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The quantum critical antiferromagnetic (AFM) fluctuation spectra measured by inelastic neutron scattering
recently in two heavy-fermion superconductors are used together with their other measured properties to calculate
their d-wave superconducting transition temperatures Tc. To this end, the linearized Eliashberg equations for
d-wave superconductivity induced by AFM fluctuations are solved in models of fermions with various levels
of nesting. The results for the ratio of Tc to the characteristic spin-fluctuation energy are well parametrized by
a dimensionless coupling constant and the AFM correlation length. Comparing the results with experiments
suggests that one may reasonably conclude that superconductivity in these compounds is indeed caused by
AFM fluctuations. This conclusion is strengthened by a calculation with the same parameters of the measured
coefficient of the normal-state quantum-critical resistivity ∝ T 3/2 characteristic of Gaussian AFM quantum-
critical fluctuations. The calculations give details of the superconducting coupling as a function of the correlation
length and the integrated fluctuation spectra useful in other compounds.
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I. INTRODUCTION

Many years ago, superconductivity was discovered in
heavy-fermion compounds.1–3 It was suggested4 that the
superconductivity was due to collective electronic fluctua-
tions and not due to electron-phonon interactions. Transport
properties in the superconducting state were analyzed5,6 to
show that superconductivity was in the d-wave symmetry. It
was also suggested that the d-wave symmetry is promoted by
antiferromagnetic fluctuations7 with long enough correlation
lengths. This promotes scattering of fermions near the Fermi
surface predominantly through angles around ±π/2, which
is essential for superconducting instability in the “d-wave”
channel for a suitable Fermi surface.8 The idea of long enough
AFM correlation lengths as essential for this mechanism is
supported by the fact that in heavy fermions, superconductivity
occurs generally in the regime near the AFM quantum critical
point where the correlation lengths are long but the competing
AFM phase has lower condensation energy.

At the same time, random phase approximation on the Hub-
bard model was used to calculate the spin-fluctuation spectra
and to suggest that d-wave superconductivity is promoted
by such fluctuations.9 The properties of the Hubbard model
have proven controversial in more elaborate calculations;
there are calculations which suggest that the ratio of the
transition temperature Tc to the typical electronic kinetic
energy parameters t is more than O(10−2) (Ref. 10) to
less than O(10−3) (Ref. 11). Since heavy-fermion properties
require Kondo effect of the f-orbital local moments and
their magnetic interactions using the wide-band electrons,
a multiorbital model is obviously required.12 The Hubbard
model was proposed as a sufficient model for the cuprate
compounds.13 But the discovery in under-doped cuprates14 of
the predicted time-reversal breaking order parameter15 on the
basis of a multiorbital model raises doubts on the validity of the
Hubbard model for the cuprates. For pnictides, generalization
of the Hubbard model to multiorbital situations and inclusions
of Hund’s rule couplings appears essential.

We have a more modest goal in this paper than calculating
spin fluctuations from microscopic theory and using it to
calculate properties of the superconductor. In recent years
inelastic neutron scattering in the heavy-fermion compounds
CeCu2Si216–18 and CeIrIn5

19 have provided details of the AFM
fluctuation spectrum in the normal state. The primary aim
of this paper is to estimate the superconducting transition
temperature using the parameters provided by the experiments
in these compounds. To do so, we solve the Eliashberg equa-
tions for d-wave superconductivity using a phenomenological
AFM spectral function with which the experimental data are
in good accord. The use of the Eliashberg equations for
quantitative calculations may be open to question because
the Migdal expansion parameter, which is of O(10−2) for the
electron-phonon problem, is of O(1) for such compounds if
one assumes that the scale of the AFM fluctuations extends
to the order of the electronic bandwidth. However, when the
AFM correlation length ξ is large compared to the lattice
constant a or (2kF)−1, the scale of the AFM fluctuations
is reduced correspondingly to O((a/ξ )2)t . But in the limit
of large correlation lengths, new questions arise8 which are
not important in the electron-phonon problem. The most
prominent among them are the role of inelastic scattering in
depressing Tc on the one hand,20 and the fact that the BCS-type
coupling constant λ appears to diverge when the characteristic
fluctuation frequency → 0 and the BCS prefactor appears to go
to 0. An answer to these questions and various considerations
which determine Tc from AFM interactions is possible from
the numerical solution of the Eliashberg equations.

We find that it is reasonable to conclude from a comparison
of the calculated Tc with experiments that AFM fluctuations are
responsible for d-wave superconductivity in the heavy-fermion
compounds. Very importantly, with similar parameters we
calculate the measured coefficient of the anomalous ∝ T 3/2

contribution to the resistivity in these compounds. A claim to
quantitative accuracy on both these quantities can however be
made only to factors of O(2).
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We note here that if one adopts the dimensionless mea-
sure Tc/EF for how high the electronic fluctuation induced
superconducting is, the heavy fermions may be said to do
very well indeed. For example, in many cases, including the
compounds studied here, this ratio is O(10−2), similar to that
of the cuprates.

Following the proposals that AFM fluctuations may also
promote superconductivity in the cuprate compounds,21 there
have been many discussions of the mechanism and many
calculations based on the Eliashberg equations. A partial
list includes the following.22 The most complete of these
calculations appear to us to be those carried out by Monthoux
and Lonzarich (ML),23,24 both for 2- and 3-dimensional
models. We present below calculations for the 2-dimensional
square lattice model with a phenomenological spin-fluctuation
spectrum, whose results are no different from those of ML
for the range of parameters examined that are common. A
difference in the calculations is that we vary the parameters
in the two-dimensional model so that “nesting” at the AFM
wave vector quantitatively changes. The amount of nesting
does have a significant effect on the results. More important is
that now that the AFM fluctuation spectra are available, we can
use the experimental parameters to test the ideas quantitatively.
We also discuss how to put limits on the parameters used based
on the sum rule for the fluctuation spectra and show that they
are interrelated. Results for the range of physical parameters
that we find relevant for the heavy fermions are not available in
the published results of ML. This has bearing also on general
conditions to determine the extent to which AFM fluctuations
give significant Tc for relevant parameters in other compounds.

This paper is organized as follows: We present in Sec. II
the models for the Fermi surface and for the spin fluctuations
which we have investigated using the linearized Eliashberg
equations. We discuss there the change of effective coupling
constants with the AFM correlation length using sum rules
so that the results for numerical solutions of the Eliashberg
equations presented later are presaged. We present the results
of the calculations in Sec. III and discuss the important
conclusions immediately after the description of the models.
We also present, in an appendix, the explicit derivation of the
coefficient of the T 3/2 resistivity from the measured form of
the AFM critical fluctuation spectra. This is used in the text
to estimate independently the value of a coefficient λ, which
is important for the calculation of Tc. We give the parameters
that have been deduced by inelastic neutron scattering for
the heavy-fermion compounds CeCu2Si216–18 and CeIrIn5

19

and compare the measured Tc with the calculations. We
should emphasize that such a comparison is meant to be only
illustrative of the physical principles involved; no detailed
quantitative agreement is to be expected, especially given
that the electronic structure of these compounds is far more
complicated than assumed in the models studied. However,
enough details can be provided so that one can conclude that
the idea of AFM fluctuations near the quantum critical point
in these compounds as the source of d-wave superconductivity
is well supported. For example using measured properties,
different levels of assumed nesting in the band structure need
a coupling constant λ between 1.5 and 3 to get the measured
Tc. In this range of λ and for the measured AFM correlation
length, Tc is close to being linear in λ. This range of values

FIG. 1. (Color online) The Fermi surfaces given by the tight-
binding spectrum with four values of the next-nearest hopping t ′ with
filling = 1.05.

is compared with the value of λ ≈ 1.6 needed to get the
measured coefficient of the T 3/2 resistivity, which is relatively
insensitive to nesting. One can assess the results from the fact
that in the range of λ deduced, Tc is found to be approximately
linear in λ.

II. MODELS AND RESULTS FOR Tc

A. Fermi surface

In our calculations we will consider two types of Fermi
surfaces, a free-electron Fermi surface and the others given by
the tight-binding spectrum in a two-dimensional square lattice
with nearest-neighbor and next-nearest-neighbor hopping t

and t ′, respectively:

ε�k = −2t(cos kxa + cos kya) + 4t ′ cos(kxa) cos(kya). (1)

The Fermi surface with the tight-binding spectrum is shown
in Fig. 1 for four values of the next-nearest hopping t ′/t and
the AFM wave vector. The nesting in the model changes as
t ′ increases. We will show detailed results for three Fermi
surfaces, the free-electron Fermi surface, the Fermi surface
(FS1) with tight-binding spectrum with t ′ = 0.4t , and the
Fermi surface (FS2) with tight-binding spectrum with t ′ =
0.1t . Of the four Fermi surfaces shown in Fig. 1, the one with
t ′ = 0.4t has the worst nesting and the one with t ′ = 0.1t has
the best nesting. Figure 2 shows the circular Fermi surface,
FS1, FS2, and the corresponding AFM wave vectors.

We will discuss using the results of ML together with ours
that if properly normalized density of states and fluctuation
spectra are used, two-dimensional and three-dimensional
models give similar results for Tc provided one adjusts the ratio
of the region of Fermi surface nesting to the total Fermi surface.
This is in general always lower in three than in two dimensions.
It is also important to note, as discovered long ago25,26 for
the case of s-wave superconductors, that Tc is a rather gross
quantity which depends to a very good approximation on the
average density of states near the chemical potential only and
not on details such as the number of Fermi surface sheets
and shapes. For d-wave superconductors, we show below, it
is important to also include effects of nesting of the Fermi
surface near the AFM wave vectors.
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FIG. 2. (Color online) Three types of Fermi surfaces and �Q
vector. The blue line shows the circular Fermi surface; the black
line shows FS1 which is given by the tight-binding spectrum in
two-dimensional square lattice with filling = 1.05 and t ′ = 0.40t .
The red line shows FS2 which is also given by the tight-binding
spectrum in two-dimensional square lattice but with filling = 1.05
and t ′ = 0.10t .

B. Dynamical spin susceptibility for AFM fluctuations,
correlation lengths, partial sum rules, and coupling constants

The dynamical spin susceptibility for itinerant fermions
with AFM correlations may be usefully divided into two parts:
the normal contribution of noninteracting fermions χ0(�q,iω)
and the part χAFM(�q,iω) affected by AFM correlations.
The two together obey the total magnetic moment sum rule.
The noninteracting susceptibility can play only an insignificant
role in promoting superconductivity8 and should be ignored.
The two contributions to the susceptibility can be distinguished
by their momentum dependence. The characteristic momen-
tum dependence of the noninteracting spin fluctuations is on
a scale of O(2k−1

f ) while that of the AFM spin fluctuations
is much shorter. A partial sum rule on χAFM(�q,iω) in terms
of the ordered moment in the AFM phase can be used
to relate the integrated fluctuations to the AFM correlation
length. Double counting by using the sum rule on the
total susceptibility for the fluctuations and yet having (free)
fermions interacting with such spin fluctuations is incorrect as
it overcounts the total degrees of freedom. Such considerations
have usually been blithely ignored in most of the previous
phenomenological work on this problem.

The fermions interact with spin fluctuations with a phe-
nomenological action

Sint = g2
∑

q,kk′,i,α,β,γ,δ

∑
ωn

χ (�q,iωn)ψ+
k′−q,γ σ i

γ,δ

×ψk′,δψ
+
k+q,ασ i

α,βψk,β + H.c. (2)

χ will be chosen to have dimensions of inverse of energy
(after subsuming a factor of 4μ2

B in its definition). So g is a
coupling function of dimension of energy. g for heavy fermions
is the exchange energy between the conduction electrons and
the f local moments. Its meaning for d-band problems is
more ambiguous, and may be best inferred from independent
experiments, for example the resistivity above Tc.

A suitable phenomenological form for the dynamical spin
fluctuations due to AFM correlations, with which experimental
results16,17 can be fitted, is

χ (�q,iω) = χ̄0�AFM

ψ�q + |ω| , (3)

ψ�q ≡ �AFM[(ξ/a)−2 + a2(�q − �Q)2], (4)

where �AFM is the damping rate of the fluctuations, and Q is
the antiferromagnetic vector.

The correlation length ξ is related to the deviation from the
quantum critical point (QCP) by variation in pressure, doping,
magnetic field, etc., as well as by temperature. �AFM, Q, and
ξ may all be determined from experiments. The temperature
dependence of ξ has been studied by renormalization group
(RG)27,28 and by the self-consistent renormalization (SCR)
methods.29–31 ξ−2 ∝ T 3/2 near AFM QCP in 3 dimensions
and dynamical critical exponent = 2. SCR derives using the
same dynamical critical exponent as that near the magnetic
QCP, ξ−2(T ) ∼ χ �Q ∝ T + θ .

In our calculations in two dimensions ξ will be assumed to
be of the form

(ξ/a)−2(T ) = (ξ ∗/a)−2 + γ
T

�AFM
, (5)

where ξ ∗ is the asymptotic T = 0 value of the correlation
length. One of our results is that the temperature dependence
of ξ is of insignificant consequence in determining Tc.

The linearized Elisahberg equations give that the kernel for
Cooper-pair coupling in the d-wave channel in a square lattice
is proportional to the projection of |g(k,k′)|2χ (k − k′,ω)
to (cos kx − cos ky)(cos k′

x − cos k′
y). In spin-fluctuation the-

ories, |g(k,k′)|2 has only a smooth momentum dependence.
So, Cooper-pair coupling prominently depends only on
(i) the momentum dependence of χ (k − k′,ω) determined
by the correlation length ξ , (ii) the integrated weight in the
momentum-dependent part, and (iii) the energy scale of the
momentum-dependent fluctuations. The first is qualitatively
obvious from the fact that a q-independent spin fluctuation
contributes zero to the Cooper channel in the d-wave channel.
It is not possible to make quantitative statements on these
effects without detailed calculations because the results also
depend on the nesting in the band structure near the AFM Q.
We will show that the three ingredients in χ (k − k′,ω) are not
mutually independent.

To gain physical insight, the effect of ξ on the integrated
spectral weight may be discussed before detailed calculations
through the the partial sum rule on χAFM( �Q,ω), which deter-
mines the effective coupling constant for superconductivity:

∑
i

〈S2
i 〉AFM

= 1

π

∑
�q

∫ ωc

0
dωImχ (�q,ω)

= ωc

π2
χ̄0

{
π

2
− tan−1

(
�AFM(ξ/a)−2

ωc

)

− 1
2

�AFM(ξ/a)−2

ωc

log

[
1 +

(
�(ξ/a)−2

ωc

)−2]}
. (6)

014510-3



SHINYA NISHIYAMA, K. MIYAKE, AND C. M. VARMA PHYSICAL REVIEW B 88, 014510 (2013)

FIG. 3. The dependence of the quantity
∑

i〈S2
i 〉AFM/ωc(χ̄0/2π )

which is shown in the text to be approximately proportional to
the effective coupling constant λeff on the correlation length ξ/a

is exhibited for various values of �AFM/ωc shown.

With the assumed Lorentzian form, it is necessary to introduce
an upper cutoff ωc in the frequencies ω up to which the
fluctuations extend. Actually, spin fluctuation are actually quite
suppressed for ω ∼ �AFM and we can simply use ωc ≈ �AFM

in calculations of Eliashberg equations. It is important to take
into account that there are four equivalent AFM vectors for the
two-dimensional problem in the paramagnetic regime of the
model, however strongly fluctuating it may be. This has been
taken into account in the sum rule by multiplying the measured
Imχ (�q,ω) by 4. For d = 3, the number of equivalent AFM
vectors is larger and a correspondingly larger multiplicative
factor should be used.

In the regime of very long correlation lengths, (ξ/a)2 � 1;
i.e., close to the quantum-critical point, the sum rule simply
gives ∑

i

〈S2
i 〉AFM ≈ ωc

2π
χ̄0 + O(a/ξ )2. (7)

〈S2
i 〉AFM may to a first approximation be estimated from the

ordered moment 〈S〉 in the nearby AFM phase but more
properly from integration of the relevant momentum and
frequency range of the measured fluctuations in absolute
units using polarized neutrons. Figure 3 shows the (ξ/a)−2

dependence of
∑

i〈S2
i 〉AFM/ωc(χ̄0/2π ) for �AFM/ωc = 1.0,

2.0, and 10.0.
Let us now consider the sum rule in the opposite limit, that

the correlation length is small compared to the lattice constant;
i.e., the system is very far from the quantum critical point. Then∑

i

〈S2
i 〉AFM ≈ ωc

2π
χ̄0

1

2
[(ξ/a)2 + O(ξ/a)4]. (8)

As already shown by ML and further elaborated below, for a
given band structure, the results of the Eliashberg calculations
for Tc/�AFM may be parametrized in terms of a dimensionless
“bare” coupling constant λ and a correlation length ξ ,

λ = g2NFχ̄0. (9)

χ̄0 may be determined in terms of 〈S2
i 〉AFM and therefore

(approximately) to the ordered moment through the sum
rule. We may define an effective coupling constant λeff to
incorporate the effect of the correlation length. Using that

the sum rule becomes the total moment sum rule in the
limit of infinite correlation length and the maximum possible
ordered moment, i.e., that of the AFM insulator (ignoring the
zero-point effects), one concludes that in the limit of very large
correlation lengths

λeff → λ∞ = g2NFf
2〈S2

i 〉max
2π

ωc

, (10)

where f is the fraction of the maximum possible ordered
moment. From Fig. 3 and from the detailed calculations
presented in the next section, one deduces that the limit for λ∞
is reached for ξ/a � 10, below which there is an exponential
fall-off of Tc/�AFM. For smaller correlation lengths, Fig. 3
shows that the λeff for Tc decreases with decreasing correlation
length.

In the work of ML, λ values from about 5 to about 50
are used in the calculations with varying correlation lengths.
Actually, one obtains for the considerations of the sum rules
above that for spin-1/2 problems, even the coupling constant
λ∞ is only of O(1), because gNF is of O(1) and so is the upper
limit on the ratio �AFM/ωc. An independent estimate of λeff

may be obtained from the normal-state properties, for example
the coefficient of the temperature dependence of the resistivity
of non-Fermi-liquid form in the quantum critical region. Again
only λ of O(1) will be found consistent.

It is also important to note that these BCS-type coupling
constants do not carry information on the retardation effects
due to the frequency dependence of the interaction; these as
well as the effects of inelastic scattering which are particularly
important for anisotropic superconductors are properly treated
through the numerical solution of the Eliashberg equations.
The difference from electron-phonon induced superconduc-
tivity where a single parameter λ need by introduced25 should
also be noted.

It should also be pointed out that in some heavy fermions,
the quantum-critical fluctuations do not have the functional
form given by the simple RG or SCR approximations as above,
but display “local criticality”32 as suggested for the cuprates.33

In this paper, we only consider fluctuations which are well
specified by the form given above.

III. RESISTIVITY IN THE QUANTUM-CRITICAL REGION

The temperature dependence of the resistivity near the
quantum-critical points has been derived several times.34 Here,
we rederive it paying special attention to the coefficient in front
of the anomalous temperature-dependent part. An expression
of the resistivity ρ(T ) in the antiferromagnetic quantum critical
region suitable for heavy fermions may be derived with the
following formula derived from the Boltzmann equation:

ρ−1(T ) = 1

4π3

e2vF

h̄

1

3

∫
τ�kdSFS, (11)

where the integration is taken over the Fermi surface, and vF

the Fermi velocity. This assumes that the actual electronic
structure near the chemical potential is sufficiently compli-
cated that in the temperature region of interest, vertex correc-
tions which lead to emphasis on large momentum scattering
for resistivity are unimportant. In that case the scattering
rate which determines the resistivity is the same as the

014510-4



SUPERCONDUCTING TRANSITION TEMPERATURES FOR . . . PHYSICAL REVIEW B 88, 014510 (2013)

single-particle scattering rate averaged over the Fermi surface.
This is true in a multisheeted Fermi surface and is suitable for
heavy fermions. This is similar to the case of transition metals
where the resistivity from electron-phonon scattering at low
temperatures is ∝ T 3 in contrast to the nearly free-electron
metals where it is ∝ T 5. For weakly anisotropic single-band
scattering, as in the cuprates, the resistivity for large AFM
correlation lengths is close to the Fermi-liquid temperature
dependence although near the hot spots the scattering rate is
nearly ∝ T 35.

Equation (11) can also be expressed as follows;

ρ−1 = ne2

m∗ 〈τ�k〉FS, (12)

where 〈· · · 〉FS ≡ 1
4πk2

F

∫ · · · dSFS means the average over the

Fermi surface, m∗ the renormalized effective mass. Here, τ�k
can be derived from the imaginary part of the self-energy,

h̄

2τ�k
= −Im�(�k,ε + iδ)|ε→0, (13)

where the self-energy due to the antiferromagnetic quantum
fluctuations is given as follows:

�( �p,iεn) = g2kBT
∑
ωm

∑
�q

G( �p − �q,iεn − iωm)χ (�q,iωm).

(14)

The result for the resistivity in the limit ξ/a → ∞ is derived
in Appendix A by explicitly calculating the self-energy given
by Eq. (14) as

ρ(ξ/a = ∞) = λ
3

4e2

ah̄

(εF/kB)
√

�AFM/kB
T 3/2. (15)

IV. SOLUTION OF THE LINEARIZED
ELIASHBERG EQUATIONS

The superconducting transition temperature is given by the
linearized version of the Eliashberg equations for the normal
self-energy −iωnZ(θ�k,iωn) and the anomalous or pairing self-
energy W (θ�k,iωn):

[1 − Z(θ�k,iωn)]iωn = −
∫

FS

ddS �p
(2π )dv �p

πT
∑
�m

i sgn(�m)

× g2χ (�k − �p,iωn − i�m), (16)

W (θ�k,iωn) = −
∫

FS

ddS �p
(2π )dv �p

πT
∑
�m

W (θ �p,i�m)

|�mZ(θ �p,i�m)|
× g2χ (�k − �p,iωn − i�m). (17)

Here ωn are the Matsubara frequencies, g is a momentum-
independent coupling matrix element, which has already been
defined, θ�k is an angle parameterizing the Fermi surface, and
N (θ�k) is the density of states at angle θ�k . The �p integral is
over the Fermi surface; v �p = ∂ε �p/∂ �p is the unrenormalized
velocity.

FIG. 4. The transition temperature normalized to �AFM vs
(ξ ∗/a)−2 for a circular Fermi surface and λ = 1 is shown on the
left, and the transition temperature normalized to �AFM vs λ for a
circular Fermi surface and (ξ ∗/a)−1 = 0 is shown on the right.

A. Results for variation of Tc with parameters in the models

Our principal general results for Tc on the basis of solution
of the linearized Eliashberg equations in terms of λ and
the parameters in χAFM( �Q,ω) are given in this section. The
numerical evaluation is done by first simplifying the Eliashberg
equations (16) and (17), as far as possible analytically. The final
expressions for the numerical evaluation, both for the circular
Fermi surface and the tight-binding Fermi surfaces, are given
in Appendix B.

Figure 4 shows the (ξ ∗/a)−2 dependencies of Tc/�AFM for
the circular Fermi surface on the bare coupling constant λ

in the large correlation length limit on the right. For small
bare coupling λ, the latter does have the BCS form while for
λ � 1, the dependence is approximately linear. Consistent with
earlier discussions,23,24 Tc/�AFM shows a very shallow peak
at around (ξ ∗/a)−2 ∼ 5 × 10−3. Tc/�AFM shows a drop-off as
the correlation length decreases, while it also shows moderate
decreases as the correlation length increases. ML pointed out
that this moderate decrease is caused by the rapid diverges
of Z as the correlation length increases. We note also that
the quantum-classical crossover correction to the correlation
length proportional to the factor γ in Eq. (5) has a negligible
effect on Tc. This will not be considered in any further
calculations.

The principal message from Fig. 4 is that the infinite
correlation length result for Tc is well obeyed up to ξ/a ≈ 10
with a very sharp fall-off thereafter which will be seen later
to be exponential. For large ξ/a, no BCS-type approximation
for Tc is valid. The limit of very large correlation length is
equivalent to the effective frequency of fluctuations → 0, as
may be seen from Eq. (4). If we use the McMillan25 type
approximation, in which λM ∝ 〈ω2〉−1, the inverse of the
average squared frequency of fluctuations, we get a divergent
coupling. Figure 4 gives a finite limit to Tc/�AFM, which
depends on the bare coupling constant λ. One may understand
this result from the calculations of Allen and Dynes,26 deduced
for the s-wave Eliashberg equation, that in the limit of a
diverging coupling constant Tc ∝ √

λM〈ω〉, where 〈ω〉 may
be taken approximately to be the square root of 〈ω2〉.

Next we show in Fig. 5 the (ξ ∗/a)−2 dependence of
Tc/�AFM for the four Fermi surfaces shown in Fig. 1. For
t ′ = 0.4t , the worst-nesting case, Tc/�AFM is similar to that
for the circular Fermi surface. Improving the nesting condition
increases Tc/�AFM.
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FIG. 5. (Color online) The transition temperature normalized to
�AFM vs (ξ ∗/a)−2 for the four Fermi surfaces shown in Fig. 1.

We show in Fig. 6 Tc as a function of λ for the worst-nesting
Fermi surface and the best-nested Fermi surface of those in
Fig. 1. A increase of O(2) in Tc for the similar values of λ is
discerned from the worst to the best nesting conditions.

ML have also presented detailed results for calculations
on a 3d electronic dispersion with the symmetry of a
cubic lattice. They remark that other parameters being the
same 2-dimensional dispersion gives higher Tc than a three-
dimensional dispersion. Based on our results for changes in
Tc in the 2d problem, we conclude that this is because of the
much better nesting that is obtainable in model 2d systems
compared to the 3d systems for a given Q which spans the
Fermi surface in some (usually symmetry) direction. In fact,
we can place our 2d results for the very weakly nested Fermi
surface over the ML results for the 3d Fermi surface and find
for other parameters the same as the systematics of the results
for Tc, as well as that its value is very similar.

V. COMPARISON WITH EXPERIMENTS
IN HEAVY FERMIONS

In this section, we compare the estimates of Tc from the
calculations with the experimental result in CeCu2Si2 and
CeIrIn5. For convenience, we show the measured intensity18

proportional to the dynamic structure factor S(Q,ω) =
coth(ω/2T )Imχ (Q,ω) in Fig. 7 for Q near QAFM.

Although the magnetic fluctuation spectrum found through
inelastic scattering in CeCu2Si2 is well represented by the form
of Eq. (4), the electronic structure is far more complicated than
assumed here or in the 3d calculations of ML. We have seen that
Tc, especially in the limit of large magnetic correlation lengths,

FIG. 6. (Color online) Left: The transition temperature normal-
ized by �AFM vs λ for the worst-nested Fermi surface (FS1) of Fig. 1.
Right: The transition temperature normalized by �AFM vs λ for the
best-nested Fermi surface (FS4) of Fig. 1.

FIG. 7. (Color online) The measured dynamic structure factor at
the antiferromagnetic Bragg vector as a function of energy for various
temperatures in CeCu2Si2. From Ref. 18. The variation with Q to get
the correlation length is also available in Ref. 18 and references
therein.

depends only on gross parameters such as λ and secondarily
on the amount of nesting. The comparison can only be very
limited and can only give insight into the orders of magnitudes
expected and to the physics involved.

(1) CeCu2Si2 (Refs. 16 and 18). To fit the phenomenological
susceptibility to these results, the parameters take the following
values:

AFM wave vector: QAFM= (0.22, 0.22, 1.46).
Ordered moment in the AFM phase: 〈S〉 ≈ 0.2μB/Ce.
Correlation length: ξ � 25 Å.
Characteristic energy scales: �AFM � 1.5 meV.
Density of states: From the measured uniform (q = 0)

paramagnetic susceptibility in the normal state, one deduces
the N (EF) ≈ (1/7) meV−1/unit cell.

AFM spin fluctuations parameter: χ̄0. The experimental
results for χ (q,ω) in Ref. 16 are parametrized in terms of three
quantities ξ,χ0, and �. The correlation length ξ in Ref. 16 is the
same quantity used by us. For clarity we give here the relation
of the other two parameters to the parameters used by us. The
conversion from the quantity χ0, which we will call χ0,S to our
χ̄0, is obtained by equating the integral over all q,ω of Eq. (S4)
in Ref. 16 to the integral of the same physical quantity given in
Eq. (6). In the limit of (ξ/a)2 � 1, one gets χ̄0 ≈ χ0,S(a/ξ )2.
The experimental result is χ0,S = 15.64μ2

B/meV. This then
gives χ̄0 ≈ 0.4μ2

B/unit cell/meV.
The quantity � is related to �AFM by �AFM = �(a)−2.
Transition temperature: Tc ∼ 0.6 K.
CeCu2Si2 has a very anisotropic Fermi surface with very

little dispersion along the tetragonal axis. The Fermi surface
in the plane is very complicated but we assume that just
as in s-wave superconductivity,25 Tc depends only on the
average density of states at the Fermi surface, supplemented by
knowledge of nesting of the Fermi surface near QAFM. Among
other things, our results below may be taken to be test of this
assumption.
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(2) CeIrIn5 (Ref. 19,36). Although long-range magnetic
order competing with superconductivity in CeIrIn5 has not
been accessed in this stoichiometric compound, there are
strong experimental results indicating that the compound
lies in the vicinity to an AFM quantum-critical point. The
resistivity of this material exhibits a non-Fermi-liquid behavior
similar to that observed in CeCoIn5, which is known to lie in
the vicinity of an AFM quantum-critical point which has been
accessed by doping the compound. Moreover, the nuclear spin
relaxation rate of CeIrIn5 is also similar to that of CeCoIn5.
The dynamical susceptibility has been recently deduced by
NMR experiments19 in agreement with this conclusion.

To fit the susceptibility to these experimental result, the
parameters take the following values:

AFM wave vector: QAFM = (0.5, 0.5, 0.5). The chosen
QAFM and ordered moment are taken to be that of the related
compound CeCoIn5.37

Ordered moment in the AFM phase: 〈S〉 ≈ 0.15μB.
Correlation length: (ξ ∗/a) � 10 at T = 1 K.19

Characteristic energy scales of AFM: �AFM � 1.5 meV.
Transition temperature: Tc = 0.4 K.
The experimental results show that both CeCu2Si2 and

CeIrIn5 lie not far from the asymptotic large correlation length
limit and that their Tc/�AFM are both about 0.03. For a circular
Fermi surface, and using the measure value of ξ/a in the
former, we may refer then simply to Fig. 4 and find that λ ≈ 3
gives the right value of Tc. For the best-nested Fermi surface,
however, a λ ≈ 1 is sufficient as shown in Fig. 6.

We may now try to estimate λ to see whether these values
are reasonable. We do this in two different ways. To utilize the
neutron scattering results for this purpose, we need to know
g besides the directly measured properties listed above. The
renormalizations in the heavy-fermion problem are such that
near the critical point the AFM interaction between magnetic
moments is of the same order as the heavy-fermion bandwidth.
Then g is of the order of the effective Fermi energy; i.e.,
gNF ∼ 1. Then we may use the experimental values of NF and
χ̄0 deduced from experiments above in Eq. (9) to get λ ≈ 2.

The above manner of estimation has forced us to guess
the value of g. We can estimate the value of λ much
better and independently from the non-Fermi-liquid resistivity
proportional to T 3/2 observed in the quantum critical regime
of CeCu2Si2, whose coefficient is proportional to λ. The
resistivity ρ in the quantum-critical region for ξ/a → ∞ is
given by Eq. (15). Using the values of CeCu2Si2 mentioned
above, the resistivity is estimated ρ = 3.02 × 10−8λT 3/2 �m
from Eq. (15). The non-Fermi-liquid resistivity observed in
CeCu2Si2 takes the form ρ(T )/ρ300K = 0.151 + 0.071T 3/2,38

where ρ300K ∼ 70 μ� cm.39 From the comparison of the
coefficient of T 3/2 term in the resistivity between theoretical
and experimental results, λ is estimated as λ ∼ 1.6. This
should be considered an important evidence for the rather
obvious idea that fluctuations that determine the normal-state
scattering also determine Tc, and of the consistency of the
present calculations. The extent to which the calculations
correctly estimate Tc may be judged from the fact that in the
range of λ from the different estimates for it, Tc ∝ λ.

We comment briefly on an estimation of the condensation
energy due to superconductivity and its comparison with
the increase in energy of AFM fluctuations on entering

superconductivity.16 The latter has been estimated to be almost
a factor of 20 larger than the superconducting condensation
energy. The suggestion has been offered that this factor of
20 may be the increase in kinetic energy. In BCS theory for
electron-phonon interactions, the absolute magnitude of the
change in kinetic and in potential energy are both of the same
order as the condensation energy. So, a good reason has to be
found for this factor of 20. We do not have a solution to this
enigma.

VI. SUMMARY

We have presented a solution to the linearized Eliashberg
equations using a phenomenological spin-fluctuation spectrum
and simple Fermi surfaces to highlight the important parame-
ters that determine Tc for d-wave symmetry. Careful attention
has been paid to the partial sum rule on the q-dependent part of
the spin-fluctuation spectra to estimate the effective coupling
constant which depends on parameters such as the total
partial spectral weight, the correlation length, and the upper
frequency cutoff of the q-dependent spin fluctuations. These
parameters are not independent and we show their relationship
in the simple model studied. With regard to the electronic
structure, a knowledge of the average density of states at the
Fermi surface is sufficient for determining Tc in the s-wave
channel.25 But for d-wave superconductivity through exchange
of well-correlated spin fluctuations, this must be supplemented
by a knowledge of nesting. The results for the general solutions
are employed for two heavy-fermion compounds using their
measured spin-fluctuation spectra and other quantities such
as specific heat and magnetic susceptibility. Correct estimates
for Tc to factors of O(2) are obtained. Confidence in these
results is bolstered by getting the correct observed temperature
dependence of the anomalous T 3/2 resistivity with a coefficient
using the same parameters, again correct to factors of O(2).
This puts a semiquantitative backbone to the surmise made
long ago that d-wave superconductivity in such heavy fermions
is promoted by large-amplitude spin fluctuations with large
correlation lengths such as occur near some AFM quantum
critical points.
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APPENDIX A: DERIVATION OF RESISTIVITY NEAR THE
ANTIFERROMAGNETIC QUANTUM CRITICAL POINT

An expression for the resistivity under assumptions suitable
for heavy fermions with a multisheeted Fermi surface and/or
sufficient impurity scattering40 is given by Eq. (15) in terms
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of the self-energy function Eq. (14). Here, we derive the
relation (15) explicitly. Substituting χ (�q,iωm) in the spectral
representation into Eq. (14) and carrying out the ωm summa-
tion, one gets

�( �p,iεn) = −g2

2

∑
�q

∫ ∞

−∞

dx

π

Imχ (�q,x)

x − iεn + ξ �p−�q

×
(

tanh
ξ �p−�q
2kBT

+ coth
x

2kBT

)
. (A1)

Taking the analytic continuation of �( �p,iεn), the imaginary is
given as

Im�( �p,ε + iδ)

= −g2

2

∑
�q

∫ ∞

−∞

dx

π
Imχ (�q,x)πδ(x − ε + ξ �p−�q)

×
(

tanh
ξ �p−�q
2kBT

+ coth
x

2kBT

)

= −g2

2

∑
�q

Imχ (�q,ε − ξ �p−�q)

×
(

tanh
ξ �p−�q
2kBT

+ coth
ε − ξ �p−�q

2kBT

)

= −g2

2

∑
�q

χ̄0�
−1
AFM(ε − ξ �p−�q)

[(ξ/a)−2 + a2(�q − �Q)2]2 + ( ε−ξ �p−�q
�AFM

)2

×
(

tanh
ξ �p−q

2kBT
+ coth

ε − ξ �p−q

2kBT

)
. (A2)

We now consider the behavior at around the antiferromagnetic
quantum critical point; i.e., (ξ/a)−1 ∼ 0. In a low-temperature
region where the non-Fermi-liquid behavior appears, ε ∼ 0
gives the dominant contribution for Eq. (A2). Moreover, using
the following relation,

tanh
x

2
− coth

x

2
= −2

sinh x
, (A3)

Eq. (A2) is transformed as

Im�( �p,0 + iδ)

= −g2χ̄0�
−1
AFM

∑
�q

ξ �p−�q
a4(�q − �Q)4 + ( ξ �p−�q

�AFM

)2

1

sinh( ξ �p−�q
kBT

)

= −g2χ̄0�
−1
AFM

∑
�q ′

ξ �p− �Q−�q ′

a4 �q ′4 + ( ξ �p− �Q−�q′
�AFM

)2

1

sinh(
ξ �p− �Q−�q′

kBT
)
.

(A4)

Next, we consider the �q integration in Eq. (A4). Because the
denominator in Eq. (A4) has a �q ′4 term, q ′ ∼ 0 gives the
dominant contribution in the �q ′ integration. Therefore, one
gets

Im�( �p,0 + iδ)

= −g2χ̄0�
−1
AFM

1

2π2

∫ qc

0
dq ′ ξ �p− �Q

a4q ′4 + ( ξ �p− �Q
�AFM

)2

1

sinh(
ξ �p− �Q
kBT

)
.

(A5)

Since the integrated function in Eq. (A5) rapidly decays as q ′
increases, we take qc as ∞ and obtain the following result by

FIG. 8. The cross-sectional circular Fermi surface and the wave
vector �p which satisfies the relation | �p| = | �p − �Q| = kF.

easy calculation:

Im�( �p,0 + iδ) = −g2χ̄0�
−1/2
AFM

1

8
√

2πa3

|ξ �p− �Q|1/2

sinh(
ξ �p− �Q
kBT

)
. (A6)

Substituting Eqs. (A6) and (13) into Eq. (12), ρ is given as

ρ � λ
ah̄

2
√

2�
1/2
AFMe2

〈 |ξ �p− �Q|1/2

sinh
ξ �p− �Q
kBT

〉
FS

, (A7)

where we use na3 ∼ 1 and NF = m∗kF/(2π2h̄2). Here, we
estimate the average over the Fermi surface in Eq. (A7)
assuming that the Fermi surface is spherical:〈 |ξ �p− �Q|

sinh
ξ �p− �Q
kBT

〉
FS

= 1

4πk2
F

∫ |ξ �p− �Q|1/2

sinh
ξ �p− �Q
kBT

dSFS. (A8)

The dominant contribution in Eq. (A8) comes from “hot” line
where the relation | �p| = | �p − �Q| = kF is satisfied as shown in
Fig. 8. Assuming that the dispersion near the Fermi surface is
given by linear dispersion, we obtain ξ �p− �Q � vFk⊥ cos(2σ −
π/2) = kF sin 2α, where k⊥ is the deviation from the “hot”
line. For one “hot” spot, the integration is estimated as

1

4πk2
F

kF sin α

∫ kc

−kc

dk⊥

√|vFk⊥ sin 2α|
sinh vFk⊥ sin 2α

kBT

. (A9)

Changing the integration variable as x ≡ vFk⊥ sin 2α/(kBT ),
Eq. (A9) is transformed as

(kBT )3/2

8πvFkF cos α

∫ vFkc sin 2α/kBT

0
dx

√
x

sinh x
. (A10)

Now, we take the upper limit of the integration as ∞ because
we consider the low-temperature region, and Eq. (A10) can be
calculated as

(kBT )3/2

8πvFkF cos α

2
√

2 − 1√
2

ζ
(

3
2

)
�

(
3
2

) � 3(kBT )3/2

4πvFkF cos α
.

(A11)
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Since such a “hot” point makes two rings whose total length
is equal to 4π in the sphere Fermi surface, Eq. (A8) is given
by 〈 |ξ �p− �Q|

sinh
ξ �p− �Q
kBT

〉
FS

= 3(kBT )3/2

2εF cos α
. (A12)

Substituting Eq. (A12) into Eq. (A7), we obtain

ρ � λ
3ah̄

4
√

2 cos α

1

(εF/kB)(�AFM/kB)1/2e2
T 3/2. (A13)

In this calculation, the Q vector is given by 2kF sin α. The Q

vector of the CeCu2Si2 is observed as (0.215, 0.215, 0.1458)
giving | �Q| = 1.49a/π . Therefore, α is estimated as α ∼ π/4,
and we obtain the result used for the estimation of λ:

ρ � λ
3

4e2

ah̄

(εF/kB)(�AFM/kB)1/2
T 3/2. (A14)

APPENDIX B: FINAL EXPRESSIONS
FOR EVALUATION OF Tc

1. Circular Fermi surface

For a circular Fermi surface, it is possible to do the
momentum integrals in the Eliashberg equations (16) and (17)
analytically so that only a diagonalization in discrete frequency
space needs to be done numerically. The final expressions used
for numerical evaluation for the normal and the anomalous
self-energy are

Z(θ�k,iωn) = 1 + λ

ωn/(πT )

∑
�m

sgn(�m)√
α2 − β2

, (B1)

W2(iωn) = πT
∑
�m

K(ωn,�m)
W2(i�m)

|�m| , (B2)

K(ωn,�m) = −λ

∫ 2π

0

dθ �p
2π

cos 2θ �p cos 2x

|Z(θ �p,�m)|

× A − √
A2 − B2 − C2

(B2 + C2)
√

A2 − B2 − C2
, (B3)

where

α = |ωn − �m|
�AFM

+ (ξ/a)−2 + a2(|�k|2 + | �p|2 + | �Q|2)

− 2a2|�k|| �Q| cos(θ�k − θ �Q), (B4)

β = 2a2| �p|
√

| �Q|2 + |�k|2 − 2| �Q||�k| cos(θ�k − θ �Q), (B5)

A = |ωn − �m|
a2�AFM

+ (ξ/a)−2 + a2(|�k|2 + | �p|2 + | �Q|2)

+ 2a2| �p|| �Q| cos(θ �p − θ �Q), (B6)

B2 + C2 = 4a4|�k|2[| �p|2 + | �Q|2 + 2| �p|| �Q| cos(θ �p − θ �Q)],

(B7)

x = tan−1

[
| �Q| sin θ �Q + | �p| sin θ �p
| �Q| cos θ �Q + | �p| cos θ �p

]
. (B8)

2. Tight-binding Fermi surfaces

With the tight-binding approximation, only some sim-
plifications in the momentum integrals in the Eliashberg
equations (16) and (17) can be done analytically. The final
expressions used in this paper for numerical evaluation are

Z(θ�k,iωn) = 1 + 1

ωn/(πT )

∑
�m

sgn(�m)
∫

FS

d2S �p
(2π )2v �p

× λ
|ωn−�m|

�AFM
+ (ξ/a)−2 + a2(�k − �p − �Q)2

, (B9)

W2(iωn) = πT
∑
�m

K(ωn,�m)
W2(i�m)

|�m| , (B10)

K(ωn,�m)

≡ −2λ

∫
FS

d2S�k
(2π )2v �p

∫
FS

d2S �p
(2π )2v �p

1

|Z(θ �p,i�m)|
× [cos(kFxa) − cos(kFya)][cos(pFxa) − cos(pFya)]

|ωn − �m|/�AFM + (ξ/a)−2 + a2(�k − �p − �Q)2
.

(B11)

For both circular and tight-binding Fermi surfaces, the best
numerical strategy to evaluate Tc is to cast Eqs. (B3) and (B11)
in the form of an eigenvalue equation for the eigenvector
W/|ωn|:∑

�m

[
K(ωn,�m) − |ωn|

πT
δn,m

][
W (i�m)

|�m|
]

= 0. (B12)

It should be noted that the matrix of Eq. (B12) is not
Hermitian because K(ωn,�n) includes the renormalization
factor Z(ωn,θ�k). If the angle dependence of Z can be neglected,
we can define K in a form which does not include Z, and we
obtain the eigenvalue equation with a Hermitian matrix for
the eigenvector W/|ωnZ(ωn)|. In the s-wave superconductor
case, such a situation, namely angle-independent self-energy,
appears. However, in the d-wave case, Z(iωn,θ�k) strongly
depends on θ�k . On including Z in the kernel K , the latter
is no longer symmetric for the frequency exchange, ωn

and �m.
At high temperatures the eigenvalues of Eq. (B12) are close

to the negative odd integers. As the temperature decreases,
the largest eigenvalue increases and crosses zero at transition
temperature T = Tc.
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