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Strong Pauli-limiting behavior of Hc2 and uniaxial pressure dependencies in KFe2As2
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KFe2As2 single crystals are studied using specific-heat, high-resolution thermal-expansion, magnetization, and
magnetostriction measurements. The magnetization and magnetostriction data provide clear evidence for strong
Pauli-limiting effects of the upper critical field for magnetic fields parallel to the FeAs planes, suggesting that
KFe2As2 may be a good candidate to search for the Fulde-Ferrell-Larkin-Ovchinnikov state. Using standard
thermodynamic relations, the uniaxial pressure derivatives of the critical temperature Tc, the normal-state
Sommerfeld coefficient γn, the normal-state susceptibility χ , and the thermodynamic critical field Hc are
calculated from our data. We find that the close relationship between doping and pressure as found in other
Fe-based systems does not hold for KFe2As2.
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I. INTRODUCTION

The detailed understanding of Fe-based superconductors
continues to present a considerable challenge in condensed
matter physics.1–4 Of particular interest recently has been the
strongly-hole-doped compound KFe2As2, which is the end
member of the (Ba,K)Fe2As2 system and has a much lower
Tc of only 3.4 K than the optimal Tc value of about 40 K
near 40% K content.5–7 Whereas Ba0.6K0.4Fe2As2 appears
to have a fully gapped s-wave order parameter,8,9 there are
indications for a nodal superconducting state in KFe2As2. In
fact, a d-wave state was predicted early on from functional
renormalization-group theory.10 Experimentally, penetration
depth and thermal conductivity studies have been interpreted
in terms of a d-wave order parameter,11,12 whereas recent
laser angle-resolved photoemission spectroscopy (ARPES)
experiments suggest a nodal s-wave state.13 The electronic
structure of KFe2As2 has been investigated with both de
Haas–van Alphen and ARPES methods6,14 and these studies
show that KFe2As2 has only hole pockets. This of course
immediately raises the question of whether superconductivity
in KFe2As2 has the same mechanism as the optimally doped
system, for which superconductivity has been suggested to
originate from interband pairing between electron and hole
pockets.4 Inelastic neutron scattering results still show signs
of spin fluctuations, which are, however, incommensurate
but may nevertheless lead to superconducting pairing in the
heavily overdoped region.15,16 Paradoxically, KFe2As2 has
the largest γn in the (Ba,K)Fe2As2 system in spite of the
low-Tc value and this has been linked to a close proximity
to an orbitally selective Mott transition due to strong Hund
correlations.17,18

In this article we study the normal- and superconducting-
state properties of KFe2As2 using several thermodynamic
probes: specific-heat, high-resolution thermal-expansion,
magnetization, and magnetostriction measurements. Our
magnetization and magnetostriction data clearly show that
KFe2As2 is strongly Pauli limited for fields parallel to the
FeAs planes and thus this system may be another possible

candidate to search for the Fulde-Ferrell-Larkin-
Ovchinnikov19,20 (FFLO) state. Using standard thermo-
dynamic relations, the uniaxial pressure derivatives of the
critical temperature Tc, the normal-state Sommerfeld
coefficient γn, the normal-state magnetic susceptibility χ , and
the thermodynamic critical field Hc are calculated from our
data. First, we find that the uniaxial pressure derivatives of
Tc are very anisotropic and of opposite sign as compared to
Co-doped Ba122.21 We find that both Tc and γn decrease
under hydrostatic pressure. This is in contrast to the
doping-induced behavior and shows that pressure and doping
cannot be equated, as they can in the Co- and P-doped Ba122
systems.22,23

II. EXPERIMENTAL DETAILS

Single crystals of KFe2As2 were grown in alumina crucibles
using a K-As rich flux with a K:Fe:As ratio of about 0.3:0.1:0.6.
The crucibles were sealed in an iron cylinder filled with argon
gas. After heating up to 980 ◦C the furnace was cooled down
slowly at a rate of about 0.5 ◦C/h. Crystals with dimensions up
to 3.0 × 2.5 × 1.0 mm3 were used in the present investigation.
The specific heat was measured with a commercial Quantum
Design Physical Property Measurement System (PPMS) for T

> 0.4 K and with a homemade calorimeter for T < 0.4 K. For
T > 2 K, we used a vibrating sample magnetometer to measure
the magnetization. For T < 2 K, magnetization measurements
were performed using a low-temperature superconducting
quantum interference device (magnetometer) equipped with a
miniature dilution refrigerator developed at the Institut Néel–
CNRS Grenoble. The sample was attached to a copper tress
suspended from the dilution unit’s mixing chamber, which
descends through the bore of the magnet. The magnetometer is
equipped with a solenoid capable of producing fields up to 8 T.
The setup can measure absolute values of the magnetization
by the extraction method at temperatures down to 75 mK. The
thermal expansion and the magnetostriction were measured in
a custom-made capacitive dilatometer with a typical resolution
of �L/L0 ∼ 10−8–10−10.22,24
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FIG. 1. (Color online) Specific heat of KFe2As2 in 0 and 5.5 T
for H‖a.

III. RESULTS

A. Heat capacity

Figure 1 shows typical heat-capacity data of our samples,
clearly demonstrating a sharp superconducting transition at
T c = 3.4 K and a large Sommerfeld coefficient γ ≈
100 mJ mol−1 K−2, as reported earlier.17 We attribute the
decrease of Cp/T below about 0.5 K to small superconducting
gaps on parts of the Fermi surface, which surprisingly appear
to be absent in recent data.25 In the following, we use the
data of Fig. 1 for calculating the thermodynamic critical field
(see Sec. III C) and the uniaxial pressure dependences (see
Sec. IV B).

B. Reversible magnetization

Figure 2(a) shows raw magnetization curves measured
down to 0.09 K in increasing and decreasing magnetic field
applied parallel to the a axis. In the normal state, i.e., for
T = 4 K, we find a large paramagnetic contribution with
a field-independent susceptibility χa of about 4 × 10−4, in
agreement with our previous study.17 At all temperatures, the
magnetization is fully reversible over a wide field interval
below the upper critical field Hc2(T ). This shows that our
samples have very weak flux pinning, which is compatible
with the recent observation of a well-defined hexagonal vortex
lattice,26 but is in strong contrast to more disordered Co-doped
systems.27,28 Thus accurate reversible magnetization data can
be obtained by averaging the field increasing and decreasing
branches of the magnetization loop, as shown in Fig. 2(b).
These curves clearly exhibit several features characteristic
of strongly Pauli-limited superconductors.29–31 First, M(H )
is negative, i.e., diamagnetic, only in a narrow low-field
interval 0 < H/Hc2 < 0.3 and positive, i.e., paramagnetic,
for higher fields. Second, for the lowest temperature measured
(T = 0.09 K), M(H ) increases strongly upon approaching
Hc2(T ), rather than exhibiting the linear behavior expected
from Ginzburg-Landau theory in the absence of paramagnetic
effects. This can be more clearly seen in Fig. 2(c), where
the normal-state magnetization has been subtracted. Similar

FIG. 2. (Color online) (a) Magnetization curves for H‖a at
different temperatures. (b) Reversible part of the magnetization. The
inset shows calculations from Ichioka and co-workers (Refs. 33
and 34) for several values of αM (for αM > 1.8, transitions are first
order). (c) Difference between the reversible superconducting- and
normal-state magnetizations. The inset shows data for H‖c at several
temperatures. The arrows indicate the values of Hc2(T ).

behavior was already reported in both high-κ dirty Ti-V alloys
(κ ≈ 68) (Ref. 32) and clean CeCoIn5 (κ ≈ 100) (Refs. 29
and 30) and represents direct evidence for the existence of
strong paramagnetic effects in KFe2As2 which become more
and more important with decreasing temperatures.

The behavior of Pauli-limited superconductors was investi-
gated theoretically in detail by Ichioka and Machida.33,34 In the
inset of Fig. 2(b), we show their calculations (at T/Tc = 0.1)
for different values of the Maki parameter

αM =
√

2
Horb(0)

Hp(0)
(1)
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[where Horb(0) and Hp(0) are the zero-temperature values of
the orbital and Pauli fields, respectively], which is a measure
of the paramagnetic pair-breaking strength.35 These theoretical
curves clearly show that (i) the magnetization becomes rapidly
positive with increasing field in the superconducting state with
increasing αM and (ii) the transition to the normal state at
Hc2 becomes first-order for large values of αM . Our 0.09-K
curve (T/Tc ≈ 0.03) lies somewhere between the calculated
curves for αM = 1.7 and 3.4, suggesting a weakly first-order
transition at T = 0 K. Thus our measurements clearly show
the existence of strong paramagnetic depairing effects in
KFe2As2 for H‖a. As shown in the inset of Fig. 2(c), there
is almost no paramagnetic effect for H‖c and αM ≈ 0 in this
direction.

C. Thermodynamic critical field

Hereafter, we show that the thermodynamic critical field
Hc(T ) obtained from the heat-capacity data matches that
obtained by our reversible magnetization measurements quite
well; Hc(T ), which measures the Cooper-pair condensation
energy, can be determined directly from zero-field heat-
capacity data using

−μ0

2
H 2

c (T ) =
∫ T

0
[Ss(T

′) − Sn(T ′)]dT ′ (2)

(where Sn and Ss are the normal- and superconducting-state
entropies, respectively) or using reversible magnetization
curves with

−μ0

2
H 2

c (T ) = μ0

∫ Hc2

0
[Ms(T ) − Mn(T )]dH, (3)

where Mn and Ms are the normal- and superconducting-
state magnetizations, respectively. The resulting values of
Hc(T ) (see Fig. 3) inferred from magnetization data agree
quite well with those calculated from the heat capacity,
demonstrating the overall consistency between our thermo-
dynamic measurements. It also indicates that the heat capacity
is not contaminated by any spurious disordered magnetic

FIG. 3. (Color online) Temperature dependence of the ther-
modynamic critical field inferred from specific-heat (line) and
magnetization (symbol) measurements.

contributions, as reported in Refs. 36 and 25. In Sec. IV we
use the derived Hc(T ) to discuss the (H,T ) phase diagram of
KFe2As2.

D. Thermal expansion and magnetostriction

We also performed thermal-expansion and magnetostric-
tion measurements in order to study the effects of pressure,
in particular uniaxial pressure, on the superconducting- and
normal-state properties of KFe2As2. Clear anomalies in the
relative length changes �Li/L0 (i = a,c) are seen at Tc(H =
0 T) = 3.4 K as shown in Figs. 4(a) and 4(b). The red curves
indicate the normal-state behavior, where superconductivity
has been suppressed by a field of H = 6 T applied along the
a axis, and the dashed lines indicate the extrapolated behavior
down to T = 0 K.

The structural distortions in the superconducting state
provide a direct indication of how the system can lower its free
energy and from these data it is clear that superconductivity
favors a longer (shorter) a axis (c axis). Figure 4(c)–4(f)
show the corresponding uniaxial thermal-expansion coeffi-
cients αi = (1/Li)dLi/dT (i = a,c) divided by temperature
at different applied magnetic fields along the a axis [Figs. 4(c)
and 4(d)] and the c axis [Figs. 4(e) and 4(f)]. The anomalies
at Tc have a clear steplike shape, indicating second-order
phase transitions and a decrease in temperature with increasing
magnetic field.

Above T c, αi/T is constant and field independent, as
expected for a Fermi liquid. Using Maxwell relations, this
value is related to the pressure dependence of γn:22

αi

T
= − 1

V

∂( S
T

)

∂pi

= − 1

Vm

dγn

dpi

, (4)

where i = a,c. The normal-state values of αi/T are
αa/T = 0.12 × 10−6 K−2 and αc/T = 0.08 × 10−6 K−2,
which yield the following uniaxial pressure depen-
dencies of the normal-state Sommerfeld coefficients
dγn/dpa = −7.74 mJ mol−1 K−2 GPa−1 and dγn/dpc =
−4.81 mJ mol−1 K−2 GPa−1.

In order to determine the uniaxial pressure dependencies of
Tc, we use the Ehrenfest relation21,37

dTc

dpi

= �αiVm

�Cp/Tc

, (5)

where i = a,c. Here �αi is the jump in the thermal expansion
along the i direction, Vm = 61.27 cm3 mol−1 is the molar
volume, and �Cp is the specific heat jump. Using our
values for the thermal-expansion (�αa = −1.68 × 10−6 K−1

and �αc = 1.85 × 10−6 K−1) and heat-capacity (�Cp/Tc =
54 mJ mol−1 K−2) jumps from Fig. 1, we find dTc/dpa =
−1.92 K GPa−1 and dTc/dpc = 2.10 K GPa−1. Our results
show that the pressure dependence of Tc in KFe2As2 is
very anisotropic. Indeed, it is negative along the a axis
and positive along the c axis, although the magnitudes are
comparable. Interestingly, superconductivity couples strongly
to the c/a ratio as in Co- and P-doped Ba122,21,23 but with
opposite sign, i.e., a smaller, rather than larger, c/a ratio
enhances Tc. Under hydrostatic conditions we get a negative
dTc/dpvol = 2dTc/dpa + dTc/dpc = −1.74 K GPa−1. Our
results are in qualitative agreement with the recent data
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FIG. 4. (Color online) Relative length change versus temperature of the (a) a axis and (b) c axis in the normal (red curves) and the
superconducting state (black curves). (c)–(f) Uniaxial thermal-expansion coefficients divided by temperature αa,c/T as a function of temperature
for both crystallographic axes and different fields.

of Bud’ko et al.,38 who find dTc/dpvol = −1.0 K GPa−1,
dTc/dpa ≈ −1.1 K GPa−1, and dTc/dpc ≈ 1.1 K GPa−1 from
hydrostatic pressure and c-axis thermal expansion data.

The pressure dependence of the thermodynamic critical
field can be calculated using the following relation:39

�Li

Li

= Ln,i − Ls,i

Ls,i

= μ0Hc

(
dHc

dpi

)
, (6)

where i = a,c and �Li/Li are the relative length changes
from Fig. 4. We obtain dHa

c /dpa = −0.049 T GPa−1 and
dHa

c /dpc = 0.046 T GPa−1.
Additional information about how uniaxial pressure affects

both the normal- and superconducting-state properties of
KFe2As2 can be obtained from magnetostriction measure-
ments. The magnetostriction coefficients λi are directly related
to the uniaxial pressure dependences of the magnetization via

λi = 1

Li

dLi

dH
= −dM

dpi

, (7)

where i = a,c.
Figure 5 shows the magnetostriction data for various

samples and field orientations for temperatures between 1.7
and 4 K. The pressure dependence of the normal-state
Pauli susceptibility can be directly obtained from λ(H ) for

H > Hc2, which also varies linearly with field strength [see
Figs. 5(c), 5(d), 5(g), and 5(h)] from Eq. (7). With this
we extract dχa/dpa = −1.43 × 10−5 GPa−1, dχc/dpa =
4.13 × 10−6 GPa−1, dχa/dpc = −6.74 × 10−6 GPa−1, and
dχc/dpc = −3.08 × 10−5 GPa−1. Interestingly, the biggest
effects of uniaxial pressure on the magnetic susceptibility
occur when the applied magnetic field is parallel to the pressure
direction and is nearly one order of magnitude weaker for
different orientations.

The magnetostriction below Tc is fully reversible and thus
also provides information about how the reversible mag-
netization responds to uniaxial pressure.40,41 The reversible
magnetostriction depends basically on two parameters, Hc

and the Ginzburg-Landau parameter κ , both of which can
be pressure dependent. From the shape of λ(H ) it is evident
that the main contribution to the magnetostriction comes from
dHc/dpi and not from dκ/dpi for both field directions.41

For example, if dκ/dpi were the primary pressure derivative,
λi(H ) would change sign near Hc2/2,41 which is clearly not the
behavior found in our data. For Pauli-limited superconductors,
the Maki parameter may also be pressure dependent, compli-
cating this simple analysis at high fields. Indeed, for H‖a we
observe a strong increase in the size of the magnetostriction
anomaly with decreasing temperatures, which is not expected
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FIG. 5. (Color online) Magnetostriction �Li(H )/L0 (i = a,c) and linear magnetostriction coefficients λi(H ) for the a axis (left side) and
the c axis (right side) for different field orientations. For H‖a, the anomaly in λi(H ) at Hc2 increases strongly in magnitude with decreasing
temperature [see (c) and (d)] due to the onset of Pauli-limiting behavior, whereas for H‖c [see (g) and (h)], such an increase is notably absent.

for conventional superconductors.40,41 Since λ(H ) is directly
proportional to the pressure derivative of M(H ) [see Eq. (7)],
this increase in the λ(H ) anomaly directly reflects the changing
shape of the M(H ) curve at low temperatures and signals the
crossover to a strongly-Pauli-limited superconductor as the
temperature is lowered.42 We also find an anomalous increase
in the size of the expansivity anomaly for fields above about
3 T [see Fig. 4(d)], which is also directly related to the onset
of strong paramagnetic depairing for H‖a.

IV. DISCUSSION

A. The (H,T ) phase diagram and paramagnetic effects

Figure 6 shows the superconducting (H,T ) phase diagram
of KFe2As2 derived from our thermodynamic measurements,

which is similar to other results.6,42,43 As expected, Hc2(T )
is linear in the vicinity of T c for both field orientations since
the suppression of superconductivity in this region is always
governed by the orbital effect. However, with decreasing
temperature, it clearly flattens for H‖a, which corroborates
the importance of paramagnetic depairing in this layered
compound, already inferred from our magnetization curves.
We note that a similar behavior is observed for nearly optimally
K-doped samples.44 Although our heat-capacity data exhibit
clear signs of multiband superconductivity (see Fig. 1), we
find no evidence of a sizable change of curvature at high
temperature due to the existence of several energy gaps, as
reported in MgB2 for H ⊥ c.45 The initial slopes (∂Hc2/∂T )Tc

are equal to −0.6 and −3.7 T K−1 for H‖c and H‖a,
respectively, in agreement with the values of Terashima et al.,6
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FIG. 6. (Color online) The (H,T ) phase diagram of KFe2As2

derived from magnetization (	), thermal-expansion (◦), and mag-
netostriction (�) measurements. Solid lines are the orbital fields
calculated using the clean-limit Helfand-Werthamer theory. A strong
suppression of Hc2 due to Pauli depairing is observed for H‖a.

which lead to the coherence lengths ξab
GL ≈ 13 nm and

ξ c
GL ≈ 2 nm. Using these values, we calculate the temperature

dependence of the orbital field Horb(T ) for both directions
using the Helfand-Werthamer theory46–48 in the clean limit.
As shown in Fig. 6, Hc

c2(T ) is fully orbitally limited with
Hc

c2(0) = Hc
orb(0) ≈ 1.5 T. For H‖a, Zeeman effects start to

become significant below about 2.8 K and at T = 0 K we
find Hab

orb(0) ≈ 9 T i.e., significantly larger than the measured
Hc2(0) ≈ 5 T. Using Hc(0) = 73 mT (see Fig. 3), we estimate
the Maki-Ginzburg-Landau parameter κ1(0) = Horb(0)√

2Hc(0)
equal

to 87 and 15 for H‖a and H‖c, respectively. This shows that
KFe2As2 is a very strong type-II superconductor especially
for H‖a. This is expected since paramagnetic effects are
significant only in strong type-II superconductors, in which the
magnetic field strongly penetrates the sample. The Pauli field
Hp(0), i.e., the field at which the difference of Zeeman energy
between the normal- and superconducting states exactly
compensates for the Cooper-pair condensation energy, can be
written in the following way:49

Hp(0) = Hc(0)√
χn − χs

, (8)

Here χn and χs are the spin susceptibilities in the normal
and superconducting states, respectively. In the single-band
s-wave case, χs = 0 and Hp(0) = 3.6 T (3.9 T) are obtained
for H‖a (H‖c). Here we have used the values of χn obtained in
Ref. 17 (assuming implicitly that χn is dominated by the Pauli
paramagnetism) and our value of Hc(0). The above estimation,
which is smaller than the measured Hc2(0) for H‖a, provides
only a lower limit of the Pauli field and Hp(0) can be enhanced
by, e.g., strong-coupling effects,50 nodal gaps,51 or multiband
superconductivity52. In KFe2As2, an enhancement of Hp(0)
by strong coupling can be discarded since �Cp/γnTc ≈ 0.54
is substantially smaller than the single-band BCS value 1.43,
in contrast to Ba0.68K0.32Fe2As2, where �Cp/Cp ≈ 2.5.8 The
response of a nodal superconductor to a magnetic field is quite

TABLE I. Normal- and superconducting-state parameters of
KFe2As2.

Parameter H‖a H‖c
γn (mJ mol−1 K−2) 103
Tc (K) 3.4
χn 4.1×10−4 3.2×10−4

κ1(0) 87 15
Hc(0) (T) 0.073
(∂Hc2/∂T )Tc

(T K−1) −3.7 −0.6
Hc2(0) (T) 5 1.5
Horb(0) (T) 9 1.5
Hp(0) (T) 6.7
αM 1.8 0.3

different from that of an s wave because the unpaired electrons
located in the regions where the Zeeman field exceeds the
local gap �(k) can be spin polarized.51 Thus χs is not zero
and superconductivity can sustain a higher paramagnetic field.
However, in this case χs ≈ 0.19χn(Ref. 53) (neglecting the
small field dependence of the gap) and Hp(0) is only slightly
enhanced to 4 T for H‖a, which is still less than the observed
Hc2(0). A significantly larger enhancement can be obtained
in multiband superconductors with widely different gap
amplitudes, i.e., �2 	 �1.52,54 In this scenario, the band with
the smaller gap will almost recover its normal-state density of
states N1(0) for H > �1(0), while the second band, with the
larger gap, will remain gapped all the way up to Hp(0) where
χs = N1(0)

N1(0)+N2(0)χn. For instance, Hp(0) would be enhanced by
a factor of about 1.4 for N1 = N2. However, an accurate value
of Hp(0) from Eq. (8) cannot be derived at present because
the Fermi surface of KFe2As2 consists of four sheets and all
the gaps and densities of states have not been determined
yet. Since the large gap ultimately determines Hc2(0), an
approximate value can nevertheless be obtained using the
expression

Hc2(αM )

Horb(0)
= 1√

1 + 0.6α2
M

, (9)

derived by Machida and Ichioka34,55 for a single-band
superconductor in the clean limit. For H‖a, we find
Hc2(0)/Horb(0) ≈ 0.6, which gives αM ≈ 1.8, in good agree-
ment with our simple estimate [see Sec. III B and the inset
of Fig. 2(b)]. We note that this corresponds roughly to
the minimum value that allows the formation of the FFLO
phase in the presence of orbital effects56 and warrants more
low-temperature measurements on this system. Our estimated
values for all these fields are summarized in Table I.

B. Uniaxial pressure effects

A summary of the uniaxial pressure derivatives is given
in Table II; here we have also included the relative pressure
derivatives, which allows us to directly compare the magni-
tude of the various derivatives. The largest relative pressure
derivatives are for Tc and Hc, which are roughly equal in
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TABLE II. Table of uniaxial pressure dependencies along the a and the c axis, with the corresponding normalized pressure dependencies in
units of GPa−1 and the Grüneisen parameters. The values of χa and χc are taken from Ref. 17. The other parameters are γn = 102 mJ mol−1K−2,
Tc = 3.45 K, χa = 4.1 × 10−4, χc = 3.2 × 10−4, and Ha

c = 0.072 T.

dγn/dpi (mJ mol−1K−2 GPa−1) dTc/dpi (K GPa−1) dχa/dpi (GPa−1) dχc/dpi (GPa−1) dHa
c /dpi (T GPa−1)

a axis −7.74 −1.92 −1.43 × 10−5 4.13 × 10−6 −0.049

c axis −4.81 2.10 −6.74 × 10−6 −3.08 × 10−5 0.046

d ln γn/dpi d ln Tc/dpi d ln χa/dpi d ln χc/dpi d ln Ha
c /dpi

a axis −0.076 −0.56 −0.035 0.013 −0.709

c axis −0.047 0.61 −0.016 −0.096 0.664

volume −0.199 −0.51 −0.086 −0.070 −0.754

Grüneisen parameter d ln γn/d ln V d ln Tc/d ln V d ln χa/d ln V d ln χc/d ln V d ln Ha
c /d ln V

volume −8.9 −22.9 −3.9 −3.1 −33.9

both magnitude and sign. Thus the critical temperature and
the condensation energy are strongly linked, which is not
surprising. In contrast, the relative pressure derivative of γn

and χ is much smaller than that of Tc and Hc. Also, there is no
direct correlation between the signs of dTc/dpi and dγn/dpi ,
which implies that these quantities are not directly related.
Here it is worth pointing out that pressure and doping are
strongly correlated in Co- and P-doped systems,22,23 which
manifests itself in a similar dependence of Tc and γn versus
either doping or pressure. Such a correlation between doping
and pressure does not appear to work for the K-doped systems.
Indeed, γn is largest and Tc is lowest for KFe2As2. Thus, if a
similar equivalence would hold, one would expect that under
hydrostatic pressure γn would increase since Tc decreases,
which is the opposite of the observed behavior (see Table II).
Using a bulk elastic modulus from the density functional
theory calculation of B = 45 GPa,57 we can also calculate
the volume Grüneisen parameters of the various physical
quantities (see Table II). Interestingly, these volume Grüneisen
parameters of Tc and γn are of similar magnitude and sign as
found in various U-based heavy fermion materials,58 which
was interpreted in terms of a negative pressure dependence
of the pairing interaction. Similar physics may be operating
in KFe2As2, which may be considered 3d heavy fermion
metal.17

V. CONCLUSION

In conclusion, the present thermodynamic investigation
of KFe2As2 has revealed several interesting results. Clear
evidence for strong Pauli-limiting behavior is observed in
the low-temperature magnetization measurements. Further
detailed studies are needed to determine if the low-temperature
transition is effectively first order and to search for other
ordering phenomena such as the elusive FFLO state. Inter-
estingly, the derived uniaxial pressure derivatives show that
superconductivity in KFe2As2 responds strongly to the c/a

ratio of the lattice constants, but with the opposite sign as in
Co- and P-doped Ba122 iron pnictides, showing that this is
not a universal characteristic of these materials. It is hoped
that the various pressure derivatives derived here will add
a stringent constraint on superconducting theories of this
interesting low-Tc compound.
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45L. Lyard, P. Szabó, T. Klein, J. Marcus, C. Marcenat, K. H. Kim,

B. W. Kang, H. S. Lee, and S. I. Lee, Phys. Rev. Lett. 92, 057001
(2004).

46E. Helfand and N. R. Werthamer, Phys. Rev. Lett. 13, 686 (1964).
47E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).
48J. P. Brison, N. Keller, A. Verniere, P. Lejay, L. Schmidt, A. Buzdin,

J. Flouquet, S. R. Julian, and G. G. Lonzarich, Physica C 250, 128
(1995).

49D. Saint-James, E. J. Thomas, and G. Sarma, Type II Superconduc-
tivity (Pergamon, New York, 1969).

50T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley, Phys. Rev.
B 19, 4545 (1979).

51K. Yang and S. L. Sondhi, Phys. Rev. B 57, 8566 (1998).
52V. Barzykin, Phys. Rev. B 79, 134517 (2009).
53H. Won, H. Jang, and K. Maki, Physica B 281-282, 944 (2000).
54V. Barzykin and L. P. Gor’kov, Phys. Rev. Lett. 98, 087004

(2007).
55K. Machida and M. Ichioka, Phys. Rev. B 77, 184515 (2008).
56L. W. Gruenberg and L. Gunther, Phys. Rev. Lett. 16, 996 (1966).
57R. Heid (unpublished).
58J. Flouquet, J. Brison, K. Hasselbach, L. Taillefer, K. Behnia,

D. Jaccard, and A. de Visser, Physica C 185, 372 (1991).

014517-8

http://dx.doi.org/10.1126/science.1222793
http://dx.doi.org/10.1126/science.1222793
http://dx.doi.org/10.1103/PhysRevLett.103.047002
http://dx.doi.org/10.1103/PhysRevLett.103.047002
http://dx.doi.org/10.1103/PhysRevLett.106.067003
http://dx.doi.org/10.1103/PhysRevLett.106.067003
http://dx.doi.org/10.1103/PhysRevLett.107.177003
http://arXiv.org/abs/1302.1696
http://arXiv.org/abs/1212.3966
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1103/PhysRevLett.102.187004
http://dx.doi.org/10.1103/PhysRevLett.108.177004
http://dx.doi.org/10.1103/PhysRevLett.108.177004
http://dx.doi.org/10.1103/PhysRevB.86.094521
http://dx.doi.org/10.1103/PhysRevB.41.11299
http://dx.doi.org/10.1002/pssb.201200805
http://dx.doi.org/10.1103/PhysRevB.84.024507
http://dx.doi.org/10.1103/PhysRevB.79.100501
http://dx.doi.org/10.1063/1.3081455
http://dx.doi.org/10.1016/S0022-3697(02)00008-2
http://dx.doi.org/10.1143/JPSJ.80.053701
http://dx.doi.org/10.1143/JPSJ.80.053701
http://dx.doi.org/10.1016/j.physb.2006.01.214
http://dx.doi.org/10.1103/PhysRev.158.356
http://dx.doi.org/10.1103/PhysRevB.76.064502
http://dx.doi.org/10.1103/PhysRevB.85.134533
http://dx.doi.org/10.1103/PhysRevB.86.224514
http://dx.doi.org/10.1103/PhysRevB.86.224514
http://dx.doi.org/10.1016/0375-9601(68)90373-3
http://arXiv.org/abs/1305.5130
http://dx.doi.org/10.1103/PhysRevB.87.134513
http://dx.doi.org/10.1103/PhysRevB.78.220505
http://dx.doi.org/10.1103/PhysRevLett.92.057001
http://dx.doi.org/10.1103/PhysRevLett.92.057001
http://dx.doi.org/10.1103/PhysRevLett.13.686
http://dx.doi.org/10.1103/PhysRev.147.288
http://dx.doi.org/10.1016/0921-4534(95)00358-4
http://dx.doi.org/10.1016/0921-4534(95)00358-4
http://dx.doi.org/10.1103/PhysRevB.19.4545
http://dx.doi.org/10.1103/PhysRevB.19.4545
http://dx.doi.org/10.1103/PhysRevB.57.8566
http://dx.doi.org/10.1103/PhysRevB.79.134517
http://dx.doi.org/10.1016/S0921-4526(99)01205-3
http://dx.doi.org/10.1103/PhysRevLett.98.087004
http://dx.doi.org/10.1103/PhysRevLett.98.087004
http://dx.doi.org/10.1103/PhysRevB.77.184515
http://dx.doi.org/10.1103/PhysRevLett.16.996
http://dx.doi.org/10.1016/0921-4534(91)92002-S



