 is small with a small variance, and a
tendency to increase with increasing �p. This reflects a trend
in the average spectra to be broader for larger gaps. At energies
below �s , 
 provides the only broadening mechanism. This
parameter is therefore well constrained by the line shape
around zero bias. At higher energies and for the large gaps,
additional broadening is provided by 
s . Values of ∼15 meV
seem somewhat too large for 
s , when compared with available
values for Bi-2212 and Bi-2223,21,69 but we note that their
uncertainty is also large. We find that �0 is larger than �p, and
that the difference increases with increasing �p. As discussed
in Sec. III C, this is connected with �q being larger than
1/a, so that the pairing induced by the spin resonance is
overcompensated by the downward renormalization of the
energy levels. The fitted �s are anticorrelated with �p,
as discussed further below, and consistently with previous
studies.39,40 Lastly, the dimensionless parameter α exhibits
no clear trend. However the product (αt1)2, which controls the
coupling strength [Eq. (14)], increases steadily with increasing
�p. We discuss the coupling strength further in Sec. V C.

V. DISCUSSION

A. Electron-hole asymmetry and Van Hove singularity

The STS spectra exhibit systematic asymmetries between
positive and negative bias, suggestive of an intrinsic electron-
hole asymmetry. The asymmetries concern the height of the
coherence peaks, the strength of the dip, and the conductance
background, as highlighted in Fig. 7. In the model, any
asymmetry can be traced back to the band structure. For
instance, one often finds that the negative-energy coherence
peak is taller if the energy ξM of the VHS is negative [but
there are exceptions; see Fig. 3(a)]. There is also a simple
relationship between ξM and the width and asymmetry of the
dip,39 as is clearly seen in Fig. 3(a). A wider and/or stronger
dip at negative bias means that ξM < 0. In this respect, the
series of spectra in Fig. 7 present two trends, which seem to
have conflicting implications. On the one hand, the coherence
peaks become more symmetric with increasing �p, suggesting
that ξM is negative for small gaps and approaches zero for
larger gaps. On the other hand, there is a tendency for the
dip to become wider and more asymmetric with increasing
�p, indicating that the VHS moves to lower energies with
increasing �p.

The fits confirm the latter view, with larger negative
values of ξM for larger gaps [Fig. 8(a)]. This evolution is
consistent with the interpretation that spectra with larger gaps
correspond to more underdoped regions with higher electron
densities. Extrapolating our results, we expect a VHS at
positive energy for gap values lower than 24 meV, i.e., on the
strongly overdoped side. We are not aware of any systematic

eV + Δ−
p (meV)

d
I/

dV
(a

rb
.u

ni
ts

,s
hi

ft
ed

ve
rt

ic
al

ly
)

Δp (meV)

36

38

40

42

44

46

48

54

−100 0 100 200

FIG. 7. (Color online) Average spectra of Fig. 2, with energies
measured from one coherence peak. The dashed lines show the
negative-bias spectrum, mirrored at positive energies to highlight
the electron-hole asymmetry. The circles indicate the dip minimum,
the triangles show the inflection point (peak in d2I/dV 2), and the
straight lines are guides to the eye.

investigation of the VHS by ARPES in Bi-2223. Reference 77
gives one point of comparison, with a dispersion approaching
−25 meV at (π,0), the value that we obtain for gaps close to
45 meV. However, this analysis neglects renormalization
effects and may underestimate ξM.
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FIG. 8. Evolution of four properties with �p . The empty symbols
show the values obtained by fitting the average spectra. The full
symbols with error bars show the average and standard deviation of
the distributions obtained by fitting all individual spectra. The crosses
in (b) represent the peak-to-dip energy difference of the average
spectra, corresponding to the circles in Fig. 7. (c) Renormalization
factor at the M point, Eq. (19). (d) Nodal velocity.
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B. Spin-resonance energy

Figure 8(b) shows the fitted values of �s . For the smallest
gaps, corresponding to spectra with tall and asymmetric
coherence peaks, we find values between 30 and 40 meV,
and a good correspondence between �s and the peak-to-dip
energy difference. Both follow the same decreasing trend
with increasing �p. In classical superconductors, the phonon
energies coincide with peaks in d2I/dV 2.8 We stress that in our
spectra, the peak in d2I/dV 2 occurs at an energy ∼56 meV
(triangles in Fig. 7), similar to the values observed in Bi-
2212.78 This feature therefore does not provide a good estimate
of �s . This difference with classical superconductors is a
consequence of the d-wave symmetry of the gap.12,46 For gaps
larger than 45 meV, �s drops abruptly to values close to 20
meV, in contrast to the peak-to-dip energy, which stays close
to 35 meV.

We believe that part of this drop is driven by changes in
the spectra going beyond the scope of the model: The drop is
accompanied by other changes, such as a raise of 
s and t5
(see Table I), suggesting that the fit has moved to a different
region of the parameter space. An obvious change between the
44 and 46 meV spectra is a falloff of the peak to background
ratio. Increasing 
 and/or 
s cannot account for this, since it
would also reduce the dip to background ratio, which remains
unchanged in the spectra. The compromise is to lower �s , and
thus reduce the peak height without affecting the dip strength
[see Fig. 3(b)], and to tune the position of the dip minimum
by adjusting other parameters [in particular �q; see Fig. 3(c)].
Another trend is that the coherence peaks become symmetric
for large gaps, and this also drives �s downward in the fits.

The range of �s values in Fig. 8(b) corresponds well to
the doping evolution observed by neutron scattering in Y-123,
where the spin-resonance energy decreases from ∼40 meV at
optimal doping to ∼25 meV in underdoped samples.79,80 In
Bi-2212, the resonance is found at 42 meV at optimal doping,
and goes down to 34 meV with strong overdoping,21 but no data
have been reported in the underdoped region. Without neutron
scattering data for Bi-2223, and considering the large variance
of �s for �p > 45 meV, it is difficult to ascertain whether
the decrease of the spin-resonance energy for large gaps is as
sudden as suggested by our fits, or rather more continuous.

C. Coupling strength and renormalization factors

The values of the bare coupling strength g obtained from
our fits are similar to those used in Ref. 44. A more meaningful
measure of the strength of self-energy effects is given by the
renormalization factor

λk = − d

dω

1

2
Re

[
�11(k,ω) + �22(k,ω)

]
ω=0. (19)

Figure 8(c) shows the evolution of λk at the M point with
varying �p, and Fig. 9 shows the anisotropy of λk along
the Fermi surface. λk is maximal at the antinodes and
minimal at the nodes. The increase of λM above �p = 45
meV is accompanied by an increase of anisotropy: While
the renormalization in antinodal and nodal regions differs by
20–30% for the smaller gaps, this increases to 30–50% for the
larger gaps. Note that the λk shown in Fig. 9(a) are significantly
larger, and more anisotropic, than the values found for Bi-2212
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FIG. 9. (Color online) Renormalization factor λk along the renor-
malized Fermi surface. (a) Superconducting state: The parameters
are those corresponding to the average spectra of Fig. 6 with the
corresponding value of �p written on each curve. Inset: Fermi surface
for �p = 42 meV, and definition of the Fermi-surface angle φ. (b)
Normal state: The solid lines show the value of λk obtained by
setting T = 110 K and �0 = 0, and keeping the other parameters
unchanged. The dashed lines correspond to T = 110 K, �0 = 0, and

s = 25 meV.

using phonon models.81 This suggests that a fit of phonon
models to our STM data would yield unrealistically large
electron-phonon matrix elements.

As the experimental determination of λ by ARPES and
optical conductivity are mostly performed in the normal state,
we have calculated λk at T = Tc = 110 K. Equation (15),
which approximates the Brillouin-zone average of λk, shows
that the renormalization increases in the normal state, because
the gap in N0(ε) closes. Setting T = 110 K and �0 = 0,
while keeping the other parameters unchanged, we obtain
values of λk which are 1.2–2.4 times larger than in the
superconducting state, and more anisotropic [Fig. 9(b)]. This
calculation overlooks that the transition to the normal state
also affects the spin resonance, which broadens in energy82 on
warming across Tc. This effect can be modeled by increasing

s . As an illustration, we show in Fig. 9(b) the renormalization
calculated with 
s = 25 meV (the normal-state value of 
s in
Bi-2223 has not been determined experimentally). The values
of λk are reduced and become similar to the values found in
the superconducting state.

Our renormalization factors compare well with experi-
mental values reported in the literature. In underdoped and
overdoped Bi-2212, a normal-state renormalization of 1.5
near the antinodal point was determined by ARPES.34 As
the dip feature is stronger in Bi-2223 than in Bi-2212, a
larger value may be expected for the three-layer compound.
Indeed, the average renormalization in the normal state of
Bi-2223 at optimal doping was estimated by fitting a model
with a bosonic spectrum to optical data,43 and leads to
the values 2.18 and 1.75, depending on whether the full
bosonic spectrum or its low-energy part is taken into account,
respectively. In the normal state, but at the nodal point, a
renormalization decreasing from 0.8 to 0.55 as a function of
increasing hole doping was measured in Bi-2212 at 120 K.83

Our nodal values for Bi-2223 in the normal state with 
s =
25 meV draw a similar trend, decreasing from 0.8 to 0.5
with decreasing gap size. Below Tc, nodal values between
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0.7 and 0.9 are reported for Bi-2212 in Ref. 83. For optimally
doped Bi-2223, a recent study84 allows us to estimate a nodal
renormalization of 0.6 at 10 K. These numbers are very close
to our superconducting-state results of Fig. 9(a). Extracting
the low-temperature antinodal renormalization from ARPES
is difficult due to the gap. A study reported a value of 2 for
optimally doped Bi-2212,85 while our values for Bi-2223 vary
between 1 and 1.6.

Figure 8(d) shows the nodal velocity, calculated using the
fitted parameters and an in-plane lattice constant of 3.825 Å
for Bi-2223. The nodal velocity can be measured directly
by ARPES, unlike the renormalization (which requires an
assumption for the bare dispersion). Reference 84 reports
nodal velocities between 1.5 and 1.7 eV Å for the outer-
layer band of optimally doped Bi-2223, corresponding to
2.3–2.6 × 107 cm/s. These values agree well with our results
for �p � 44 meV. In the case of Bi-2212, values ranging
from 1 to 2.5 × 107 cm/s as a function of doping have been
reported.86 The variation seen in Fig. 8(d) can therefore be
interpreted as reflecting changes in the local doping level.

D. Spectral function and simulated ARPES intensity

The parameters determined by fitting STM spectra allow
us to calculate the momentum-resolved spectral function
and to make predictions for the measured ARPES intensity.
The generic properties of the spectral function in the model
have been extensively discussed.28,44 The main characteristics
are summarized in Fig. 10. At energies below the onset of
scattering, |ω| < �s , the dispersion is renormalized down-
wards, but not broadened. This can be seen most clearly
along the nodal direction (0,0)–(π,π ) in Fig. 10(a). At these
low energies, the quasiparticles form banana-shaped regions
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(b) (c) (d)
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ω
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k
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−Ωs

−(Δ0 +Ωs)
−Δ0

FIG. 10. (Color online) Spectral function calculated with the
parameters fitted to the �p = 42 meV spectrum in Fig. 6. (a) Along
high-symmetry lines in the Brillouin zone. The color scale shows the
variation of the spectral function from zero (white) to its maximum
(yellow). The orange line is the noninteracting dispersion. The red
line shows the BCS dispersion; the width of the line is proportional
to the spectral weight. (b), (c), and (d) Cuts at three characteristic
energies. The color scale is the same in all graphs.

around the nodal points [Fig. 10(b)]. Increasing energy from
the onset of scattering at �s , the scattering rate increases
and reaches its maximum at �0 + �s [see Eq. (14)]. Since
�p 
 �0 + �s , the antinodal excitations at |ω| = �p remain
rather sharp [Fig. 10(c)]. When the scattering rate is maximum
at |ω| = �0 + �s , in contrast, the excitations are very broad
[Fig. 10(d)]. At this energy, the real part of the self-energy
changes sign, and the quasiparticle dispersion correspondingly
jumps from below to above the noninteracting dispersion. This
abrupt change in dispersion renormalization occurs at the same
energy in the whole Brillouin zone, both for occupied and for
empty states, and leads to a removal of spectral weight which
is responsible for the dip in the DOS. Near the antinode, the
d-wave gap induces additional structures: the minimum-gap
locus is close to—but not exactly at—the position of the
noninteracting Fermi surface along the (π,0)–(π,π ) line,
due to Fermi-surface renormalization. One also notices the
reduction of the gap �p with respect to �0, due to the
competition between pairing and renormalization (Sec. III C).
In the low-energy region, the weakly dispersing quasiparticle
branch near (π,0) has lower energy than the corresponding
BCS branch, while above the dip energy, the quasiparticle
energy is higher than the noninteracting and BCS dispersions,
like in the nodal region.

For a more quantitative comparison of our results with real
ARPES data, we have simulated the upper panels of Fig. 2 in
Ref. 87. We set the temperature to 10 K, and filter our spectral
function with a Gaussian representing an energy resolution
of 18 meV and a momentum resolution of 0.05/a.87 The
result is displayed in Fig. 11. Close to the nodal direction
(left and middle panels), the agreement is good. The model
is too crude to completely capture the measured dispersion
in the region of the dip: The simulated dispersion jumps
from below to above the noninteracting dispersion, while
the experiment interpolates smoothly across the jump. We
attribute this discrepancy to additional scattering mechanisms
not included in the model, in particular those involving the
continuum of spin fluctuations.44

The energy of the “kink” around −70 meV is well
reproduced by the calculation. We emphasize that the feature
corresponding to the energy �0 + �s is not the kink, but
the midpoint of the jump, where the quasiparticle dispersion
crosses the noninteracting dispersion. It is also worth stressing
that this energy does not disperse, and is given by �0 + �s

at the node, in spite of the fact that the gap vanishes, as
demonstrated in Fig. 10(a). The experimental determination
of this energy scale by ARPES requires an assumption for
the noninteracting dispersion. Our results call into question
the assumption made in Ref. 87, that the quasiparticle and
noninteracting dispersions meet near −200 meV. This assump-
tion has direct implications for the value of the self-energy
deduced from ARPES. In particular, the real part vanishes
where the quasiparticle and noninteracting dispersions are
equal, i.e., near −200 meV in Ref. 84. Using the dispersion
from our fits, the real part of the self-energy would vanish at
the energy −(�0 + �s), which is consistent with a maximum
of scattering rate at this energy. In the antinodal region (right
panel of Fig. 11), there are differences between our results
and the ARPES data: The low-energy part, below the kink,
is too dispersive in the model, while the high-energy part is
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FIG. 11. (Color online) Simulated ARPES intensity for optimally doped Bi-2223 at T = 10 K. The spectral function of Fig. 10 was
multiplied by the Fermi function, and filtered to mimic a momentum resolution of 0.05/a and an energy resolution of 18 meV. The color scale
and the three momentum cuts correspond approximately to those of Fig. 2 in Ref. 87. The black lines show the noninteracting dispersion,
and the red lines shows the quasiparticle dispersion (maximum of momentum distribution curves) for energies larger than the gap. The arrows
indicate the “kink,” where the quasiparticle dispersion deviates from its low-energy linear behavior.

not dispersive enough. This could be partly due to different
Fermi surfaces in the experiment and in the model, which
imply that the segments of the dispersion considered in both
are not exactly identical. It could also be the consequence
of scattering processes neglected in the model. Despite these
differences, the kink energy and the minimum in the spectral
intensity, between the low-energy and high-energy parts, are
very similar. The overall agreement between Fig. 11 and Fig. 2
of Ref. 87 supports the claim that STM tunneling spectra,
although they come from a momentum-integrating probe, do
contain the necessary information needed to reconstruct the
low-energy momentum-resolved spectral function.

VI. SUMMARY AND CONCLUSIONS

We have performed an analysis of STM spectra measured
on optimally doped Bi-2223, by means of a strong-coupling
model which takes into account the Van Hove singularity
within a one-band description, a BCS gap with pure d-wave
symmetry, and a coupling to the (π,π ) spin resonance. This
model can reproduce the experimental spectra (Fig. 6), with
values of the parameters which are sound, and consistent with
values obtained by other experimental probes. The inhomo-
geneity of the electronic properties on the sample surface
allowed us to study variations in parameters as a function of
the spectral gap �p. Assuming a one-to-one correspondence
between �p and the hole doping level, changes in �p may be
interpreted as local variations of doping. The main trends are
that the Van Hove singularity moves to lower energies with
increasing �p, and the energy of the spin resonance decreases
(Fig. 8). The former supports the interpretation that larger gaps
correspond to lower doping, and the latter supports the claim
that the dip is caused by the spin resonance, rather than optical
phonons. The strength of the coupling to the spin resonance,
measured by the dispersion renormalization, increases steadily
for gaps larger than 42 meV, namely towards the underdoped
region of the phase diagram.

The presence of a Van Hove singularity, breaking the
electron-hole symmetry of the electronic spectrum, is un-
mistakable in the raw data (Fig. 7). Nevertheless, the pre-

cise determination of the hopping amplitudes ti remains a
challenge, as illustrated by the large uncertainties attached
to these parameters in Table I. The reason is that relatively
large variations of the ti’s can collaborate to induce marginal
changes in the electron DOS. Our confidence in the fitted
tight-binding dispersion stems from the ability of the whole
model to reproduce momentum-resolved ARPES data with
good accuracy. In turn, our determination of the band structure
may provide indications on how to extract the self-energy from
ARPES measurements.
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APPENDIX: THE FUNCTION B(ω,E)

Equations (5) to (11) imply that the function B(ω,E)
entering Eq. (13) reads

B(ω,E) = �2
∫ ∞

−∞
dε1dε2 [L
s

(ε1 − �s) − L
s
(ε1 + �s)]

×L
(ε2 − E)
b(ε1) + f (−ε2)

ω − ε1 − ε2 + i0+ , (A1)

where b and f are the Bose and Fermi functions, re-
spectively. Using the identity

∫
dx L
(x)/(z − x) = 1/[z +

i
 sign(Im z)], we obtain

�−2B(ω,E) =
∫ ∞

−∞
dε

L
s
(ε − �s)b(ε)

ω − E + i
 − ε

+
∫ ∞

−∞
dε

L
(ε − E)f (−ε)

ω − �s + i
s − ε

−{�s → −�s}. (A2)

The symbol in braces means that the result obtained from the
first two terms on the right-hand side must be antisymmetrized
with respect to �s . The remaining integrals can be evaluated
by closing the integration contour in the complex plane. The
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integrands can we rewritten in terms of products of simple
poles by means of the identities

L
(z) = 1

2πi

(
1

z − i

− 1

z + i


)
, (A3)

b(z) = 1

β

∑
i�n

ei�n0+

z − i�n

, (A4)

f (z) = − 1

β

∑
iωn

eiωn0+

z − iωn

. (A5)

Only one-half of the poles of the Bose or Fermi function are
enclosed in the contour and give a contribution. Therefore, the
integrals involve semi-infinite sums over Matsubara frequen-
cies, which can be converted into the digamma function ψ ,
using the relation

lim
M→∞

M∑
n=0

e±in0+

n + z
= ln M − ψ(z). (A6)

The final result is

�−2B(ω,E) = b(�s − i
s) + 1
2πi

ψ
[

β

2πi
(�s − i
s)

]
ω − E − �s + i(
 + 
s)

+

s

π
ψ

[
β

2πi
(ω − E + i
)

]
(ω − E − �s + i
)2 + 
2

s

−
1

2πi
ψ

[
β

2πi
(�s + i
s)

]
ω − E − �s + i(
 − 
s)

+ f (−E + i
) + 1
2πi

ψ
[

1
2 + β

2πi
(E − i
)

]
ω − E − �s + i(
 + 
s)

+


π

ψ
[
1
2 + β

2πi
(ω − �s + i
s)

]
(ω − E − �s + i
s)2 + 
2

−
1

2πi
ψ

[
1
2 + β

2πi
(E + i
)

]
ω − E − �s + i(
s − 
)

− {�s → −�s}. (A7)

The function B simplifies considerably in the case of a sharp resonance (
s = 0+) and for sharp Bogoliubov quasiparticles
(
 = 0+), as well as zero temperature. In this case, we have

B(ω,E) = �2

ω − E − �s sign(E) + i0+ , (A8)

as can be readily deduced from Eq. (A1), by replacing the Lorentzians by delta functions.
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