
PHYSICAL REVIEW B 88, 014512 (2013)

Transport in very dilute solutions of 3He in superfluid 4He
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Motivated by a proposed experimental search for the electric dipole moment of the neutron (nEDM) utilizing
neutron-3He capture in a dilute solution of 3He in superfluid 4He, we derive the transport properties of dilute
solutions in the regime where the 3He are classically distributed and rapid 3He-3He scatterings keep the 3He
in equilibrium. Our microscopic framework takes into account phonon-phonon, phonon-3He, and 3He-3He
scatterings. We then apply these calculations to measurements by Rosenbaum et al. [J. Low Temp. Phys. 16,
131 (1974)] and by Lamoreaux et al. [Europhys. Lett. 58, 718 (2002)] of dilute solutions in the presence of a
heat flow. We find satisfactory agreement of theory with the data, serving to confirm our understanding of the
microscopics of the helium in the future nEDM experiment.
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I. INTRODUCTION

Dilute solutions of 3He in superfluid 4He have been an
ideal testing ground for theories of quantum liquids, with
past focus generally on 3He concentrations and temperatures
for which the 3He forms a degenerate Fermi gas. The
proposed use of ultradilute solutions in the search for a
neutron electric dipole moment (nEDM) at the Oak Ridge
National Laboratory Spallation Neutron Source (SNS),1,2 as
well as earlier experiments by Rosenbaum et al.3 and by
Lamoreaux et al.,4 all require careful treatment of the transport
properties of the solutions. The characteristic temperatures
in all cases considered here are of order 0.5 K, at which
phonons are the dominant excitation of the 4He. In the low
temperature degenerate 3He regime, phonons have a small
effect on the 3He properties. However, with increasing dilution,
when the 3He become classically distributed, the situation is
reversed, and the phonons play a more and more important
role. In the proposed nEDM experiment, a crucial issue is
to be able to periodically sweep out the 3He by imposing a
temperature gradient;5 the underlying physics of the transport
is scattering of phonons in the superfluid 4He against the
3He. The Lamoreaux et al. experiment, which measured the
effect of a heat source on the steady state distribution of 3He
atoms in a dilute solution, was a prototype for the effects of a
“phonon wind” on the 3He. The Rosenbaum et al. experiment
measured the thermal conductivity of dilute solutions as a
function of temperature and concentration. We show below
that the results of these experiments can be understood in
terms of a simple thermal conductivity determined using
well-established scattering amplitudes.

In the experiments of Refs. 3 and 4, the 3He number
concentrations x3 = n3/(n3 + n4), where n3 and n4 are the 3He
and 4He number densities, are in the range 7 × 10−5 to 1.5 ×
10−3 in the nondegenerate regime. Here momentum carried by
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the phonons goes primarily into the 3He, which then transfer
it to the walls. The physical dimensions of the experimental
container are sufficiently large that the transport properties are
determined locally by the microscopic scatterings of the 3He
and the phonons. The 3He-3He interactions are sufficiently
strong that they keep the 3He in thermal equilibrium at
rest at the local temperature T (�r ), while phonon-phonon
interactions keep the phonons in drifting local equilibrium. (By
contrast, in the proposed SNS experiment, phonon momentum
is transferred primarily to the walls by viscous forces, with
the 3He playing a negligible role.) Furthermore, collisions
of 3He with the phonons are responsible for establishing
equilibrium in the 3He cloud. A common characteristic of
these experiments is the effect on the dilute solution produced
by a localized, static heat source. In this paper we focus on
calculating transport properties in the higher concentration
regime in Refs. 3 and 4, where the fact that the 3He-3He mean
free path is short greatly simplifies the transport theory. At
lower 3He concentrations, x � 10−6, the transport must be
calculated by solving the coupled Boltzmann equations for
the phonons and 3He, taking into account viscous forces at
the boundaries; these results as well as their impact on the
transport of 3He in the much lower concentration regime of
the SNS nEDM experiment will be described elsewhere.6

In Sec. II we examine the hydrodynamic constraints deriv-
ing from the steady state situation and from the properties of
the superfluid. The basic scattering mechanisms determining
the transport properties of dilute solutions—3He-3He, 3He-
phonon, and phonon-phonon interactions—are described in
Sec. III. In Sec. IV we calculate the thermal conductivity
(dominated by the phonons) in this situation; in this calculation
we include inelastic recoil of the 3He in scattering against the
phonons (detailed in the Appendix). We find that, contrary to
the earlier treatment in Ref. 7 used by Rosenbaum et al., the
rapid relaxation of phonons along rays of constant phonon
direction dominates their distribution.8 We calculate the
conductivity by considering the drag force on the phonons due
to their scattering against the stationary 3He, using the method
close in spirit to that introduced earlier in a calculation of the
mobility of ions in superfluid 4He,9 and later used by Bowley10
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in his accounting of the Lamoreaux et al. experiment. Despite
a superficial similarity of the present approach to these earlier
calculations, the underlying physics is different here. In Sec. V
we show how the microscopic theory satisfactorily explains
the experimental findings in both the Rosenbaum et al. and the
Lamoreaux et al. experiments.

II. RESPONSE TO STATIC DISTURBANCES

To understand how dilute solutions respond to a localized
static heat source, the physical mechanism of interest in
the experiments, we first review the hydrodynamics of the
solutions. At low temperatures the phonons are the dominant
excitations of the 4He, and the momentum density or mass
current density of the 4He is

�g4 = ρs �vs + ρph�vph, (1)

where �vs is the superfluid flow velocity, �vph is the phonon fluid
flow velocity, ρs is the superfluid mass density, and

ρph = 2π2

45

T 4

s5
(�ρs) (2)

is the 4He normal fluid density. (We generally work in
units with h̄ and Boltzmann’s constant, kB , equal to unity.)
Similarly, the 3He momentum density is

�g3 = ρ3�v3, (3)

where �v3 is the 3He flow velocity, and ρ3 = m∗n3, with
m∗ = m3 + δm � 2.34 m3 the effective mass.7 The total mass
current �g is �g4 + �g3.

When the 4He mass flow vanishes, |vs | = (ρph/ρs)|vph| �
|vph| at temperatures �0.6 K, and the only relevant flow
velocities are those of the phonons and possibly the 3He. Then
force balance in the dilute solutions implies that to linear order,

∇P = ηph∇2�vph + η3∇2�v3, (4)

where P = P3 + Pph is the total pressure, with P3 = n3T

the 3He partial pressure, T is the temperature, Pph is the
phonon partial pressure, ηph is the first viscosity of the
normal fluid, and η3 is the first viscosity of the 3He. (In the
situations of interest, in a steady state, ∇ · �vph and ∇ · �v3 both
vanish.) For a container large compared with microscopic
viscous mean free paths, and for 3He concentrations in
the range of those in Refs. 3 and 4, both viscosity terms
are insignificant compared with the drag forces between
the 3He and the phonons, as we discuss in Sec. IV, and thus
can be neglected. (At the much lower 3He concentrations of
the proposed SNS experiment, however, the phonon viscosity
does play a significant role.6) The total pressure is effectively
constant throughout the system; ∇P = 0.

In addition, as one sees from the linearized superfluid
acceleration equation,11

m4
∂ �vs

∂t
+ ∇μ4 = 0, (5)

the 4He chemical potential μ4 is constant in a steady
state. The Gibbs-Duhem relation for the solutions
∇P = n4∇μ4 + n3∇μ3 + S∇T , with μ3 the 3He chemical
potential, T the temperature, and S the total entropy density,
together with the constancy of the pressure and the relation

∇P3 = n3∇μ3 + S3∇T (which neglects the effects of
3He-phonon interactions on the thermodynamics, e.g., small
terms in the total pressure of order Pphn3/n4 � Pph), then
implies that

∇P3 + Sph∇T = 0, (6)

where Sph = 4Pph/T is the phonon entropy density, and
dPph = SphdT . Equation (6) and the foregoing then give the
simple relation between the temperature and 3He density
gradients in the system:

∇T = − T

Sph + n3
∇n3; (7)

in a steady state a gradient of the 3He density is always
accompanied by a gradient of the temperature. (Note that the
n3 in the denominator arises when one consistently includes a
nonzero temperature gradient at every step of the calculation,
unlike in earlier studies13,14 where the 3He pressure was
tacitly assumed to obey dP3 = T dn3.) A heat flux �Q in the
system is related to the temperature gradient by �Q = −K∇T ,

where K is the thermal conductivity of the solution. Thus
Eq. (7) relates the 3He density gradient to the heat flux by

∇n3 = Sph + n3

T K
�Q. (8)

The 3He density on the right can be significant. Since

T Sph = s2ρph (9)

one has
n3

Sph
= 300

x3

T 3
, (10)

with T measured in K; at T = 0.45 K and x3 = 3 × 10−4 the
ratio is unity.

We note that, in general, the response to a heat current
in a steady state is a temperature gradient with the constant
of proportionality being the thermal conductivity; the particle
current in general depends on both gradients of concentration
and temperature.15 (In the present case, because of the relation
between ∇n3 and ∇T [Eq. (7)], the 3He diffusion coefficient is
proportional to the thermal conductivity and thus the results of
Ref. 4 can also be described in terms of a diffusion coefficient.
However, when viscous effects become important (for x3 <

10−6), Eq. (7) is no longer valid and the thermal conductivity
and diffusion constant are not related in a simple way.6 In the
following we will generally talk about the response to a heat
current in terms of the thermal conductivity.)

III. MICROSCOPIC SCATTERING PROCESSES

The microscopic processes that determine the transport
properties of dilute solutions are 3He-3He,16 phonon-phonon,8

and phonon-3He7 scatterings; the amplitudes of these pro-
cesses have been well studied in earlier helium research. At
low energies, the total cross section for a 3He atom scattering
from a second 3He atom of opposite spin can be written as

σ33 = 9π3

k2
D

v2
33,0

(
m∗

m4

)2 (
m4s

kD

)4

= 10.3 Å2, (11)

where kD is the Debye wave number, defined by n4 = k3
D/6π2,

and v33,0 = −0.064 measures the strength of the 3He-3He
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interaction at zero momentum transfer.16 Phonon-phonon
scattering rates at forward angles8 are rapid compared with
phonon-3He rates. While such scatterings do not directly affect
the heat current, they do play the important role of keeping the
phonon momentum distribution n�q in local thermodynamic
equilibrium with a drift velocity �vph,

n�q = 1

e(sq−�q·�vph)/T − 1
. (12)

This is the key difference between the current treatment and
that in Refs. 3 and 7, where it is assumed that the phonon-3He
scattering dominates the phonon relaxation.

The amplitude for scattering of a phonon of wave vector
�q against a 3He of wave vector �p to final states �q ′ and �p ′
is determined theoretically in terms of the measured excess
volume α of a 3He atom compared with that of a 4He atom
and the 3He effective mass m∗. The scattering amplitude is
approximately7

〈p′q ′|T |pq〉 = s(qq ′)1/2

2n4
(A + B cos θ ), (13)

where θ is the angle between �q ′ and �q, A = n4dα/dn4, and
B = (1 + α + δm/m4)(m4/m∗)(1 + α − m3/m4).

At very low temperatures, T � 1 K, the scattering to a
first approximation can taken to be elastic. The momentum
dependent scattering rate of phonons from the 3He is then6

γ3 (q) = sq4x3

4πn4
J, (14)

where

J = A2 + B2/3 − 2AB/3; (15)

the q4 in this rate is characteristic of Rayleigh scattering.
More generally, as Bowley emphasized,10 recoil of the 3He
in scattering produces a significant correction to the effective
phonon-3He scattering rate.17 As we show in the Appendix,
3He recoil corrections to the result (14) are of relative order
T/1.36 K.

We now estimate the importance of 3-3 versus phonon
scattering in bringing the 3He into equilibrium. The mean free
path of a 3He scattering on unpolarized 3He is

�33 = 2

n3σ33
= 8.66 × 10−8

x3
cm; (16)

the factor n3/2 is the density of opposite spin 3He. Similarly,
the mean free path for scattering of 3He of momentum p on
phonons is given approximately by p3/m�, where

� = 1

n3

∫
d3q

(2π )3 q2γ3 (q) n0
q

(
1 + n0

q

)

= 270πJ

(
Sph

n4

)2
T 3

s2
∼ T 9, (17)

in the limit p � q. Here n0
q = (esq/T − 1)−1 is the equilibrium

phonon distribution function. Replacing p2 by 3m∗T , an

appropriate thermal average, we find

�3ph =
√

3

2J

(
Sph

n4

)2
m∗1/2s2

T 3/2

= 0.077

(
0.45 K

T

)15/2

cm. (18)

Comparing the mean free paths (16) and (18), we find

�3ph

�33
= 0.89 × 106x3

(
0.45 K

T

)15/2

. (19)

For T = 0.45 K and x3 = 10−6, �3ph ≈ �33, while for
T = 0.65 K and x3 = 3 × 10−4, �3ph/�33 ≈ 16.9. Thus for
T ∼ 0.5 K and x3 ∼ 10−5 a good first approximation is to as-
sume that scattering of 3He by 3He atoms is fast compared with
scattering of 3He by phonons. In fact, as will be shown in detail
in Ref. 6, we may take the momentum distribution of the 3He
to be simply that of a classical gas in equilibrium and at rest,

f 0
p = e−(p2/2m∗−μ3)/T . (20)

IV. THERMAL CONDUCTIVITY

The thermal conductivity of the dilute solutions can in
general be calculated by solving the coupled phonon and 3He
Boltzmann equations to determine the steady state momentum
distributions of the phonons and the 3He, and, from these
distributions, the heat and particle currents. However, here,
where the 3He are approximately stationary and in equilibrium,
the phonon thermal conductivity can be found simply by
calculating the rate at which the phonons lose momentum
by scattering against 3He.9,10

In a steady state the net force density on the phonons drifting
at velocity �vph is balanced by the phonon pressure gradient
∇Pph = Sph∇T . Microscopically then,

∇Pph = −
∫

d3q

(2π )3

∫
d3q ′

(2π )3

∫
2

d3p

(2π )3

×�q |〈T 〉|22πδ(sq + p2/2m∗ − sq ′ − p′2/2m∗)

× [
f 0

pn�q (1 + n�q ′ ) − f 0
p ′n�q ′(1 + n�q)

]
, (21)

where �p ′ − �p = �q − �q ′ ≡ �k, 〈T 〉 = 〈p′q ′|T |pq〉, n�q is the
phonon distribution, and the factor of 2 is from the 3He spin
sum. In terms of the 3He structure function, with ω = sq − sq ′,

S3(k,ω) = 2
∫

d3p

(2π )3
δ(ω + p2/2m∗ − p′2/2m∗) f 0

p

= n3

(
m∗

2πk2T

)1/2

e−m∗(ω−k2/2m∗)2/2k2T , (22)

which obeys S3(k,−ω) = e−ω/T S3(k,ω), we can rewrite
Eq. (21) as

∇Pph = −
∫

d3q

(2π )3

∫
d3q ′

(2π )3

∫ ∞

−∞
dω

×�q |〈T 〉|22πδ(ω − sq + sq ′)S3(k,ω)

×[n�q (1 + n�q ′) − n�q ′(1 + n�q)e−ω/T ]. (23)

Since n�q ′(1 + n�q) = n�q (1 + n�q ′)e(ω−�k·�vph)/T , the final line in
Eq. (23) to first order in vph is n0

q(1 + n0
q ′ )(�k · �vph)/T . Finally,
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symmetrizing the integrand in q and q ′, and carrying out the
angular averages, we have, in agreement with Bowley,

∇Pph = − �vph

6T

∫
d3q

(2π )3

∫
d3q ′

(2π )3
n0

q

(
1 + n0

q ′
)
k2|〈T 〉|2

×
∫ ∞

−∞
dω 2πδ(ω − sq + sq ′)S3(k,ω). (24)

Neglecting 3He recoil is equivalent to setting S3(k,ω) =
n3δ(ω). In this case,

∇Pph = − �vph

6T

∫
d3q

(2π )3

∫
d3q ′

(2π )3
n0

q

(
1 + n0

q ′
)
k2|〈T 〉|2

× 2πδ(sq − sq ′)

= −n3�

3T
�vph = −8π5

45

x3J

n4

(
T

s

)8

�vph. (25)

The phonon heat current density,

�Qph = s2
∫

d3q

(2π )3
�q n�q = T Sph�vph, (26)

in steady state determines the phonon thermal conductivity
�Qph = −Kph∇T , and since ∇Pph = Sph∇T , we find the

simple result18

Kph = Sphs�ph3 = 3T 2S2
ph

n3�
= n4s

2

90πx3JT
, (27)

where �ph3 = 3T 2Sph/sn3� defines an effective mean free path
for phonons scattering on 3He.

In the Appendix we include 3He recoil to leading order
in T/m∗s2, which we find increases the thermal conductivity
by ∼25–35% in the range T = 0.45–0.65 K. Figure 1 shows
the phonon thermal conductivity computed from Eq. (A15), as
well as the approximate thermal conductivity Eq. (27) together
with the measurements of Ref. 3. Here we use the parameters

10-5 10-4 10-3

x3

105

104

106

107

K
ph

(e
rg

/s
K

cm
)

FIG. 1. (Color online) Thermal conductivity of a dilute solution
of 3He in superfluid 4He at T = 0.45 K. The solid line shows the
phonon thermal conductivity, in the limit in which the 3He are at rest
in equilibrium, calculated with 3He recoil (see the text). The dashed
line shows the phonon thermal conductivity [Eq. (27)] without recoil
corrections. The open circles are three representative measurements
at T ∼ 0.43 K at the average x3 reported in Ref. 3; the solid circles
with the error bars are the same thermal conductivities, but shown at
the corrected x3, as discussed in Sec. VI.

5 x10-6 1x10-5 5x10-5 1x10-4 5x10-4 0.001
0.000

0.005

0.010
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x3

η
2 v

ph
/

P 3

FIG. 2. (Color online) Ratio of the contribution of the viscous
term [see Eq. (4)] to the drag on the phonons due to scattering against
the 3He at a temperature of 0.45 K. The magnitude of the drag is
given by the 3He pressure gradient [see Eq. (25)] as a function of
3He concentration x3 (the concentrations measured in Ref. 4 are
x3 = 7 × 10−5 and 3 × 10−4). The viscous term is calculated for
laminar flow in a circular pipe of radius R = 2.5 cm, using the 4He
viscosity measured by Greywall.23

A = −1.2 ± 0.2,19,20 and B = 0.70 ± 0.035,19–21 which lead
to J = 2.2 ± 0.6. The largest uncertainty is in A, owing to
a systematic difference between the measurements19,20 of the
pressure dependence of the density of dilute solutions.

We return now to justify neglecting viscous stresses in the
pressure equation (4). The drag force per unit volume of the
3He on the phonons is ∼ρphs/�ph3. We assume laminar flow
in a circular pipe of radius R, for which ∇2�vph = −8〈�vph〉/R2

is a constant throughout,22 thus overestimating the viscous
force (density) on the phonons by neglecting the drag against
the 3He. The phonon viscosity is ∼ρphs�visc/5, where �visc is
the phonon mean free path for viscosity, and thus the ratio of the
viscous force to drag force is ∼�visc�ph3/R

2 � 1; see Fig. 2. In
addition, the ratio of the 3He viscosity ∼m∗n3v̄�33/5 (where
v̄ is a mean 3He thermal velocity) to the phonon viscosity is
of order (n3/Sph)(�33/�visc) � 1 here.

V. DIFFUSION OF 3He AGAINST PHONONS

We now calculate the rate of diffusion of 3He atoms in a
bath of phonons at a fixed temperature T . In the derivation of
heat transport above, we assumed that the 3He cloud was at
rest and that the phonons were drifting with velocity �vph. In a
frame in which the phonons are at rest and the 3He drift with
velocity �v3, Eq. (25) becomes

∇P3 = −n3�

3T
�v3, (28)

where we use ∇Pph = −∇P3. With the temperature variation
in P3 neglected, Eq. (28) becomes a familiar diffusion
equation,

D3∇n3 = −n3�v3, (29)

where

D3 = 3T 2

�
∼ 1

T 7
. (30)

More generally, however, phonons drive 3He pressure gradi-
ents, rather than simply density gradients. In an arbitrary frame,
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the response of the 3He current to a phonon wind becomes

�j3 = n3�v3 = n3�vph − D3∇n3 − DT ∇T , (31)

where DT (= n3D3/T , in our particular case) is an effective
“thermoelectric” transport coefficient.

VI. APPLICATION TO EXPERIMENT

To further illustrate the physics, we now determine the
temperature and concentration distributions for two geometries
(Refs. 3 and 4) of interest. Conservation of energy implies

∇ · �Q = −∇ · (Kph∇T ) = −C∇
(∇T

P3

)
= 0, (32)

where, from Eq. (27), C = n2
4s

2/90πJ . For simplicity, recoil
effects are neglected in writing the equations here; however,
they are taken into account in all numerical calculations
reported below. We eliminate P3 using the solution

P3 + 1
4SphT = P, (33)

of Eq. (6), where the constant P is the total pressure
of the excitations. Equation (32) then reduces to a partial
differential equation in T alone (even when including the recoil
corrections), which we solve using the finite element code
FlexPDE.24 Given T (�r), we determine n3(�r) from Eq. (33),
and determine the constant P by fixing the total number of
3He atoms in the system.

We begin by applying this theoretical description to the
experiment of Rosenbaum et al.,3 where the thermal conduc-
tivity of mixtures in the concentration range 1.1 × 10−4 �
x3 � 1.3 × 10−2 was measured at temperatures 0.084 � T �
0.65 K. They determined the thermal conductivity by measur-
ing the temperature difference over a 5 cm length of pipe, 0.26
cm in diameter, in the presence of a localized heat source. The
pipe was connected to small reservoirs at either end containing
the thermometers, the coupling to the dilution refrigerator, and
the heater.

In the analysis in Ref. 3, the effect of the variable 3He
concentration in the pipe, and its attendant effect on the
thermal conductivity, was not taken into account. We therefore
determined the temperature and concentration distributions
in their system by adjusting the heater power and minimum
(dilution refrigerator) temperature to match the reported
average temperature and the temperature difference implied by
the reported thermal conductivity. We note that the 3He thermal
conductivity is negligibly small owing to �33 � �3ph [Eq. (19)].

Because the phonons push the 3He into the cold reservoir,
the average concentration in the pipe is substantially lower than
the concentration including the reservoirs. We show the results
of our calculations in Fig. 1 for representative measurements25

of Ref. 3. The open circles are the thermal conductivities as
reported, plotted at the average overall concentration; the solid
circles are plotted at the calculated average concentrations in
the pipe. Because the dimensions of the reservoirs are not
given in Ref. 3, there is some uncertainty in the calculated
result. The error bars shown in Fig. 1 represent changes of
about ±25% from the reservoir volumes estimated from the
schematic in their Fig. 1. Given the uncertainties related to the
geometry and the details of how the thermal conductivity was
extracted, there is good agreement between this calculation

and the measurement. As previously noted in Sec. III, the
theoretical analysis in Ref. 3 incorrectly assumed that the
primary phonon relaxation was due to 3He-phonon scattering,
rather than phonon-phonon scattering along rays.

We now analyze the experiment of Lamoreaux et al.,4 which
measures the 3He density response to a localized heat source
by a novel technique. In the experiment, a dilute solution with
concentration in the range 7 × 10−5 to 3 × 10−4 is contained
in a cylindrical cell roughly 5 cm in diameter and 5 cm long,
cooled at one end by a dilution refrigerator to a temperature T

in the range 0.45–0.95 K.26 A temperature gradient is created
by a resistive heater generating 7–15 mW, located roughly

3.0

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

(a)

(b)

3.0

x3x104

2.9

2.8

3.0

2.9

2.8

5.2 cm

5.0 cm

FIG. 3. (Color online) An example of the 3He distribution for a
cell 5.2 cm in diameter and 5.0 cm high, with refrigerator temperature
0.45 K, average x3 = 3 × 10−4, and heater power 15 mW. The
sections are (a) perpendicular to the cylinder axis and containing
the neutron beam axis and (b) perpendicular to the neutron beam
(the cross in the figure) and through the center of the heat source.
We assume in this simulation that the cylindrical wall of the cell is
at the same temperature as that of the base where the refrigerator is
attached; the top surface is insulated. The 3He concentration contours,
of constant spacing, are marked in units of 10−4; the minimum is
x3 = 0.69 × 10−4 at the surface of the heater and the maximum
concentration is 3.05 × 10−4, on the lower cell boundary.
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midway between the ends and near the cylinder wall (see
Fig. 3). The resulting spatial distribution of the 3He density is
probed by a well-collimated neutron beam of diameter ∼0.25
cm going through the cell. A fraction of the neutrons are
captured via the reaction n +3 He → p + t + 764 keV. The
XUV scintillation light from protons and tritons in the liquid
4He is converted to visible light and detected by a photomul-
tiplier tube which views the solution through a window at the
other end of the cell. The yield of scintillation light, measured
as a function of cell temperature, initial 3He concentration,
and heater power, is used to determine the thermally induced
change in the 3He distribution. The heat flow again produces
nonuniform temperature and 3He concentration distributions.
Because the concentration and temperature gradients are
directly proportional [Eq. (7)], the concentration gradients
implied by the measured scintillation yields here simply
encode the same type of temperature difference information
measured by Rosenbaum et al. We note that the proportionality
constant involves Sph + n3, rather than just Sph.

The response of the 3He density to the heat source is given
here by Eq. (8). Combining this result with �Q = T Sph�vph, one
can write

∇n3 = Sph(Sph + n3)

K
�vph. (34)

Reference 4, which did not take into account the temperature
gradient induced by the heat flow, interpreted the result for the
3He density gradient in terms of a simple diffusion constant
DL in the form

∇n3 = n3

DL

�vph. (35)

From Eq. (34) we see that

DL = n3

Sph + n3

K

Sph
. (36)

Equivalently,

DL = D3 − T

Sph + n3
DT = Sph

Sph + n3
D3. (37)

The DT term in this equation makes a significant contribution
at higher concentrations (see Fig. 4); as noted, n3 ∼ Sph for a
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FIG. 4. (Color online) Contribution of the thermoelectric trans-
port term relative to the effective diffusion constant DL extracted in
Ref. 4. The temperatures are 0.45 K (dotted), 0.55 K (dashed), and
0.65 K (solid).

large range of concentrations in the experiment of Ref. 4. This
effective DL is not a simple diffusion constant, owing to the
presence of the temperature gradient. We note that while the
temperature dependence of the result for D3 without 3He recoil
falls with temperature as 1/T 7, the temperature dependence
of the effective DL differs, owing both to recoil effects and
the 1/T 3 dependence of n3/Sph. The relative similarity of DL

and D3 also depends on the 3He thermal conductivity being
negligible.

An example of the 3He distribution resulting from the finite
element calculation for the Lamoreaux et al. experiment is
shown in Fig. 3; results of the relative integrated (column) 3He
densities along the neutron beam are shown in Fig. 5 together
with the data in Fig. 4 of Ref. 4. To illustrate the effect of
other variables in the problem, we also show in Fig. 5 the
results for T = 0.65 K and for the two concentrations used in
the experiment. In this calculation we take the refrigerator end
and the barrel of the cell to be fixed at T = 0.45 and 0.65 K
as indicated; the opposite end of the cell is insulated. We
note that the conductivity of the aluminum barrel is more than
an order of magnitude larger than that of the phonons at these
temperatures.27 The relative column density calculated with an
insulator in place of the aluminum barrel (not shown) falls well
below the data. In this simulation we neglect any possibility
of convective flow in the 3He. The effect of the nonzero size
of the neutron beam is to reduce the calculated ratios in Fig. 5
by ∼0.003 at the largest values of ξL, well within the reported
uncertainties. The agreement of the present theory with the
experiment provides further confirmation of the microscopic
transport theory in the concentration range of the Lamoreaux
et al. experiment.
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FIG. 5. (Color online) Representative results of the finite element
calculation, including 3He recoil, of the relative integrated 3He
(column) density along the neutron beam as a function of the quantity
ξL = T 7(P/SphT ), where P is the heater power, along with data from
Ref. 4 (circles, 0.45 K; diamonds, 0.55 K, and squares, 0.65 K). The
curves are for a refrigerator (and barrel) temperature of 0.45 K: solid,
x3 = 3 × 10−4; dotted, x3 = 7 × 10−5; coincidentally, the results for
T = 0.65 K and x3 = 3 × 10−4 are essentially the same as the dotted
curve. The curves are plotted for the average temperature (greater than
the boundary temperature) along the neutron beam path. For example,
at the actual value T 6P/Sph = 2.5, the average ξL is shifted upward
by �ξL ≈ 0.05 K7 cm3/s for T = 0.45 K, and by �ξL ≈ 0.5 K7

cm3/s for T = 0.65 K.
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VII. SUMMARY

We have laid out the basic transport theory of dilute
solutions of 3He in superfluid 4He in the regime where
scattering among the 3He is the primary mechanism keeping
the 3He in thermal equilibrium, and phonons are the significant
excitations of the 4He. We find that in the range of 3He
concentrations in the Rosenbaum et al.3 and Lamoreaux et al.4

experiments, 7 × 10−5 � x3 � 1.5 × 10−3, heat transport is
dominated by phonons. The physical response of the system
is not simple diffusion, described only by a 3He diffusion
constant D3 since the temperature gradients are important.
The experiments can be characterized simply by a phonon
thermal conductivity. This thermal conductivity, calculated
in a microscopic framework, satisfactorily reproduces the
measurements, indicating that the well-tested theory of
3He-phonon scattering in dilute solutions of 3He in superfluid
4He is consistent with these experiments as well.
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APPENDIX: RECOIL CORRECTIONS

In this Appendix we calculate contributions to the thermal
conductivity due to the finite 3He mass. We start from Eq. (24)
with the structure factor (22) of the 3He,

∇Pph = −�vph
2πn3

6T

∫
d3q

(2π )3

∫
d3q ′

(2π )3
n0

q

(
1 + n0

q ′
)
k2|〈T 〉|2

(
m∗

2πk2T

)1/2

e−m∗(sq−sq ′−k2/2m∗)2/2k2T

= −�vph
2πn3

6T

∫
d3q

(2π )3

∫
d3q ′

(2π )3

k2|〈T 〉|2
4 sinh(sq/2T ) sinh(sq ′/2T )

[(
m∗

2πk2T

)1/2

e−m∗(sq−sq ′)2/2k2T

]
e−k2/8m∗T . (A1)

The integral in Eq. (A1) is proportional to the inverse of the
thermal conductivity. In the limit m∗ → ∞ the expression in
square brackets reduces to δ(sq − sq ′). For finite m∗ there
are two effects. First, the structure factor, and therefore also
the scattering rate, is reduced in magnitude because of the
nonzero momentum transfer �k = �q − �q ′, as is shown by the
final Gaussian factor. Second, as the first Gaussian factor
indicates, there is an energy transfer sq − sq ′ which is of
order (T k2/m∗)1/2 ∼ (T/m∗s2)1/2T .

The contributions to the scattering amplitude for nonzero
energy transfer and for nonzero velocity of the 3He atoms have
not been investigated in detail, although the basic processes
were discussed in full in Ref. 7. Here we use Eq. (13) for the
scattering amplitude. With prefactors omitted, the quantity to
be calculated is thus

∫ ∞

0
dq

∫ ∞

0
dq ′

∫ 1

−1
d cos θ

k(qq ′)3(A + B cos θ )2

4 sinh(sq/2T ) sinh(sq ′/2T )

× e−m∗s2(q−q ′)2/2k2T e−k2/8m∗T . (A2)

We have evaluated the integrals numerically and find, as
stated in Sec. IV, that inclusion of recoil effects increases the
thermal conductivity by ∼25–35% in the temperature range
0.45–0.65 K.

The leading corrections to the result for m∗ → ∞ are
of relative order T/m∗s2 relative to the result in the low
temperature limit; we now calculate them analytically. To first
order in T/m∗s2 the effects of the nonzero momentum transfer
and the nonzero energy transfer are additive, and we calculate
each in turn. The more important term is due to the momentum

transfer. When this term alone is included one finds

lim
T →0

(T K)/T K � 1 − 1

8m∗T
〈k4〉
〈k2〉 , (A3)

where

〈· · ·〉 =
∫ ∞

0
dq

∫ 1

−1
d cos θ

q6(A + B cos θ )2

4 sinh2(sq/2T )
(· · ·). (A4)

In these integrals we may replace k2 by its value 2q2(1 − cos θ )
for zero energy transfer. The integrals over q and θ decouple
and one finds

T K �
(

1 + T

4m∗s2

J̃

J

I10

I8

)
lim
T →0

(T K), (A5)

where

J̃ =
∫ 1

−1

d cos θ

2
(A + B cos θ )2(1 − cos θ )2

= 4

3
A2 − 4

3
AB + 8

15
B2 (A6)

and

In =
∫ ∞

0
dq

xn

4 sinh2(x/2)
= n! ζ (n), (A7)

with ζ (n) the Riemann ζ function of order n. Therefore the
thermal conductivity is given by

K �
(

1 + 25π2

11

J̃

J

T

m∗s2

)
1

T
lim
T →0

(T K). (A8)

We now calculate the leading correction to the thermal
conductivity due to the energy transfer, which is found by
neglecting the term k2/8m∗T in the exponent in Eq. (A2). The
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Gaussian in the energy difference has a width small compared
with T , so we adopt a procedure similar to that used in making
the Sommerfeld expansion for low temperature Fermi systems,
where the derivative of the Fermi function approaches a δ

function. In an integral of the form,

G(x) =
∫ ∞

0
dyg(y)

e−(x−y)2/2�2

(2π�)1/2
, (A9)

where � is a constant, and the function g(y) varies slowly on
the scale �, one finds on expanding g in a Taylor series about
y = x, that

G(x) = g(x) + �2

2
g′′(x) + · · · . (A10)

When this result is applied to the q ′ integral in Eq. (A2) with
the final Gaussian omitted, one finds

∫ ∞

0
dq

∫ ∞

0
dq ′

∫ 1

−1

d cos θ

2

(
m∗s2

2πT k2

)1/2
k2(qq ′)3(A + B cos θ )2e−m∗s2(q−q ′)2/2k2T

4 sinh2(sq/2T )

� J

∫ ∞

0
dq

2q8

4 sinh2(sq/2T )
+ T

2m∗s2

∫ ∞

0
dq

∫ 1

−1

d cos θ

2

k2q3k2(A + B cos θ )2

2 sinh(sq/2T )

(
∂2

∂(q ′)2

k2q ′3

2 sinh(sq ′/2T )

)
q ′=q

, (A11)

which, when expressed in terms of the variables x = sq/T ,y = sq ′/T , and z = cos θ , is proportional to

J

∫ ∞

0
dx

2x8

4 sinh2(x/2)
+ T

m∗s2

∫ ∞

0
dx

x5

2 sinh(x/2)

∫ 1

−1

dz

2
(1 − z)(A + Bz)2

(
∂2

∂y2

κ2y3

2 sinh(y/2)

)
y=x

, (A12)

where κ2 = x2 + y2 − 2xyz. The second derivative is

x3

sinh(x/2)

{
1 + (1 − z)

[
12 − 1

4
x2 − 4x coth(x/2)

+ 1

2
x2 coth(x/2)2

]}
. (A13)

On evaluating the integrals, one finds that the effect of energy
transfer produces contributions to the integral (A2) having the
form

1 +
(

1 − (25π2 − 198)

33

J̃

J

)
T

m∗s2
. (A14)

The numerical factor (25π2 − 198)/33 is approximately 1.477
and thus one sees that the effects of nonzero energy transfer
are much less important than those due to nonzero momentum
transfer. When both contributions to the thermal conductivity
are included, one finds on inserting Eq. (27) for the low

temperature limiting behavior,

K � n4s
2

90πx3JT

(
1 + T

m∗s2

[
100π2 − 198

33

J̃

J
− 1

])
.

(A15)

The coefficient of J̃ /J is approximately 23.90. For A = −1.2
and B = 0.70, J is 2.16, J̃ is 3.30 and their ratio is 1.52. Thus
the coefficient of T/m∗s2 is 35.5. Even though m∗s2 = 48.1 K,
the effects of recoil are large even at temperatures well below
1 K as a consequence of the large numerical coefficient.
This coefficient reflects the fact that the most important
contributions to the momentum transfer arise from phonons
with momenta �T/s. At T = 0.5 K the correction is 37%,
which is considerable. Higher-order contributions in T can be
significant, and one would expect these to reduce the deviation
from the low-temperature limiting result by an amount of
relative order (0.37)2 ∼ 10%. These analytic results are in
good agreement with the numerical integration of Eq. (A2)
described above, and shown in Fig. 1.

1R. Golub and S. K. Lamoreaux, Phys. Rep. 237, 1 (1994).
2This experiment utilizes the absorption of ultracold polarized
neutrons on polarized 3He atoms via the reaction n + 3He →
p + t + 764 keV.

3R. L. Rosenbaum, J. Landau, and Y. Eckstein, J. Low Temp. Phys.
16, 131 (1974).

4S. K. Lamoreaux, G. Archibald, P. D. Barnes, W. T. Buttler,
D. J. Clark, M. D. Cooper, M. Espy, G. L. Greene, R. Golub,
M. E. Hayden, C. Lei, L. J. Marek, J.-C. Peng, and S. Penttila,
Europhys. Lett. 58, 718 (2002).

5M. Hayden, S. K. Lamoreaux, and R. Golub, AIP Conf. Proc. 850,
147 (2006).

6G. Baym, D. H. Beck, and C. J. Pethick (to be published).

7G. Baym and C. Ebner, Phys. Rev. 164, 235 (1967).
8H. J. Maris, Rev. Mod. Phys. 49, 341 (1977).
9G. Baym, R. G. Barrera, and C. J. Pethick, Phys. Rev. Lett. 22, 20
(1969).

10R. M. Bowley, Europhys. Lett. 58, 725 (2002).
11The phonon contributions to the dissipative second viscos-

ity terms in the superfluid acceleration equation vanish, see
Ref. 12.

12I. M. Khalatnikov, Introduction to the Theory of Superfluidity (W. A.
Benjamin, New York, 1965), pp. 65, 133.

13I. M. Khalatnikov, Ref. 12, Chap. 25; I. M. Khalatnikov and V.
N. Zharkov, Zh. E. T. F. 32, 1108 (1957) [Sov. Phys. JETP 5, 905
(1957)].

014512-8

http://dx.doi.org/10.1016/0370-1573(94)90084-1
http://dx.doi.org/10.1007/BF00655864
http://dx.doi.org/10.1007/BF00655864
http://dx.doi.org/10.1209/epl/i2002-00408-4
http://dx.doi.org/10.1063/1.2354645
http://dx.doi.org/10.1063/1.2354645
http://dx.doi.org/10.1103/PhysRev.164.235
http://dx.doi.org/10.1103/RevModPhys.49.341
http://dx.doi.org/10.1103/PhysRevLett.22.20
http://dx.doi.org/10.1103/PhysRevLett.22.20
http://dx.doi.org/10.1209/epl/i2002-00409-9


TRANSPORT IN VERY DILUTE SOLUTIONS OF 3He . . . PHYSICAL REVIEW B 88, 014512 (2013)

14J. Wilks, The Properties of Liquid and Solid Helium (Clarendon,
Oxford, 1967), Sec. 9.5.

15L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New
York, 1987), Sec. 59.

16G. Baym and C. Ebner, Phys. Rev. 170, 346 (1968).
17Note that in the implementation of this correction in Ref. 10, the

3He effective mass is taken to be one third of its actual value, and
therefore the effects of recoil are overestimated.

18One should not be alarmed by the apparent divergence as x3 → 0.
When x3 becomes sufficiently small, the 3He no longer provides
the mechanism for absorbing momentum from the phonons, and
rather the phonon thermal conductivity becomes limited by viscous
transfer of momentum from the phonons to the container walls.6

19C. Boghosian and H. Meyer, Phys. Lett. A 25, 352 (1967).
20G. E. Watson, J. D. Reppy, and R. C. Richardson, Phys. Rev. 188,

384 (1969).

21B. M. Abraham, C. G. Brandt, Y. Eckstein, J. Munarin, and G.
Baym, Phys. Rev. 188, 309 (1969).

22In fact, the viscosity for flow in a circular pipe plays a role only in a
thin boundary layer, which for the concentrations and temperatures
under consideration is of order millimeters thick.

23D. S. Greywall, Phys. Rev. B 23, 2152 (1981).
24PDE Solutions Inc., Spokane Valley, WA 99206, USA.
25We note that the analysis here must be extended for the lower

temperatures in the experiment to include scattering from the walls.
For example, the phonon mean free path is larger than the diameter
of the pipe for temperatures below about 0.37 K.

26We are grateful to M. Hayden, private communication, for the
details of the geometry.

27C. B. Satterthwaite, Phys. Rev. 125, 873 (1962); R. M. Mueller,
C. Buchal, T. Oversluizen, and F. Pobell, Rev. Sci. Instrum. 49, 515
(1978), and references therein.

014512-9

http://dx.doi.org/10.1103/PhysRev.170.346
http://dx.doi.org/10.1016/0375-9601(67)90693-7
http://dx.doi.org/10.1103/PhysRev.188.384
http://dx.doi.org/10.1103/PhysRev.188.384
http://dx.doi.org/10.1103/PhysRev.188.309
http://dx.doi.org/10.1103/PhysRevB.23.2152
http://dx.doi.org/10.1103/PhysRev.125.873
http://dx.doi.org/10.1063/1.1135452
http://dx.doi.org/10.1063/1.1135452



