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Modeling the linewidth dependence of coherent terahertz emission from intrinsic Josephson
junction stacks in the hot-spot regime
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Recently, it has been found that, when operated at large input power, the linewidth �f of terahertz radiation
emitted from intrinsic Josephson junction stacks can be as narrow as some megahertz. In this high-bias regime,
a hot spot coexists with regions which are still superconducting. Surprisingly, �f was found to decrease with
increasing bath temperature. We present a simple model describing the dynamics of the stack in the presence
of a hot spot by two parallel arrays of pointlike Josephson junctions and an additional shunt resistor in parallel.
Heat diffusion is taken into account by thermally coupling all elements to a bath at temperature Tb. We present
current-voltage characteristics of the coupled system and calculations of the linewidth of the radiation as a
function of Tb. In the presence of a spatial gradient of the junction parameters’ critical current and resistance,
�f deceases with increasing Tb, similar to the experimental observation.
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I. INTRODUCTION

Terahertz generation utilizing stacks of intrinsic Josephson
junctions (IJJs) in the high-transition-temperature (high-T c)
cuprate Bi2Sr2CaCu2O8+δ (BSCCO) has become a major field
of research, both in terms of experiment1–21 and theory22–55

(for reviews, see Refs. 56 and 57). Typical IJJ stacks contain
500–2000 IJJs and are either patterned as mesas on top
of BSCCO single crystals, as Z-type all-superconducting
structures,13 or as free-standing mesas sandwiched between
gold electrodes.57,58 Emission frequencies are in the range
0.4–1 THz, with a maximum output power of several tens of
μW emitted into free space.57,58 For arrays of several mesas,
even hundreds of μW have been achieved.21 Operated at a bath
temperature Tb well below Tc, there are two emission regimes.
At moderate input power (“low-bias regime”), there is only
little heating, and the temperature distribution in the mesa is
roughly homogeneous and close to Tb. At high input power
(“high-bias regime”), a hot spot59 (an area heated to above Tc)
forms inside the mesa, leaving the “cold” part of the mesa for
terahertz generation via the Josephson effect. With respect to
the linewidth �f of radiation, one observes values of 0.5 GHz
or larger at low bias.14,57 In the presence of a hot spot, �f

can be much lower, reaching values down to ∼20 MHz.14,58

The strong difference in �f at, respectively, high and low
bias strongly indicates that, in addition to cavity resonances
which seem to play an important role for synchronization
both at high and low bias,1,8,11 the hot spot also is essential
for synchronization. Further, it was found that �f decreases
with increasing Tb.14 This behavior is quite unusual for any
Josephson junction based oscillator.

Thus, there is a clear need to investigate the dynamics
of Josephson junctions in the presence of strong heating.
Temperature distributions in IJJ mesas have been simulated
in Refs. 40, 45, and 53 by solving the three-dimensional (3D)

heat-diffusion equations in the absence of Josephson currents.
It has been shown that the peculiar temperature dependence
of the BSCCO c-axis resistance is the main ingredient being
responsible for hot-spot formation.53 Following Ref. 60, in
Ref. 53 a simple two-resistor model with thermal coupling
to a bath was presented, which is based on the temperature-
dependent BSCCO c-axis resistance and the c-axis thermal
conductance to describe hot-spot formation and the shape of
the current-voltage characteristic of the IJJ stacks. In this paper,
we adopt this approach to include the effect of Josephson
currents.

The model, presented in Sec. II, starts with a stack of
N Josephson junctions. As a first step, we assume that all
junctions oscillate in phase, acting as a single giant Josephson
junction. Subsequently, we split the giant junction into M =
N/p segments in the c direction. Here, p is a prime factor of N .
In each segment, the junctions are assumed to behave identical
and are described by the resistively and capacitively shunted
junction (RCSJ) model.61,62 For both the giant junction and
the segmented junctions, the stack is split in lateral direction
into two parts at, respectively, temperatures T1 and T2, to be
calculated from a balance between the heat generation in the
two parts and the vertical heat transfer to a bath. Simulations
by Yurgens40 showed that a distributed network of resistors
and capacitors representing the interior of the hot spot can
synchronize an array of (pointlike) Josephson junctions. Thus,
to provide potential phase synchronization, as an additional
element to the segmented junctions a resistor at temperature
T2 is attached across the whole array, representing the interior
of the hot spot.

As we will show in Sec. III, our model indeed allows for
a linewidth of the radiation which decreases with increasing
bath temperature. A necessary requirement is that the junction
parameters have a gradient in critical current and resistance,
representing the finite slope of the mesa edges.11

014524-11098-0121/2013/88(1)/014524(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.014524


B. GROSS et al. PHYSICAL REVIEW B 88, 014524 (2013)

II. MODEL

A. Stack of identical junctions

We consider a stack of N intrinsic Josephson junctions, each
junction described within the RCSJ model, in combination
with the time-dependent heat-diffusion equation taking into
account self-heating in the IJJ stack. The parameters resistance
and critical current, as well as the Nyquist noise arising from
the resistors, are temperature dependent. The electrical power
generated by the Josephson junctions in the resistive state
serves as input to the heat-diffusion equations to calculate
the temperature of the stack. We split the stack laterally
into two parts which for convenience we assume to have
equal size. Thus, each junction in the stack consists of two
parts connected in parallel. Each subjunction is described by
a parallel connection of a Josephson element, a resistor, a
capacitor, and a noise source. We further neglect the resistance
of the in-plane parallel wires (electrodes) connecting the two
parts.63 Then, all circuit elements carry the same voltage Un

which, using the second Josephson relation, transforms into
γ̇1,n = γ̇2,n = 2πUn/�0. �0 is the flux quantum. The first
index on the Josephson phase differences γk,n labels the two
parts of the junction and n = 1, . . . ,N labels the junctions.
We further assume that no magnetic flux threads the loop
formed between the two parts. Then, the Josephson phase
differences γ1,n and γ2,n are equal: γ1,n = γ2,n ≡ γn. Under
these assumptions, the electrical part of the circuit reads as

I = 2π (C1,n + C2,n)

�0
γ̈n + 2π

�0

[
1

R1,n(T1)
+ 1

R2,n(T2)

]
γ̇n

+ [Ic1,n(T1) + Ic2,n(T2)] sin γn + IN1,n(T1) + IN2,n(T2),

(1)

where C1,n, C2,n, R1,n, R2,n, Ic1,n, and Ic2,n are the junction
capacitances, resistances, and critical currents, with index
n = 1, . . . ,N . We assume that the junction resistances and
critical currents are temperature dependent. For convenience,
we assume that the capacitances do not depend on temperature.
We further assume that all subjunctions in part 1 of the
stack are at temperature T1 while the junctions in part 2
are at temperature T2. This is justified from calculations
of the heat-diffusion equations in the absence of Josephson
currents.40

We now assume that all Josephson junctions oscillate in
phase, and sum up Eq. (1) over all N junctions. By assumption,
all γn = γ are equal, and we further assume that also the
junction critical currents, capacitances, and resistances do not
depend on n. This yields

I = 2π (C1 + C2)

N�0
(Nγ̈ ) + 2π

�0

[
1

NR1(T1)
+ 1

NR2(T2)

]
(Nγ̇ )

+ [Ic1(T1) + Ic2(T2)] sin γ

+ 1

N

N∑
n=1

[IN1,n(T1) + IN2,n(T2)], (2)

where 2πNγ̇ /�0 is the voltage NU across the whole stack.
Ck/N and NRk are the total capacitance and resistance of the

FIG. 1. A “giant” intrinsic Josephson junction, laterally split into
two parts that can be at different temperatures T1 and T2. Solid lines in-
dicate electrical circuit, dashed lines thermal circuit. Heat transfer Wk

of the two parts is only to the bath but not between the two parts, k =
(1,2). See Eq. (1) and the corresponding text for a discussion how indi-
vidual junctions are electrically connected to form the giant junction.
The scheme can also be seen in Fig. 2 when interpreting the junctions
Jk,m in this graph as individual junctions laterally split into two parts.

two segments. For the noise currents

INk = 1

N

N∑
n=1

INk,n, (3)

we assume a white spectral power density

SI,k = 4kB

Tk

NRk

(4)

with k = (1,2) and the Boltzmann constant kB . Thus, the stack
behaves as a giant junction, as sketched in Fig. 1.

Note that one or even both parts of the stack can be above
the critical temperature Tc. Then, Ic1, Ic2, or both are zero,
while the other parameters remain finite. For Ic1 + Ic2 = 0,
Eq. (2) still is solvable, and �0γ̇ /2π acts just as a somewhat
unusual expression for the voltage U . The more critical term
(Ic1 + Ic2) sin γ involving the phase γ (the concept which is
not defined above Tc) has disappeared.

Assuming that there is no (in-plane) heat transfer between
the two parts of the stack, the thermal part of our system is
given by

C̃1Ṫ1 = U 2

R1(T1)
− K1

N
(T1 − Tb) (5)

and

C̃1Ṫ2 = U 2

R2(T2)
− K2

N
(T2 − Tb). (6)

C̃1 and C̃2 are the heat capacitances per junction of the
two parts, which below we take equal and temperature
independent. Q1 = U 2/R1 and Q2 = U 2/R2 represent the
Joule heating power per junction generated by the two parts
of the stack. K1 and K2 are the c-axis thermal conductances
of the stack to the bath at temperature Tb. Following, we will
assume temperature-independent constants K1 = K2 = K .

Note that we did not include an in-plane heat transfer
K12. The BSCCO in-pane conductivity κab is roughly five
times bigger than the out-of-plane conductivity κc. On the
other hand, a typical mesa is ∼1 μm thick and ∼300 μm
long. K1 and K2 are inversely proportional to the mesa length
while K12 is inversely proportional to its thickness. Thus, the
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geometric aspect ratio overwhelms the anisotropy in the heat
conductances. On the next level, one should further consider
the temperature distribution in the base crystal, which is some
10–50 μm thick and some 500 μm long and has bottom
cooling. Also, one should allow that the size of the hot spot is
variable. Continuing along this line, one realizes that the next
iteration is the “1D” model, as used in Ref. 53, which is out of
the scope of the present model.

We next write Eqs. (2)–(6) in a normalized form, using the
4.2-K values of the various parameters as reference. Currents
are measured in units of Ic0 = Ic1(4.2 K) + Ic2(4.2 K),
resistances in units of the total resistance of one IJJ, R0 =
[R1(4.2 K)−1 + R2(4.2 K)−1]−1, capacitances in units of the
total capacitance C = C1 + C2 per junction, voltages in units
of Ic0R0, and time in units τ = �0/2πIc0R0. The spectral
density of the normalized noise current iNk is

si,k = 4
	0

N

T

4.2 K

R0

Rk(T )
, (7)

with 	0 = 2πkB ·4.2 K/(Ic0�0). Using

βc = 2πCIc0R
2
0

�0
, (8)

we obtain the normalized form of Eq. (2) as

i = βc[c1 + c2]γ̈ +
[

1

r1(T1)
+ 1

r2(T2)

]
γ̇

+ [ic1(T1) + ic2(T2)] sin γ + iN1(T1) + iN2(T2), (9)

with i = I/Ic0, ick(Tk) = Ick(Tk)/Ic0, rk(Tk) = Rk(Tk)/R0,
ck = Ck/C, iN,k = IN,k/Ic0. Equation (9) is close to the
standard form of the (single junction) RCSJ equation. Note,
however, that the parameters r1, r2, ic1, and ic2 are time
dependent through the time dependence of the temperatures
T1 and T2.

In normalized form, Eqs. (5) and (6) read as

c̃1Ṫ1 = γ̇ 2

r1(T1)
− k1(T1 − Tb) (10)

and

c̃2Ṫ2 = γ̇ 2

r2(T2)
− k2(T2 − Tb), (11)

with c̃k = 2πC̃k/�0Ic0 and kk = Kk/NI 2
c0R0. The quantities

c̃k and kk are in units of 1/K and the temperatures T1 and T2 are
still dimensioned. We have also used the normalized second
Josephson relation u = γ̇ , where u is the normalized voltage
per junction.

B. Segmented stack

We next turn to the actual model used for our calculations.
A schematic is shown in Fig. 2. Using the same normalizations,
it is straightforward to arrive at the equations

i = βc[c1 + c2]γ̈m +
[

1

r1(T1)
+ 1

r2(T2)

]
γ̇m

+ [ic1,m(T1) + ic2,m(T2)] sin γm + iN1,m(T1)

+ iN2,m(T2) + iNs(T2) + N

Mrs(T2)

M∑
m=1

γ̇m, (12)

FIG. 2. A stack of intrinsic Josephson junctions consisting of M

segments as a generalization of the circuit shown in Fig. 1. Each
segment is laterally split into two parts that can be at different
temperatures T1 and T2. A shunt resistor Rs at temperature T2,
representing the inner part of the hot spot, is mounted across the
whole stack.

c̃1Ṫ1 = 1

M

M∑
m=1

γ̇ 2
m

r1,m(T1)
− k1(T1 − Tb), (13)

and

c̃2Ṫ2 = 1

M

M∑
m=1

γ̇ 2
,m

r2,m(T2)
+ N

rs(T2)

(
1

M

M∑
m=1

γ̇m

)2

− k2(T2 − Tb). (14)

In Eq. (12), the index m runs from 1, . . . ,M . The last term
in Eq. (12) represents the normalized current through the
resistor rs . This resistor, which we assume to have the same
temperature T2 as array 2, generates a noise current iNs with
spectral power density

ss = 4	0
T2

4.2 K

1

rs(T2)
. (15)

The spectral power densities of the noise currents iNk,m(Tk)
are given by

si,k,m = 4	0
Tk

4.2 K

M

Nrk,m(Tk)
. (16)

The second term in Eq. (14) represents Ohmic heating in
the resistor rs . For Rs we will assume the same temperature
dependence as for the other resistors. Unless stated differently,
throughout the paper we will also assume that rs/N = r2 =
M−1�M

m=1r2,m, i.e., half of the in-plane area of the “hot” part of
the stack is formed by the shunt resistor. The hot area itself shall
cover half of the junction area, i.e., r−1

1 = r−1
2 + (rs/N)−1,

with r1 = M−1�M
m=1r1,m. We will, unless stated differently,

also use identical 4.2-K values of the critical currents and
resistances of all segments.

In the limit Rs → ∞, the last term in Eq. (12) disappears
and the M segments are uncoupled except for a parametric cou-
pling introduced through the time dependence of temperatures
T1 and T2, as calculated in Eqs. (13) and (14). In principle, this
coupling can introduce phase lock between the segments (we
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have tested this), however, only if the thermal part of the circuit
becomes unrealistically fast, i.e., the c̃k become very small. It
has been shown in Ref. 40 that a distributed network of resistors
and capacitors modeling the hot spot can provide phase lock.
In such a network, there are not only current paths which
connect adjacent junctions, but also paths which connect more
distant junctions. In our lumped circuit model, the most simple
synchronizing element representing this is the resistor Rs in
parallel to the two junction arrays. Note that we have omitted
this resistor in Fig. 1. Here, this resistor would just add in paral-
lel to the resistor R2, yielding no new information. Further, we
could have also chosen a model where only one junction array
(at temperature T1) is present and is shunted by a resistor at
temperature T2, representing the hot spot. In fact, we have stud-
ied this model. It, however, turns out that over a wide range of
currents i � 1 the array can be multistable, allowing both for a
resistive and a zero voltage state for each junction. The reason
is that the actual current through the array is well below the
critical current of the various junctions even for i � 1. This sit-
uation is not observed in experiment, at least as long as a single
stack with a hot spot is considered. The model shown in Fig. 2
thus seems to be the minimal model to describe both heating
effects in an IJJ stack and phase synchronization phenomena.

C. Choice of parameters

For an intrinsic Josephson junction at T = 4.2 K one
typically finds Ic0R0 ∼ 15 mV, corresponding to a charac-
teristic frequency fc0 = Ic0R0/�0 ∼ 7.5 THz. The Josephson
plasma frequency fpl0 = fc0/

√
βc < 150 GHz and thus βc >

2500. Numerically, such large numbers cause instabilities and
may even not be realistic due to additional (high-frequency)
damping mechanisms. Thus, in the calculations discussed in
the following, we use βc = 200. For the large mesas used for
terahertz generation, one typically has Ic0 ∼ 30 mA, leading
to a “characteristic power” I 2

c0R0 ∼ 0.5 mW per junction. In
Ref. 53, K ∼ 6 × 10−4 W/K has been used to reasonably fit
the heating properties of a 300 × 50 μm2 mesa with N ∼
670 IJJs. This leads to k ∼ 1.8 × 10−3/K. Following, we will
use k = 10−3/ K. The effective heat capacitance of the whole
mesa is hard to estimate because of the various contacting
and glue layers. It is also strongly temperature dependent.64

However, later on we will be interested in situations where the
stack has reached a constant temperature so that the exact
value does not matter very much. For simplicity, using a
specific-heat capacitance of 50 J/m3 K, which is a typical
number for T ∼ 50 K, we obtain c̃ ∼ 100/K. We use this
value for the calculations shown below. For Ic0 = 30 mA,
we further obtain 	0 = 5.9 × 10−6, yielding 	0/N ∼ 10−8.
In Sec. III, we will see that over a wide temperature range the
normalized linewidth �f/fc0 of the Josephson oscillations is
on the order of 	0/N , if the junctions are phase locked. The
integration time used for the calculation should be well above
the reciprocal linewidth to resolve the line. This is too time
consuming for a realistic value of 	0/N . Following, we thus
use 	0M/N = 10−4 to make calculations feasible.

For the temperature dependence of Ic, for T < Tc = 80 K,
we use the parabolic form

Ic(T ) = Ic(0)[1 − (T/Tc)2]. (17)

0 50 100 150 200

0.01

0.1

1

 T (K)

R(
T)

/R
(4

.2
K

)

Tc

FIG. 3. Temperature dependence of c-axis resistance, as used for
calculations [Eq. (18)]. Tc is the critical temperature.

For T > Tc, Ic(T ) = 0. For the c-axis resistance we use a
somewhat complex expression, to be normalized to R0:

R(T ) = 6[exp(−T/22 K)

+ exp(−T 2/1900 K2)] + 0.09. (18)

This expression, shown in Fig. 3, is an approximate fit to the
BSCCO c-axis R(T ) curve used in Ref. 53. For temperatures
above the transition temperature Tc the experimental R(T )
can be measured directly, below Tc it can be estimated either
extrapolating the resistive branches of the current-voltage
characteristic (IVC) to zero current20,40 or by adjusting it so
that measured overheated IVCs are reproduced.

III. RESULTS

Let us first look at IVCs, as calculated from Eqs. (12)–(14)
using a fifth-order Runge-Kutta method. An IVC is typically
calculated by starting with i = 0 and initial conditions γ1,m =
γ̇1,m = 0, T1 = Tb, and T2 = 1.01Tb and later on increasing i

by some step �i, keeping the values of γ1,m, γ̇1,m, T1, and T2

from the previous step as initial conditions. Having reached
some maximum value of i, the current is decreased back to
0. To calculate u for a given i, we choose a time step �t =
0.2/r , where r = [r−1

1 + r−1
2 + (rs/N )−1]−1 is the normalized

resistance per junction, and then let the system evolve for
100 000 time steps to reach a stationary state. This step is
repeated until the temperatures T1 and T2 are stable within
1%. We then take data over 100 000 time steps to calculate the
average voltage v per junction.

In Fig. 4(a), we compare IVCs, as calculated at T = 10 K
for M = 1 and 10. Both curves nearly coincide, which is due to
the normalizations used (in fact, also IVCs for rs → ∞ would
lie on top of the IVCs shown). For the M = 10 case we also
traced out the nine inner branches n = 1, . . . ,9, where n of
the segments are in the resistive state while M − n segments
are in the zero-voltage state. The branches are traced out by
choosing initial conditions γ̇1,m = ri for the segments desired
to be resistive, while using γ̇1,m = 0 for the other segments.
The IVCs shown in Fig. 4(a) closely resemble experimental
data.17 The maximum voltage v ≈ 0.14, corresponding to V ≈
2 mV in dimensioned units, is reached for i ≈ 0.35. Here,
T1 ≈ T2 ≈ 32 K [compare Fig. 4(b)]. For larger currents, T2

becomes larger than T1, e.g., reaching Tc = 80 K at i ≈ 1.
Here, T1 ≈ 15 K. Figure 5 shows IVCs for M = 1, for bath
temperatures between 10 and 80 K. Also, these IVCs closely
resemble experimental curves.
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FIG. 4. (Color online) (a) Current-voltage characteristic for Tb =
10 K, M = 1, and M = 10. (b) Temperatures T1 and T2 of the two
parts of the IJJ stack vs current i for Tb = 10 K. Tc denotes the
temperature where the hot part has reached the superconducting
transition.

The main purpose of our calculations is to investigate the
linewidth �f of emission as a function of bath temperature. In
the experiments of Ref. 14, �f versus Tb has been determined
at a fixed frequency of f ≈ 0.62 THz, corresponding to V ≈
1.3 mV or v ≈ 0.08. For our simulation, we have chosen a
somewhat smaller value v = 0.05. The (red) dashed line shown
in Fig. 4(b) indicates bias points at various bath temperatures
where the same voltage v = 0.05 is realized. Note that for
Tb = 50 K the (red) dashed line intersects the IVC both at high
bias, i.e., in the region of negative differential resistance and at
low bias, at i ≈ 0.55. For this value of v we can determine
“emission” spectra at temperatures between 10 and 50 K.
“Emission” spectra are calculated by recording the voltage
u across the stack over a reasonably long time of typically
5 × 105 time units, taking a Fourier transform and averaging
the resulting power spectrum up to 200 times.

For a pointlike Josephson junction with resistance R at fixed
temperature T and no back-action of temperature fluctuations

0.00 0.05 0.10 0.15
0.0

0.5

1.0

1.5

2.0

2.5

50 K
70 K

30 K
10 K

Tb = 10 K...80 K

i

v

M = 1

FIG. 5. (Color online) Current-voltage characteristics for M = 1
and bath temperatures between 10 and 80 K, in steps of 10 K.

to the junction parameters, the linewidth of radiation is given
by65,66

�f = 4πkBTr2

�2
0R

, (19)

where r is the differential resistance at the bias point. Using
r = R, which is a good approximation as long as the bias
current is well above the critical current, one obtains �f =
4πkBT R/�2

0, and, with the normalization of frequencies to
fc0, a dimensionless linewidth

�f = 2	0
R

R0

T

4.2 K
. (20)

Note that for large BSCCO stacks we can not determine
the differential resistance r from measured IVCs because the
temperatures of both the cold and the hot parts vary strongly
with the bias current. Still, one may use R = V/I to obtain
the resistance at a given bias point. For the case of hot and
cold regions in parallel one can, following Ref. 65, define an
effective temperature via

Teff = Reff

[
T1

R1
+ T2

R2
+ T2N

Rs

]
, (21)

where Reff = R0v/i is the resistance of the three parts of the
stack connected in parallel. The dimensionless linewidth in
this case is

�f0 = 2	0
Reff

R0

Teff

4.2 K
, (22)

in units of the 4.2-K characteristic frequency. Since the cold
part at temperature T1 has a high resistance, this roughly
reduces to Teff = T2 and �f0 = 2	0(v/i)[T2/4.2 K]. In our
case, T2 is of order 100–130 K in the high-bias regime and,
thus, the main change in �f0 comes from the factor v/i which,
according to Fig. 4(b), increases from about 0.025 at Tb =
10 K to 0.066 at Tb = 50 K. Not very surprisingly, we obtain
a linewidth which increases with increasing Tb.

Also note that (v/i)[T2/4.2 K] is roughly of order unity
and thus �f0 is of order 2	0 when we neglect back-actions of
the temperature fluctuations to the junction stack. Performing
simulations with fixed, i.e., time-independent, values of T1 and
T2 we have tested the above relation for �f0 and found very
good agreement. By contrast, including back-actions, we find
in simulations that �f can differ from �f0. Particularly, at high
current (relative to the critical current at given temperature) and
for small values of M it can become significantly lower than
�f0. Figure 6 shows the effect for Tb = 10 K, i = 2.01, and
M = 1, 2, and 10. In the graphs, the power u2

ω is plotted versus
f/fc. For these simulations we have used rs → ∞. The Fourier
spectra of Fig. 6(a) have been calculated for time-independent
values of T1 = 11.5 K and T2 = 109 K, while for the curves in
Fig. 6(b) the coupled Eqs. (12)–(14) have been used. In both
figures, the Fourier spectra for given M are multiplied with
M . The curves of Fig. 6(a) are for uncoupled segments. Then,
for the normalization used, one expects �f to be independent
of M . The amplitude u2

ω should decrease ∝M−1 since the
voltages u for the M segments are dephased randomly due to
the white noise produced by the resistors. This can clearly be
seen in Fig. 6(a). Also, the normalized linewidth of 1.3 × 10−4

is in very good agreement with the value calculated from �f0.
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FIG. 6. (Color online) Fourier transforms (power) u2
ω of the

voltage u across the stack vs f/fc for Tb = 10 K, i = 2.01, and
rs → ∞ for (a) time-independent temperatures T1 and T2 and (b) for
the thermally coupled circuit.

Including back-action, the line becomes sharper by about a
factor of 2 for M = 1. By contrast, both for M = 2 and 10 the
linewidth is close to the case of zero back-action.

Figure 7 shows corresponding data for the thermally
coupled circuit in the presence of the shunt resistor. Note
that in this plot the u2

ω are not multiplied with M . Obviously,
u2

ω increases with increasing M indicating that phase lock
has occurred. In fact, we have also checked this in a more
traditional way by choosing different initial conditions for
the Josephson phases of all segments; after some time, these
phases tended to approach the same value. The amplitudes u2

ω

increase (from 4 to 10.5) and �f decreases (from 3.7 × 10−5

to 1.4 × 10−5) roughly logarithmically with increasing M ,
i.e., a scaling u2

ω ∝ M and �f ∝ M is not observed. This
indicates that the phase lock is not very strong at least for
this bias point and for the large value of 	0M/N used for
the simulations. In Fig. 8(a), we show �f versus Tb for the
thermally coupled circuit including the shunt resistor. For the
high-bias data, �f clearly increases with increasing Tb, i.e.,

49.5 50.0 50.5
0

2

4

6

8

10 M u2

M u2

M u2

M u2

T
i

 u
2

f/fc

FIG. 7. (Color online) Fourier transforms (power) of the voltage
u across the stack vs f/fc for Tb = 10 K, i = 2.01, and rs/N = r2

for the thermally coupled circuit.
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FIG. 8. (Color online) (a) Linewidth �f and (b) amplitude u2
ω

vs bath temperature for the thermally coupled circuit with rs/N = r2

and the cases M = 1, 10, and 100.

the experimental observations are not reproduced at this level.
Indeed, we also performed similar calculations for other values
of v and obtained similar results. Further note the data points
indicated by “low bias” in Fig. 8. For all values of M , the
linewidths taken at this bias are higher than the corresponding
high-bias data points, although the differences get smaller with
increasing M . Figure 8(b) shows the amplitude u2

ω versus Tb.
For Tb > 20 K, u2

ω decreases with increasing bath temperature.
For M = 10 and 100, the data points at 10 K are somewhat
lower than for 20 K, indicating a shallow maximum near a
bath temperature of 20 K. Also, this behavior is not in good
agreement with measurements, where often the emission is
maximum at intermediate temperatures between 30 and 40 K
(see, e.g., Ref. 8).

So far we have assumed that the parameters critical current
and resistance are the same for all junctions. It has been
emphasized, however, that the finite slope of the edges
of a BSCCO mesa leads to a gradient in these junction
parameters.11 We account for this effect by introducing a
linear increase of the junction critical currents via ic,m ∝
(1 + m · amax/M) and a linear decrease of the resistances via
rk,m ∝ (1 + m · amax/M)−1. The parameter amax controls the
relative increase of the junction area between the bottom and
the top of the stack and typically amounts to a few percent
in experiment. Figure 9 shows �f and the amplitude u2

ω

versus amax for different bath temperatures. For a given Tb,
�f increases and u2

ω decreases with increasing amax. However,
both the �f curves and the u2

ω curves intersect for different
values of Tb, showing that both �f versus Tb and u2

ω versus
Tb for fixed amax can behave nonmonotonously. In particular,
for amax > 0.02 there are regimes where �f decreases with
increasing bath temperature.

Figure 10 shows this explicitly for amax = 0.04. �f [cf.
Fig. 10(a)] runs through a minimum, reached near Tb =
40 K for M = 10 and near Tb = 30 K for M = 100. Only here
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�f is close to the value reached for amax = 0 (cf. Fig. 8). The
amplitude u2

ω versus Tb runs through a pronounced maximum,
similar as experimental data.8 For amax = 0 the decrease of
u2

ω at large values of Tb is essentially caused by the increase
of thermal fluctuations. For amax = 0.04 this effect is present
as well, leading to the decrease of u2

ω at high temperatures.
At low bath temperature, the spread in junction parameters
apparently affects u2

ω strongly, causing the decrease of u2
ω at

low temperatures. We did not find a completely conclusive
reason for this effect. However, it may have to do with an
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FIG. 10. (Color online) (a) Linewidth �f and (b) amplitude u2
ω

vs Tb for M = 10, M = 100, and amax = 0.04. Terminating points at
Tb = 50 K in (a) and (b) are taken at low bias.

effective Stewart-McCumber parameter

βc,eff = 2πCIc(Tb,i)R(Tb,i)2

�0
, (23)

which governs the quality factor of the Josephson junctions
at a given bias current i and a given bath temperature Tb.
This parameter should not be too low for good phase lock.67

At low values of Tb, the bias current is high (i = 2.01 at
Tb = 10 K) and both the Ohmic resistance v/i and the critical
current Ic(Tb,i) = Ic1(T1) + Ic1(T2) are low. At Tb = 10 K
and i = 2.01, βc,eff turns out to be about 0.06. For the bias
points shown in Fig. 4(b), βc,eff increases monotonically with
increasing Tb, reaching, e.g., a value of 0.2 at Tb = 50 K
and i = 0.77.

For fc0 = 7.5 THz the normalized minimal linewidth of
about 5 × 10−5 (2.5 × 10−5), as calculated for M = 10 (M =
100), corresponds to a dimensioned linewidth of 370 MHz
(180 MHz). Since we have taken a large value of 	0M/N ,
not surprisingly this is larger than the smallest values of �f

measured experimentally.14 We thus finally also performed
a simulation with M = 700, using a more realistic value
	0 = 10−5, and obtained a minimal linewidth of about
25 MHz. This is in the range of the measured minimal
linewidth.

We clearly emphasize that we consider the model presented
here just as a first step to describe the (Josephson) dynamics
of stacked IJJs in the presence of heating. Nonetheless, the
mechanism of phase synchronization via hot elements is likely
to be present also in more sophisticated models. For example,
coupled sine Gordon equations68,69 could be combined with
heat-diffusion equations in a simple manner as presented
here. The implementation of such equations is straightforward.
However, calculating linewidths of radiation will be extremely
time consuming, justifying the simplified approach taken in
this paper.

IV. CONCLUSIONS

In conclusion, we have presented a simple model for
intrinsic Josephson junctions stacks which are thermally
coupled to a heat sink. The model incorporates two parallel
arrays of Josephson junctions at temperatures T1 and T2 and an
additional resistor at a temperature T2 in parallel to the arrays.
The main motivation of our calculations was to provide a first
step towards the description of terahertz dynamics of intrinsic
junction stacks at high bias, where a hot spot coexists with a
superconducting region. In experiment, the emitted terahertz
power is often found to be maximal at intermediate bath
temperatures in the range 30–40 K.8 Further, the linewidth
of radiation decreases when Tb is increased.14 Both features
are reproduced in our model, if a gradient in the junction
parameters critical current and resistance is introduced. Such
a gradient is likely to be present in experiment due to the
sloped edges of IJJ stacks.11 It was found in our model that
such a gradient leads to a larger degradation of phase-locking
properties at lower Tb than at higher Tb. By contrast, thermal
fluctuations, also degrading phase lock, increase with increas-
ing Tb. These two effects counteract, leading to a maximum
amplitude of the ac Josephson peak u2

ω at an intermediate
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temperature near 40 K and an increase of linewidth �f away
from this maximum. In particular, the decrease of �f with
increasing Tb in the range 10 K < Tb < 40 K is reproduced
qualitatively. In spite of these encouraging results, we strongly
emphasize that we presented a zero-order approach here. More
sophisticated models such as the 1D and 2D coupled sine-
Gordon equations, with temperature-dependent parameters,
are clearly required, e.g., to shine light on the interactions
between the hotpot, cavity modes, and linewidth of radiation.
The present approach may show the way how to proceed in this
direction.
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7S. Guénon, M. Grünzweig, B. Gross, J. Yuan, Z. Jiang, Y. Zhong,
A. Iishi, P. Wu, T. Hatano, D. Koelle et al., Phys. Rev. B 82, 214506
(2010).
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