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Superconductivity assisted by interlayer pair hopping in multilayered cuprates
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In order to explore why the multilayered cuprates have such high Tc values, we have examined various
interlayer processes. Since the interlayer one-electron hopping has little effect on the band structure, we turn to the
interlayer pair hopping. The superconductivity in a double-layer Hubbard model with and without the interlayer
pair hopping, as studied by solving the Eliashberg equation with the fluctuation exchange approximation, reveals
that the interlayer pair hopping acts to increase the pairing interaction and the self-energy simultaneously, but
that the former effect supersedes the latter and enhances the superconductivity, along with how the sign of the
interlayer off-site pair hopping determines the relative configuration of d waves between the adjacent layers.
Study of the triple-layer case with the interlayer pair hopping further reveals that the superconductivity is further
enhanced but tends to be saturated toward the triple-layer case.
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I. INTRODUCTION

Although we are witnessing the discovery of new classes
of superconductors that include the iron-based and organic
superconductors,1–3 the high-Tc cuprate superconductors stand
out in having the highest Tc to date. Specifically, among
various families of the cuprate, the highest Tc occurs in
the multilayered cuprates that have n CuO2 planes in a
unit cell, typically the Hg-based HgBa2Can−1CunO2n+2+δ

[Hg-12(n − 1)n], where Tc depends on the number n of
the CuO2 planes with Tc increasing for n = 1–3 and de-
creasing slightly for n � 4, and Hg-1223 is still the highest
Tc superconductor.4 Empirically, the electronic band structure
has been probed with ARPES for the Bi-based triple-layer
cuprate (Bi-2223).5 Another experiment examines the optical
Josephson plasma modes6 arising from interlayer Josephson
couplings from the reflectivity spectra in the Hg-based
multilayered cuprates for n = 2–5, where the change in
the Josephson coupling strength is shown to be correlated
with Tc.7

There have been several theoretical studies for multi-
layered cuprates: Anderson and Chakravarty proposed that
an interlayer Josephson coupling that arises as a second-
order process in the interlayer one-electron hopping en-
hances the superconductivity.8,9 Although this mechanism
may be related to the c-axis coherence, it is considered
to be insufficient for increasing Tc because the realistic
magnitude of tz is an order of magnitude smaller than the
intralayer one (t), so the interlayer Josephson pair tunnel-
ing (∝t2

z /t) in this picture is too small to enhance the
superconductivity. Chakravarty also studied the effect of the
interlayer Josephson pair tunneling phenomenologically in
a macroscopic Ginzburg-Landau free energy scheme.10 On
the other hand, Leggett examined a Coulomb energy in
the c-axis layering structure,11 while Okamoto and Maier
studied an effect of the interlayer one-electron hopping for
double-layer Hubbard and t-J models.12 Chen et al. have
also examined an effect of the interlayer tunneling in terms
of a free energy derived from the t-J model in a case

where the phenomenological interlayer coupling is chosen to
realize the in-phase gap function between the two layers.13

Given the background, our purpose here is to microscop-
ically investigate a mechanism of the superconductivity in
multilayered cuprates, focusing on the effects of microscopic
interlayer pair hopping. We envisage that the interlayer
pair hopping arises as the matrix elements of long-range
Coulombic interaction, rather than a second-order process
in the interlayer one-electron hopping or phenomenological
Josephson coupling.

Motivated by this, we start from a double-layer Hubbard
model to microscopically explore the multilayered cuprates
by examining various interlayer processes. The interlayer
one-electron hopping has turned out to exert little effect on
the first-principles band structure (not shown), so that we
turn to the interlayer pair hopping. The hopping of Cooper
pairs across the layers should in general exist as a matrix
element of the long-range Coulomb interaction,14,15 and this
should affect superconductivity as a process intrinsic in
multilayer systems, but whether and how the superconductivity
is enhanced has not been well understood. Since we are
talking about d-wave pairing that is basically mediated by
antiferromagnetic spin fluctuations around specific regions
in k space, we have to adopt a method that can incor-
porate k-dependent pairing interactions. Hence we adopt
here the fluctuation exchange (FLEX) approximation,16–20

whose result is fed into the Eliashberg equation. We shall
show that the interlayer pair hopping acts in both ways
to increase the pairing interaction and decrease the quasi-
particle lifetime (with an increased self-energy), but the
former effect is found to supersede the latter and enhances
superconductivity, along with how the sign of the interlayer
off-site pair hopping determines the relative configuration
of the d wave between the adjacent layers. We have ex-
tended the study to the triple-layer case with the interlayer
pair hopping, where we show that the superconductivity is
further enhanced but only sublinearly with the number of
layers, with a tendency for saturation toward the triple-layer
case.
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II. FORMALISM

We consider a Hamiltonian of the double-layer model H

with the interlayer pair hopping Hpair,

H = Ht + HU + Hpair, (1)

where the one-electron kinetic energy,

Ht =
∑
αβ

∑
ij

∑
σ

t
αβ

ij c
α†
iσ c

β

jσ , (2)

and the Hubbard interaction,

HU = U
∑

α

∑
i

c
α†
i↑c

α†
i↓cα

i↓cα
i↑, (3)

are defined in a usual way, with c
α†
iσ creating an electron

at the ith site with spin σ in the layer α, t
αβ

ij the transfer
integral, and U the on-site Coulombic repulsion. Ht consists
of the intralayer (α = β) and interlayer (α �= β) one-electron
hoppings, where the intralayer component is here considered
for the nearest neighbor t = −0.5 eV, second neighbor t ′ =
0.1 eV, up to the third neighbor t ′′ = −0.08 eV. For the
interlayer one-electron hopping we take a usually adopted
form,

Ht⊥ =
∑
α �=β

∑
k

∑
σ

tz

2
(cos kx − cos ky)2c

α†
kσ c

β

kσ , (4)

in k space,21,22 with tz = −0.05 eV here. These values of
the one-electron hoppings are basically determined by a
downfolding from the first-principles bands, but here we make
a simplification in which we take common values between
the single-, double-, and triple-layer cases for a transparent
comparison.

Now the question is the form of the interlayer pair hopping
Hpair. Here we take a rather general form Hpair = H on

pair + H off
pair,

where in addition to the usually considered interlayer on-site
pair hopping,

H on
pair = U ′ ∑

α �=β

∑
i

c
α†
i↑c

α†
i↓c

β

i↓c
β

i↑, (5)

we also consider interlayer off-site pair hopping, H off
pair =

H off(1)
pair + H off(2)

pair , where the first term,

H off(1)
pair = U ′′ ∑

α �=β

nn∑
ij

c
α†
i↑c

α†
j↓c

β

j↓c
β

i↑, (6)

is the hopping of a spin-singlet pair formed on nearest-
neighbor intralayer sites from one layer to another, with

∑nn
ij

denoting a sum over nearest neighbors. In addition, we have
to note that, if we want to preserve the spin SU(2) symmetry,
we should include

H off(2)
pair = U ′′ ∑

α �=β

nn∑
ij

c
α†
i↑c

α†
j↓c

β

i↓c
β

j↑, (7)

in which the spins of the pair are exchanged during the hop
(Fig. 1). While the on-site term is considered to be the largest
interlayer pair hopping, the off-site terms should be not only
the second-largest interlayer pair hopping arising from long-
range Coulombic interaction, but may also play a crucial role
for d-wave pairing.

(a)

(b)

FIG. 1. (Color online) (a) Schematic interlayer hopping of on-site
pairs (H on

pair) and off-site pairs (H off
pair). The latter consists of H off(1)

pair and
H off(2)

pair , where the spins of the pair are exchanged during the hop
in H off(2)

pair . (b) Diagrams for the non-spin-flip interaction H off(1)
pair (left

panel) and spin-flip interaction H off(2)
pair (right). σ̄ stands for an opposite

spin of σ .

Now, the FLEX approximation, which is a conserved
approximation with bubble and ladder diagrams included,16,17

is one of the standard methods for self-consistently treating
the spin- and charge-fluctuation mediated pairing with the
self-energy effect incorporated.18–20 Let us start with showing
that the method can be extended for treating the pair-hopping
processes introduced here. Derived from the Dyson-Gor’kov
equation, the linearized Eliashberg equation for the gap
function �αβ(k) reads, in the present case,

λ�αβ(k) = − 1

Nβ

∑
k′

∑
α′β ′

∑
γ δ

V
pair
α′αββ ′ (k − k′)

×Gα′γ (k′)�γδ(k′)Gβ ′δ(−k′). (8)

Here k = (k,ωn) is the two-dimensional wave number
and Matsubara frequency for fermions with a 32 × 32 ×
2048 mesh, β = 1/T (kB = 1), and λ the eigenvalue of the
Eliashberg equation, where Tc is identified from λ = 1 but λ

also serves as a measure of the strength of superconductivity.
The pairing interaction V̂ pair, which is equivalent to the
effective interaction V̂ F for the anomalous Green’s function,
being involved with layer index in the present case, becomes
a bit complicated (a 2 × 2 × 2 × 2 tensor) as

V
pair
α′αββ ′ (q) = V F

α′αββ ′ (q)

≡
[
Û + 3

2

Û χ̂0Û

1 − Û χ̂0
− 1

2

Û χ̂0Û

1 + Û χ̂0

]
α′αββ ′

(q), (9)
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where [χ̂0]αα′ββ ′ (q) = −(1/Nβ)
∑

k Gβα(k + q)Gα′β ′(k) is
the polarization function, while Û , also a 2 × 2 × 2 × 2 tensor,
represents the interaction, which can be expressed as a
4 × 4 matrix, with the four rows (columns) corresponding to
αα′(ββ ′) = 11,22,12,21, as

Û (q) =

⎛
⎜⎜⎜⎝

U 0 0 0

0 U 0 0

0 0 0 U ′ + U ′′(q)

0 0 U ′ + U ′′(q) 0

⎞
⎟⎟⎟⎠, (10)

with U ′′(q) = 2U ′′(cos qx + cos qy).
For each layer, the d-wave pairing is favored by the

intralayer pairing interaction V
pair
αααα(q) that has peaks around

Q = (±π,±π ).18–20,23 For the multilayered model with the in-
terlayer pair hopping, the question is how the interlayer pairing
interaction V

pair
αββα(q) (α �= β) affects superconductivity.

III. RESULTS

A. Eigenvalues of the Eliashberg equation

Now we present the results comparing the situations in the
presence and absence of the interlayer pair hopping in Fig. 2.
This plots the eigenvalues of the Eliashberg equation λ against
the band filling n, where we set U = 2.5 eV here to be a
relatively small value compared to the realistic parameter but
appropriate to FLEX, which is a weak-coupling formalism.
For the interlayer pair hopping, we set U ′ = −2U ′′ = 0.5 eV
to be much smaller than U but still significant, while the effect
of the sign U ′′ will be discussed later.

Beside the eigenvalues of the Eliashberg equation λ, we
also display in Fig. 3 the interlayer pairing interaction V

pair
1221(q)

[=V
pair

2112(q)] (at n = 0.85). This is important since the d-wave
pairing within each layer has a strongly k-dependent form,
�11(k) = �22(k) ∼ cos kx − cos ky , so that the real question
for multilayered cases should be the effect of interlayer pair
hoppings on such anisotropic gap functions.

0.75 0.80 0.85 0.90 0.95
0.8

0.9

1.0

1.1

1.2

1.3

n

λ

FIG. 2. (Color online) Eigenvalue λ of Eliashberg equation
against the band filling n for the double-layer model at T = 0.01 eV.
Black (dashed) line: no interlayer pair hopping, purple: with H on

pair

only, green: with H off(1)
pair only, blue: with H on

pair + H off(1)
pair , pink: with

H on
pair + H off(1)

pair and isolated diagrams for H off(1)
pair , red: with all of Hpair

except for mixing of H off(1)
pair and H off(2)

pair .
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FIG. 3. (Color online) Real part of V
pair

1221(q,εn=0) when various
interlayer pair hoppings are switched on, one by one, at n = 0.85:
(a) H on

pair only, (b) H off(1)
pair only, (c) H on

pair + H off(1)
pair , (d) H on

pair + H off(1)
pair

and isolated diagrams for H off(2)
pair , and (e) all of Hpair except for mixing

of H off(1)
pair and H off(2)

pair .

In order to resolve the effects from various terms, let us
switch on the terms one by one. First, the black dashed
line in Fig. 2 represents the result of the double-layer
model without interlayer pair hopping. Since FLEX becomes
unreliable when the band filling becomes too close to the
half filling, we plot the result only up to n � 0.9. Now,
the purple line in Fig. 2 is for the model with interlayer
on-site pair hopping H on

pair only, where the pair hopping is
seen to suppress the superconductivity. This result, which may
at first seem strange since an interlayer pairing interaction
would naively enhance the superconductivity, comes from the
following fact. The interlayer pair hopping does produce an
interlayer pairing interaction as displayed in Fig. 3, which
is expected to enhance the intralayer superconducting gap
functions �11(k) and �22(k) in the sense of the Suhl-Kondo
mechanism24,25. However, the interlayer pair hopping also
increases the (intralayer) self-energy. An increased self-energy
is bad news for superconductivity, and the result here indicates
that this effect supersedes the enhanced interlayer pairing
interaction. If we look at Fig. 3(a), the interlayer pairing
interaction V

pair
1221(q) only shows barely visible peaks around Q.

This is because the interlayer on-site pair hopping Hamiltonian
has no k dependence to start with, and FLEX diagrams do not
render a significant k dependence. This is why V

pair
1221(q) is

insufficient for overcoming the increased self-energy.
By sharp contrast, the green line in Fig. 2, which represents

the result when one of the interlayer off-site pair hoppings
H off(1)

pair is switched on (without H on
pair), exhibits a significant

enhancement. Indeed, Fig. 3(b) shows that V
pair

1221(q) develops
a significant k dependence, and this is how the enhanced
pairing interaction overcomes the increased self-energy, since
H off(1)

pair (∝ cos qx + cos qy) originally possesses a large k de-
pendence, where the peaks around Q are intensified in the
FLEX scheme.
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Now the question is whether the addition of the on-site
pair hopping (H on

pair) degrades the enhancement due to H off(1)
pair .

The blue line in Fig. 2 representing this situation shows that
the superconductivity is enhanced even above the case when
H off(1)

pair alone is switched on. This may first seem to contradict
with the fact that H on

pair suppresses the superconductivity, but if
we go to Fig. 3(c), V pair

1221(q) with both H on
pair and H off(1)

pair switched
on is more reinforced around Q than when H off

pair alone is
present. The increase in V

pair
1221(q) is caused by the process in

which H on
pair raises the peaks of V

pair
1221(q) around Q from H off(1)

pair

through the spin-fluctuation term 3
2

Û χ̂0Û

1−Û χ̂0
in Eq. (9).

Let us now discuss the effects of the other interlayer
off-site pair hopping H off(2)

pair . The term is required for the
SU(2), but, being a spin-flip interaction, does complicate the
diagrams as follows. The term reads in k space as H off(2)

pair =
(−1/N )

∑
α �=β

∑
kk′q U ′′(q)cα†

k+q↓c
α†
k′+q↑c

β†
k′↓c

β†
k↑, as depicted in

Fig. 1(b). We can readily extend the FLEX when all the
interactions are of the spin-flip form, where the formulation is
similar to the usual FLEX.

Therefore we first take account of H on
pair + H off(1)

pair , and the
isolated diagrams for H off(2)

pair separately (i.e., excluding the
mixing of H off(2)

pair with non-spin-flip H on
pair + H off(1)

pair ). In this

case, the pairing interaction V̂ eff in Eq. (9) is replaced with
V̂ F [U,U ′,U ′′] + V̂ F [0,0,U ′′]. For details, see the Appendix
below. Dramatically, the addition of H off(2)

pair is seen as a pink line
in Fig. 2 to enhance the superconductivity much more than the
case with H on

pair and H off(1)
pair alone. A reinforced V

pair
1221(q) around

Q is indeed seen in Fig. 3(d).
Finally, we take account of the mixing of H on

pair + H off(1)
pair

with H off(2)
pair . To treat this rigorously is difficult because they

have respective k dependences, and their mixing acts as a
kind of vertex correction (see the Appendix). However, we
have confirmed from the self-energy that the effect of the
vertex corrections is numerically negligible, so that we can
take account of all of Hpair except for the mixing of H off(1)

pair

and H off(2)
pair by replacing V̂ eff in Eq. (9) with V̂ F [U,U ′,U ′′] +

V̂ F [U,U ′,U ′′] − V̂ F [U,U ′,0]. The first (second) terms repre-
sent the non-spin-flip (spin-flip) interactions, while the third
term subtracts the double counting (see the Appendix). The
red line in Fig. 2 represents the result in this scheme, where
the superconductivity is enhanced even above the pink one.
Figure 3(e) confirms that V

pair
1221(q) is more reinforced around

Q than in Fig. 3(d). The increase in V
pair

1221(q) (pink line to red
in Fig. 2) is caused in FLEX because a combined effect of
H on

pair and H off(2)
pair raises V

pair
1221(q), as a combined effect of H on

pair

and H off(1)
pair raises V

pair
1221(q) (green line to blue).

B. Phase diagram

Now, we are in a position to construct a phase diagram of
the double-layer system, in which we can compare the result
with and without interlayer pair hopping Hpair in Fig. 4. A
superconducting (SC) phase boundary is identified from the
eigenvalue of linearized Eliashberg equation λ reaching unity.
The antiferromagnetic (AF) phase boundary is determined in
the usually adopted way from the (in the present case the
intralayer) [Û χ̂0]αααα approaching unity (0.975 here).
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n

T/
t
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AF

Pair hopping 

FIG. 4. (Color online) Phase diagram on T and n (carrier
concentration) for the double-layer system with (red lines) and
without (black) interlayer pair hopping Hpair. Tc is SC transition
temperature while TN AF transition (Neél) temperature. The arrow
represents the increase of Tc arising from the interlayer pair hopping.

As is seen in Fig. 4, the SC transition temperature Tc

for the double-layer model in the presence of the interlayer
pair hopping Hpair is higher than the case in the absence
for all the range of carrier concentrations considered here.
For U ′ = −2U ′′ = 0.5 eV, the increase of Tc amounts to
�Tc ∼ 0.02t ∼ 100 K. On the other hand, AF transition
temperature TN for the double-layer model with interlayer pair
hopping Hpair slightly decreases from the case without, which
is because the divergence of the spin susceptibility χ s

αααα is
suppressed by the self-energy increased due to the interlayer
pair hopping.

C. Configuration of the d-wave pairing

Now a word on the sign of U ′′ in H off
pair. The interlayer

pairing interaction V
pair

1221(q) with U ′′ < 0, as we have assumed
so far, favors the configuration where the in-plane d-wave gap
functions �11 and �22 are arrayed in phase as in Fig. 5(a).
If we have U ′′ > 0, on the other hand, we end up with a
configuration where �11 and �22 are arrayed out of phase as
in Fig. 5(b), where V

pair
1221(q) also changes sign.

To be more precise, however, the configuration is not
determined solely by the sign of U ′′: even in the absence of the
interlayer pair hopping, the in-phase configuration is favored
through the off-diagonal Green’s functions, G12 and G21, in the
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 π
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ky
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Δ11
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 0
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-π
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(a) U < 0. (b) U > 0.

FIG. 5. (Color online) In-plane gap functions for the top layer
(�11) and for the bottom layer (�22) for U ′′ < 0 with an in-phase
configuration (a) and for U ′′ > 0 with an out-of-phase configura-
tion (b).
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FIG. 6. (Color online) Eigenvalue λ of the Eliashberg equation
against the number of layers nL for the average band filling n = 0.85
at T = 0.01 eV. We vary U ′ = −2U ′′ = 0.5 eV (red line), 0.3 eV
(blue), 0.1 eV (green).

Eliashberg equation (8). When the interlayer pair hopping is
switched on, the effect of V

pair
1221(q) has to overcome this effect

of V
pair

1111(q), which favors the in-phase configuration before
an out-of-phase configuration is realized for large enough
U ′′ > 0.

D. Triple layer

Finally, we discuss the effect of interlayer pair hopping in
a triple-layer system. We include all terms in Hpair except for
the mixing, i.e., H off(1)

pair and H off(2)
pair , for clarity, and we assume

that the interlayer pair hopping takes place only between the
adjacent layers. The result, displayed in Fig. 6, shows that
the eigenvalue λ of the Eliashberg equation plotted against
the number of layers nL at the average band filling n = 0.85
indicates that the superconductivity is enhanced monotonically
for nL = 1 → 2 and 2 → 3. However, the increase is only
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FIG. 7. (Color online) (Left) Superconducting gap functions in IP
and OPs for the triple-layer model with the interlayer pair hopping.
The d-wave gap in IP �22 is relatively larger than that in OPs �11 and
�33, i.e., �22 > �11 = �33. (Right) Self-energy in IP and OP for the
triple-layer model with the interlayer pair hopping. The self-energy
in IP 
22 is relatively larger than that in OPs 
11 and 
33, i.e.,

22 > 
11 = 
33.

sublinear for nL. The tendency of saturation is for all the values
of U ′ = −2U ′′, varied here over 0.1–0.5 eV. We have satura-
tion because, although superconductivity in the inner plane
(IP) is assisted by interlayer pairing interaction between two
outer planes (OPs), the self-energy effect becomes stronger
since IP interacts with two OPs. Therefore the net effect
makes the enhancement sublinear. This is supported by the
following observation in Fig. 7: The d-wave superconducting
gap function in IP �22 is relatively larger than that in OPs �11

and �33, i.e., �22 > �11 = �33, while the self-energy in IP

22 is also relatively larger than that in OPs 
11 and 
33, i.e.,

22 > 
11 = 
33.

IV. SUMMARY AND DISCUSSION

To summarize, superconductivity in a double-layer Hub-
bard model with and without the interlayer pair hopping is
studied by solving the Eliashberg equation with the fluctuation
exchange approximation. We have shown that the interlayer
pair hopping acts to increase both the pairing interaction
and the self-energy, but that the former effect supersedes and
the latter enhances the superconductivity. The interlayer pair
hopping considered here is for off-site pairs, for which we
have found that the extra off-site pair-hopping term needed
to preserve SU(2) symmetry actually acts to enhance the
superconductivity even further. The off-site interlayer pair
hopping especially acts to enhance the superconductivity
even further. We then end up with a phase diagram for
the double-layer model where the superconducting boundary
is significantly higher than the case without interlayer pair
hopping. We also investigate the triple-layer model with the
interlayer pair hopping, where the superconductivity is further
enhanced but the enhancement is sublinear for nL = 1 → 3.

In evaluating the present mechanism, an estimate [e.g.,
with constrained random phase approximation26 (c-RPA)] of
the magnitude of interlayer off-site pair hopping H off

pair in real
materials should be important. Experimentally, one possibly
relevant quantity is the optical Josephson plasma energy, which
has been observed for Hg-based cuprates with 2–5 layers.7 It
is an interesting future problem to examine the actual relation
of this to the interlayer pair hopping considered here. Also,
larger numbers of layers are interesting, for which a study is
underway.
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APPENDIX: FLEX IN THE COEXISTENCE OF
NON-SPIN-FLIP AND SPIN-FLIP INTERLAYER PAIR

HOPPINGS

We present an outline of the extension of the FLEX
(fluctuation exchange) approximation to include the spin-flip
as well as non-spin-flip interactions.
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FIG. 8. Second-order cross term between H off(1)
pair and H off(2)

pair .

In the present context, we start with reformulating the
multiorbital FLEX with intra- and interlayer interactions
in a double-layer model. We first separate non-spin-flip
interactions such as HU , H on

pair, and H off(1)
pair from spin-flip

interactions such as H off(2)
pair . The non-spin-flip part (HU , H on

pair,
and H off(1)

pair ) can be expressed as

Hnsf = 1

N

∑
kk′q

∑
αββ ′α′

U nsf
αα′β ′β(q)cα†

k+q↑c
β†
k′−q↓c

β ′
k′↓cα′

k↑, (A1)

where α, β, etc. denote the layer, q the momentum trans-
fer, and the nonzero components in the present model
are U nsf

1111(q) = U nsf
2222(q) = U , U nsf

1221(q) = U nsf
2112(q) = U ′ +

U ′′(q). On the other hand, the spin-flip term H off(2)
pair =

−(1/N )
∑

k,k′,q
∑

α �=β U ′′(q)cα†
k+q↓c

α†
k′−q↑c

β

k′↓c
β

k↑, which is re-
quired for SU(2) to be preserved, can be expressed as

Hsf = − 1

N

∑
kk′q

∑
αββ ′α′

U sf
αα′β ′β(q)cα†

k+q↓c
β†
k′−q↑c

β ′
k′↓cα′

k↑, (A2)

where the form c
†
↓c

†
↑c↓c↑ signifies the spin flip, and the nonzero

components in the present model are U sf
1221(q) = U sf

2112(q) =
U ′′(q). While HU and H on

pair can also be expressed in a spin-
flip form (see below), we cannot cast both H off(1)

pair and H off(2)
pair

simultaneously into a single expression like the above if we
want to have the prefactor as a function of q.

In the FLEX scheme, all of the bubble and ladder diagrams
composed of Hnsf and Hsf have to be summed, which includes
cross terms of H off(1)

pair and H off(2)
pair . It is difficult to treat

the cross terms exactly, since a kind of “vertex correction,”
as shown in Fig. 8, exists already in the second order in
the perturbation expansion. Fortunately, however, we have
confirmed numerically that such diagrams are much smaller
than the other terms in the same order, which is because the
momentum dependence is different between H off(1)

pair and H off(2)
pair .

We can therefore ignore the diagrams composed of the mixing
of H off(1)

pair and H off(2)
pair .

With this, we can actually sum all the bubble and ladder
diagrams for both Hnsf and Hsf (except for the mixing of
H off(1)

pair and H off(2)
pair ), which is performed as follows. The

FLEX for HU , H on
pair, and H off(1)

pair (i.e., all the bubble and

cross term

FIG. 9. (Color online) FLEX can be performed for each of the
Hamiltonian components encircled by ovals. In addition, cross terms
exist between the components indicated by an arrow.

ladder diagrams composed of Hnsf) can be performed in a
standard way, where the only difference is to take into account
the tensorial interactions and susceptibilities [i.e., Û (q),
χ̂0(q)].

We next take account of the mixing of HU , H on
pair with H off(2)

pair ,
employing the following technique. First, we cast HU and H on

pair
into a spin-flip form by rearranging creation and annihilation
operators as

HU = −U

N

∑
kk′q

∑
α

c
α†
k+q↓c

α†
k′−q↑cα

k′↓cα
k↑,

(A3)

H on
pair = −U ′

N

∑
kk′q

∑
α �=β

c
α†
k+q↓c

α†
k′−q↑c

β

k′↓c
β

k↑.

Note that the form c
†
↓c

†
↑c↓c↑ signifies the spin flip. The HU

and H on
pair + H off(2)

pair in the spin-flip form have nonzero compo-
nents U sf

1111(q) = U sf
2222(q) = U , U sf

1221(q) = U sf
2112(q) = U ′ +

U ′′(q). We can now take account of the mixing of HU ,
H on

pair, and H off(2)
pair when all of the bubble and ladder diagrams

composed of Hsf are summed (see Fig. 9). When we use
the above technique, the effective interaction for the normal
self-energy composed of Hnsf and Hsf, V̂ G.nsf[U,U ′,U ′′(q)]
and V̂ G.sf[U,U ′,U ′′(q)], respectively, are equivalent, and the
pairing interaction for the anomalous self-energy composed
of Hnsf and Hsf, V̂ F .nsf[U,U ′,U ′′(q)] and V̂ F .sf[U,U ′,U ′′(q)],
respectively, are also equivalent.

Finally, the diagrams composed of Hnsf and those composed
of Hsf are added, but of course we have to subtract the double-
counted diagrams composed of HU and H on

pair. This is achieved

by putting the effective interaction V̂ eff for normal self-energy

̂G and the pairing interaction V̂ pair for the anomalous self-
energy 
̂F as

V̂ eff = V̂ G.nsf[U,U ′,U ′′(q)] + V̂ G.sf[U,U ′,U ′′(q)]

− V̂ G.(n)sf[U,U ′,0], (A4)

V̂ pair = V̂ F .nsf[U,U ′,U ′′(q)] + V̂ F .sf[U,U ′,U ′′(q)]

− V̂ F .(n)sf[U,U ′,0]. (A5)

1. FLEX for non-spin-flip interactions

We first write down the multiorbital FLEX with intra-
and interlayer interactions belonging to Hnsf. The normal
self-energy for the interlayer interactions is given as


G.nsf
αβ (k) = 1

Nβ

∑
k′

∑
α′β ′

V G.nsf
α′αβ ′β(k − k′)Gα′β ′ (k′), (A6)
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where

V̂ G.nsf = Û nsf + V̂ G.oB + V̂ G.L, (A7)

V G.oB
α′αβ ′β(q) =

[
Û χ̂0Û

1 − Û χ̂0Û χ̂0

]nsf

α′αβ ′β
(q), (A8)

V G.L
α′αβ ′β(q) =

[
Û χ̂0Û χ̂0Û

1 − Û χ̂0

]nsf

α′αβ ′β
(q). (A9)

Here V G.oB is the bubble-diagram contribution to the effective
interaction for the normal self-energy, where odd numbers of
bubbles are included due to the spin selection rule in Hnsf,
while V G.L is the ladder-diagram contribution to the effective
interaction. The polarization function is defined as

[χ̂0]αα′ββ ′(q) = − 1

Nβ

∑
k

Gβα(k + q)Gα′β ′(k), (A10)

which is a 2 × 2 × 2 × 2 tensor for the double-layer model and
can also be expressed as a 4 × 4 matrix. As for the products
of tensors, we have

[Û χ̂0]nsf
μμ′νν ′ =

∑
κκ ′

U nsf
μμ′κκ ′ [χ̂0]κκ ′νν ′ (A11)

for V̂ G.oB(q), and

[Û χ̂0]nsf
μμ′νν ′ =

∑
κκ ′

U nsf
μκ ′κμ′[χ̂0]κκ ′νν ′ (A12)

for V̂ G.L(q). For the non-spin-flip part with the on-site Hubbard
interaction Vαααα and the interlayer Cooper pair hopping terms
Vαββα (α �= β), the tensor products above are equivalent and
we arrive at

V G.nsf
α′αβ ′β(q) =

[
Û + 3

2

Û χ̂0Û

1 − Û χ̂0

+ 1

2

Û χ̂0Û

1 + Û χ̂0
− Û χ̂0Û

]nsf

α′αβ ′β
(q), (A13)

where the second (third) term on the right-hand side is the
spin- (charge-) fluctuation part.

The anomalous self-energy for the interlayer interactions is
given as

−
F .nsf
αβ (k) = 1

Nβ

∑
k′

∑
α′β ′

V F .nsf
α′αββ ′(k − k′)Fα′β ′(k′), (A14)

where

V̂ F .nsf = Û nsf + V̂ F .eB + V̂ F .L, (A15)

V F .eB
α′αββ ′ (q) =

[
Û χ̂0Û χ̂0Û

1 − Û χ̂0Û χ̂0

]nsf

α′αββ ′
(q), (A16)

V F .L
α′αββ ′ (q) =

[
Û χ̂0Û

1 − Û χ̂0

]nsf

α′αββ ′
(q), (A17)

with the same rule for the tensor products for V̂ F.eB(q) and
V̂ F.L(q) as in the normal self-energy above. Therefore V̂ F(q)
is written as

V F .nsf
α′αββ ′ (q) =

[
Û + 3

2

Û χ̂0Û

1 − Û χ̂0
− 1

2

Û χ̂0Û

1 + Û χ̂0

]nsf

α′αββ ′
(q).

(A18)

2. FLEX for spin-flip interactions

Now we turn to the multiorbital FLEX with intra- and
interlayer interactions belonging to the spin flip Hsf. The
normal self-energy for the interlayer interactions is given as


G.sf
αβ (k) = 1

Nβ

∑
k′

∑
α′β ′

V G.sf
α′αβ ′β(k − k′)Gα′β ′(k′). (A19)

For the spin-flip Hsf we have to take account of all of bubble
diagrams and odd numbers of ladders due to the spin selection
rule in Hsf.

However, we end up with the same form for the effective in-
teraction for the self-energy V̂ G.sf(q) as before, with separated
spin and charge fluctuation parts, as

V G.sf
α′αβ ′β(q) =

[
Û + 3

2

Û χ̂0Û

1 − Û χ̂0

+ 1

2

Û χ̂0Û

1 + Û χ̂0
− Û χ̂0Û

]sf

α′αβ ′β
(q). (A20)

Similarly, the anomalous self-energy for the interlayer inter-
actions is given as

−
F .sf
αβ (k) = 1

Nβ

∑
k′

∑
α′β ′

V F .sf
α′αββ ′(k − k′)Fα′β ′(k′), (A21)

where we have to take account of all the bubble diagrams and
the even number of ladders due to the spin selection rule for
Hsf.

Thus we again end up with the same form for the pairing
interaction for the anomalous self-energy,

V F .sf
α′αββ ′(q) =

[
Û + 3

2

Û χ̂0Û

1 − Û χ̂0
− 1

2

Û χ̂0Û

1 + Û χ̂0

]sf

α′αββ ′
(q),

(A22)

with the spin- and charge-fluctuation parts.

3. Eliashberg equation

Finally, the normal and anomalous self-energies are written
as


G
αβ(k) = 1

Nβ

∑
k′

∑
α′β ′

V eff
α′αβ ′β(k − k′)Gα′β ′(k′),

(A23)
−
F

αβ(k) = 1

Nβ

∑
k′

∑
α′β ′

V
pair
α′αββ ′ (k − k′)Fα′β ′(k′),

where V̂ eff and V̂ pair are expressed as Eqs. (A4) and (A5),
respectively. If we plug these into Dyson’s equations for
the anomalous Green’s functions, we have the Eliashberg
equation,

λ�αβ(k) = − 1

Nβ

∑
k′

∑
α′β ′

∑
γ δ

V
pair
α′αββ ′ (k − k′)

×Gα′γ (k′)�γδ(k′)Gβ ′δ(−k′), (A24)

where �̂(k) = 
̂F (k).
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