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Regular and chaotic vortex core reversal by a resonant perpendicular magnetic field
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Under the action of an alternating perpendicular magnetic field, the polarity of the vortex state nanodisk can
be efficiently switched. We predict the regular and chaotic dynamics of the vortex polarity and propose a simple
analytical description in terms of a reduced vortex core model. Conditions for the controllable polarity switching
are analyzed.
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I. INTRODUCTION

Investigation of the magnetization dynamics at the
nanoscale is a key task of the modern nanomagnetism.1 One
of the typical topologically nontrivial magnetic configurations
of a nanoscaled magnet is a magnetic vortex, which can form a
ground-state configuration of submicron-sized magnetic disk-
shaped particles (nanodots). Such a vortex is characterized by
a curling divergent-free in-plane configuration with magneti-
zation tangential to the edge surface of the nanoparticle.2 The
out-of-plane magnetization appears only in a very thin region
around the vortex core with about the size of an exchange
length (typically about 10 nm for magnetically soft materials).3

The vortex state is degenerated with respect to the upward or
downward magnetization of the vortex core (the vortex polarity
p = ±1), hence the vortex polarity can be considered as a bit
of information in nonvolatile magnetic vortex random-access
memories (VRAM).4,5 That is why one needs to control the
vortex polarity switching process in a very fast way.

The vortex polarity switching phenomena were pre-
dicted originally for the Heisenberg two-dimensional (2D)
magnets.6,7 The interest to this problem was renewed after an
experimental detection of the vortex core reversal in nanodots
by an excitation with short bursts of an alternating field,8 which
opened a possibility to use the vortex state dots as the VRAM.
Moreover, this motivated numerous fundamental studies of the
vortex core switching mechanism itself.1

There are two basic scenarios of the vortex polarity
switching. In the first, axially symmetric (or punch-through)
scenario, the vortex polarity is switched due to the direct pump-
ing of axially symmetric magnon modes. Such a switching
occurs, e.g., under the influence of a dc transversal field.9–12

In the second, axially asymmetric scenario, the switching
occurs due to a nonlinear resonance in the system of certain
magnon modes with nonlinear coupling.13,14 Such a scenario
is accompanied by the temporary creation and annihilation
of vortex-antivortex pairs.8 The axially asymmetric switching
occurs, e.g., under the action of different in-plane ac magnetic
fields or by a spin-polarized current (see Ref. 15 and references
therein).

Recently, the interest to the axially symmetric switching
was renewed: using the micromagnetic simulations Wang
and Dong16 and Yoo et al.17 demonstrated that the vortex
polarity reversal can be realized under the action of an
alternating perpendicular magnetic field. In this case, the

resonant pumping of the radial magnon modes initiates the
switching at much lower field intensities than by the dc fields.

We have very recently predicted the possibility of the
chaotic dynamics of the vortex polarity under the action of
the homogeneous transversal ac magnetic field in the 10-GHz
range:18

B(t) = ezB0 sin (2πf t) . (1)

In order to describe the switching behavior, we proposed in
Ref. 18 the analytical two-parameter cutoff model, which gave
us a possibility to describe both deterministic and chaotic
behaviors of the vortex polarity.

The goal of this work is to study in detail the vortex
dynamics under the action of a perpendicular ac magnetic field:
we found a rich vortex polarity dynamical behavior, including
the regular and chaotic regimes of magnetization reversal.
In order to analyze the complicated temporal evolution of
the vortex polarity, we used here the discrete reduced core
model,6,7,19 which allows us to describe different regimes of
vortex polarity dynamics, including the resonant behavior,
the weakly nonlinear regimes, the reversal dynamics, and the
chaotic regime. The reduced core model is another way to
treat the discreteness effects. As opposed to the cutoff model,
the core model is simpler, hence it allows us to go further in
analytics.

The paper is organized as follows: The full-scale micro-
magnetic simulations are detailed in Sec. II. Our diagram of
switching events demonstrates regimes of the regular reversal
(single, multiple, and periodic ones), intermittent and chaotic
regimes. In Sec. III, we describe the comprehensive vortex core
dynamics using a simple collective coordinate model, which
provides all features of the full-scale simulations. We propose
a way of a unidirectional switching controlled switching
in Sec. IV. In Sec. V, we state our main conclusions. In
Appendix A, we derive the reduced core mode. We use the
method of multiple scales to perform a weakly nonlinear
analysis of the analytical model in Appendix B.

II. MICROMAGNETIC SIMULATIONS OF REGULAR
AND CHAOTIC DYNAMICS

Nowadays, the micromagnetic simulations are the inherent
tools for the nanomagnetic research.20 Namely, using the
numerical simulations it was shown in Refs. 16 and 17 that the
resonant perpendicular field forces the vortex core to reverse.
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FIG. 1. (Color online) Switching diagram: open (blue) boxes describe the vortex dynamics without switching and others correspond to
parameters where the polarity reversal is observed [the red circles indicate parameters where the vortices escape from the origin during the
first 10 ns, the open (yellow) circles represent parameters where the autocorrelation function (2) rapidly decays, for the (black) diamonds the
switching process is periodical, and the green triangles correspond to an intermittent process]. (a) The example of the intermittent process.
(b) The examples of the vortex trajectories in case of the complex vortex dynamics. Black points mark the places of the polarity switching.
The trajectories b1 and b2 correspond to 12 and 14 GHz, respectively. (c) The example of the chaotic process. (d) The example of the regular
process.

Here, we perform full-scale micromagnetic simulations to
study the complicated vortex core dynamics in details. We
consider a disk-shaped nanoparticle (198 nm in diameter and
21 nm in thickness) under the action of the vertical oscillating
field (1) using an OOMMF (Ref. 21) micromagnetic simulator
with integration method RK5(4)7FC. The material parameters
correspond to Permalloy (Ni81Fe19) with exchange constant
A = 13 pJ, saturation magnetization Ms = 860 kA/m, zero
anisotropy coefficient, and the Gilbert damping coefficient
α = 0.01. The mesh cell was chosen to be 3 × 3 × 21 nm
(the three-dimensional mesh will be discussed at the end of
this section). For all OOMMF simulations, we use as initial
state the relaxed vortex with the polarity directed upward and
counterclockwise in-plane magnetization direction.

We also simulated the dynamics of the vortices for the
samples with other geometrical parameters: as we expected
the qualitative behavior of the system remains the same.22

First of all, we examined the eigenfrequencies of the lower
axially symmetric spin waves by applying a rectangular pulse
with the strength of 30 mT during 100 ps perpendicular
to the nanodisk in the vortex state in the same way as in
Ref. 16. Under the action of such a pulse, the magnetization

starts to oscillate: a set of symmetrical magnon modes f n
m=0

is excited. Using the fast Fourier transformation (FFT) of
the z component of the total magnetization, typically during
t ∈ [100 ps; 20 ns], we identified the eigenfrequency of the
lowest symmetrical mode f n=1

m=0 = 13.98 GHz. This value
defines the lowest threshold for the polarity switching.17 The
next-nearest peaks in the FFT spectrum correspond to 16.75
and 27.93 GHz.

It is already known17 that the vortex polarity switching
under the action of the ac field (1) occurs in a wide range of
field parameters (the field intensities B0 and field frequencies
f ). The minimal field intensity is reached at about the
resonance frequency f 1

0 . In this study, we are interested in
the long-time vortex dynamics, which is accompanied by
the axially symmetric polarity reversal mechanism. In all
numerical experiments we calculated the polarity and the
position of the vortex as functions of time: The vortex position
R(t) is determined as cross section of isosurfaces Mx(R) = 0
and My(R) = 0,23 and the vortex polarity p(t) is determined
as the average z magnetization of four neighbor cells to R(t).

To study in details the temporal evolution of the vortex
polarity, we simulated the long-time system dynamics with
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FIG. 2. (Color online) Nonlinear resonance curves from micro-
magnetic simulations. Insets: (a) The temporal evolution of the
polarity, (b) the FFT spectrum of the vortex polarity for B0 = 9 mT,
f = 13.2 GHz during 15 ns. Arrow indicates the pumping
frequency.

the time step of 1 ps for a wide range of the field parameters
(the field intensity B0 varies from 10 to 500 mT, and the field
frequency f changes from 3 to 21 GHz).24

The results can be summarized in the diagram of dynamical
regimes (see Fig. 1). Depending on the field parameters
(B0, f ), one can separate several different dynamical regimes:
(i) the absence of the vortex polarity switching, (ii) the chaotic
polarity oscillations, (iii) the regular switchings with frequen-
cies depending on the field frequency, (iv) the intermittent
switchings, and (v) the complex vortex-magnon dynamics,
where the vortex escapes from the origin.

(i) We start from a weak field: the field intensity is not
strong enough to switch the vortex polarity; this regime
corresponds to the linear or weakly nonlinear oscillations of
the vortex polarity (marked as open boxes in Fig. 1). The
weak pumping of the system (field intensities B0 � 5 mT,
see Fig. 2) causes the resonance at the frequency f 1

0 . The
increase of the field intensity leads to the nonlinear dynamical
regime. However, if the field intensity is not strong enough,
one has a weakly nonlinear regime, which corresponds to
the nonlinear resonance. Apart from the nonlinear resonance
behavior, the strong pumping causes the vortex polarity
instability,25 and it also causes the shift of the main peak in
the FFT spectrum [see Fig. 2(b)] and the beats in the polarity
oscillations [see Fig. 2(a)].

Let us consider the case when the magnetization reversal
occurs. The switching diagram (see Fig. 1) has two well-
defined minima. The first one corresponds to the resonant
excitation of the radially symmetrical mode f 1

0 . The second
minimum near 18 GHz, probably, corresponds to the dynamics
near the higher resonances.17

(ii) The open circles on the switching diagram (see
Fig. 1) correspond to the chaotic polarity reversal process.
The typical temporal evolution is shown in Fig. 1(c). To
draw a conclusion about chaotic behavior of the vortex
polarity, or more accurately, to make quantitative measures
of chaotic dynamics, we use two standard ways: the au-
tocorrelation function for the temporal evolution of the
vortex polarity and the Fourier distribution of its frequency
spectra.26
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FIG. 3. (Color online) Autocorrelation function (2) for B0 =
110 mT and f = 18 GHz (blue dashed line) and B0 = 70 mT and f =
14 GHz (red solid line). The first process demonstrates a periodical
process with periodical C(t) and the second one demonstrates a
chaotic behavior with rapidly decaying C(t).

First, we define the autocorrelation function of the vortex
polarity signal

C(ti) = 1

N

N∑
j=1

p(ti+j )p(tj ), i = 1,N (2)

for the discretized time tj = j t0 with the step t0 = 1 ps, with
the boundary values assumed as zero. It is well known26 from
the correlational analysis, when a signal is chaotic, information
about its past origins is lost, i.e., the signal is only correlated
with its recent part: the autocorrelation function decays very
rapidly, C(t) → 0 as t → ∞.26 For a periodical signal, the
autocorrelation function is periodic too. A typical example
is presented in Fig. 3: the autocorrelation function C(t) is
aperiodic and sharply decays for the applied magnetic field
70 mT with the frequency 14 GHz, which corresponds to
the chaotic dynamics. The autocorrelation for the regular
dynamics demonstrates the oscillations under the action of
B0 = 110 mT with f = 18 GHz.

The second way is to calculate the Fourier spectrum of a
chaotic signal. A typical FFT signal is presented in Fig. 4.
It is distinctive for the chaotic regime that the continuous
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FIG. 4. (Color online) FFT spectrum of the vortex polarity (B0 =
70 mT, f = 14 GHz): solid line corresponds to the numerical data,
the dashed line is the fitting to the pink noise.
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spectrum dominates the discrete spikes (one can identify in
Fig. 4 only one discrete spike at the pumping frequency).
The fitting of such a signal demonstrates typical pink noise
behavior with a power-law decay of the spectrum F(f ) ∝ 1/f β

with β ≈ 0.77.27

(iii) The regular oscillations of the vortex polarity appear
in the high-frequency regime [see the black diamonds on
the switching diagram in Fig. 1; the typical example of the
temporal evolution is plotted in Fig. 1(d)]. We have detected
the periodical motion of the vortex polarity using the pumping
frequency 18 GHz with the field intensities higher than 100 mT.
The main peak in the FFT spectrum corresponds to 6 GHz,
i.e., it occurs at f/3 of the pumping. Other spikes with
decaying intensities appear with steps of 6 GHz. We compare
the autocorrelation functions for the regular and chaotic
oscillations (see Fig. 3). In contrast to the chaotic regime,
C(t) for periodic oscillations exhibits a high periodicity with a
slowly decaying amplitude due to the finite observation time.

In order to compare the temporal dynamics of the polarity
in chaotic and regular regimes, we calculate the pseudophase
trajectories. The method of the pseudophase space is usually
used when only one variable [the discretized vortex polarity
p(ti) in our case] is measured:26 the pseudophase-space plot
can be made using p(ti) and its future value pti+1 , where the
absolute value of the time step ti+1 − ti affects only the shape
of the trajectory. In the case of chaotic dynamics, one has
open trajectories in pseudophase space (p(ti),p(ti+1)) [see
Fig. 5(a)]. In the regular case, pseudophase trajectories are
closed [see Fig. 5(b)]. Both trajectories are shown for the first
10 ns of the dynamics: in the first case the trajectory every time
makes a new loop in a different place, and in the second case all
loops coincide. In Sec. III, we construct the phase trajectories
for the theoretical model of our system [see Figs. 9(a) and 9(d)].

(iv) The green triangles on the switching diagram (see
Fig. 1) correspond to an intermittent process. The typical
example of the temporal dynamics in such a regime is plotted in
Fig. 1(a): the vortex state can retain its polarity for a relatively
long time of a few nanoseconds; after that, multiple reversal
processes occur during 50–100 ns. Note that in the vicinity of
other regimes in the switching diagram we observed that the
vortex polarity, after a few switches, can be “frozen” for the
rest of the observation time. For example, two switching events
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FIG. 5. (Color online) (a) The pseudophase diagram for the
chaotic vortex polarity dynamics (the time step 1 ns, the filled
circles mark polarities p = ±1); (b) the same diagram for the regular
dynamics.

occur during the first 1.2 ns (B0 = 30 mT and f = 14 GHz
[see Fig. 1(a)]; after that, the dynamical polarity has only
weak oscillations. A similar picture occurs for B0 = 70 mT
and f = 17 GHz, where after three reversals during the first
nanosecond the resulting polarity remains negative. Since the
reversals occur only at the beginning, one can conclude that
this occurs because the field is not switched on smoothly.

(v) The last regime corresponds to the field parameters
(B0, f ), where the vortex escapes from the system origin on
a long-time scale (see the red circles in Fig. 1). Typically,
the vortex starts to move during the first 10 ns. The detailed
analysis shows that the switching scenario differs essentially
from the above-mentioned one: the magnetization reversal
is mediated by the transient creation and annihilation of a
vortex-antivortex pair8 (for details of the axially asymmetric
switching mechanism see Ref. 15 and references therein). Two
examples of the possible trajectories are shown in Fig. 1(b):
The trajectory b1 corresponds to the chaotic motion, which
is accompanied by numerous reversal events. In the regular
regime, the vortex trajectory has a smooth shape (b2). When the
vortex stays in the center of the sample, polarity switching is
accompanied by generation of the radially symmetrical modes.
After some time of observation, a new fourfold symmetry
occurs around the vortex, which was mentioned in Ref. 17 and
linked with the square mesh symmetry used in the OOMMF.
When the vortex moves from the center, the switching scenario
is changed: a pair antivortex–new vortex is created and the
antivortex annihilates with the old vortex. The further magnon
dynamics becomes unpredictable.

We performed very long-time simulations (up to 30 ns) for
all parameters from the switching diagram, where the vortex
does not leave the disk center (see Fig. 1): the vortex motion
was found for all parameters with f < 17 GHz. For higher
frequencies (e.g., for f = 18 GHz and B0 = 100 mT), the
small oscillations of the vortex position were observed only for
t > 29 ns. In the prolonged simulations (iv) the vortex polarity
does not change its value during the time of observation in
agreement with the conclusion made above that the field is
sharply switched on.

The switching diagram for the low-frequency range has
several new features. One can identify from the plot two local
minima (4.5 and 6 GHz), which correspond to resonances
for fractional frequencies ( 1

3f 1
0 and 1

2f 1
0 ). The strong field

causes the vortex polarity reversal, which corresponds to the
quasistatic regime and the lower fields cause the escape of
the vortex from the system origin. We checked the idea about
the quasistatic regime by computing the threshold value for the
static field, which is in our case 611 mT (cf. Refs. 10 and 11).

It should be noted that in all simulations discussed above we
used the effective 2D mesh 3 × 3 × 21 nm. In order to check
our assumption about the uniform magnetization distribution
along the thickness z coordinate, we also performed 3D
OOMMF simulations with the mesh size 3 × 3 × 3 nm. One can
see that eigenfrequencies and boundaries of dynamical regimes
are slightly influenced by the nonhomogeneous distribution
along the z coordinate (see Fig. 6).

It is known that the vortex reversal under the action of
a perpendicular static field is accompanied by the temporal
creation and annihilation of a Bloch point: the switching
process, as a rule, is mediated by the creation of two Bloch
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FIG. 6. (Color online) Comparison of 2D and 3D simulations.
Symbols correspond to 3D simulations: The red circles describe
the switching process, the open blue boxes describe the dynamics
without switching. The dotted line represents the border of the
switching region for 3D simulations, colored domains correspond
to 2D simulations (see Fig. 1).

points, however, the single Bloch point scenario was also
mentioned.10 The Bloch point propagation during the polarity
reversal under the ac perpendicular field was also mentioned
by Yoo et al.17 It should be noted that the Bloch point is a
3D micromagnetic singularity, hence it does not exist in 2D
simulations.

The dynamics of the Bloch point is not well studied to the
moment. During the switching process, we observed a new 3D
picture of the switching, where some switching events are not
completed: the vortex near one face surface rapidly reverses
its polarity to opposite and returns back, while the vortex near
the second face surface saves its polarity during this time.

III. DESCRIPTION OF DIFFERENT
DYNAMICAL REGIMES

To gain some insight to the switching mechanism, we need
a model which allows the magnetization reversal process. It is
worth reminding that in the continuum limit the vortex states
with different polarities are separated by an infinite barrier. In
the spin lattice the barrier becomes finite28 and the reversal
can occur. It is already known from our previous paper18 that
the dominating contribution to the switching mechanism is
caused by the exchange interaction inside the vortex core. That
is why to describe the polarity reversal process we use here the
discrete reduced core model, which was initially introduced
by Wysin28 for the vortex instability phenomenon. Later, the
vortex core model was developed to analyze the vortex polarity
switching in Heisenberg magnets.6,7,19

One has to note that the reduced core model does not pretend
a quantitative agreement with simulations. It is the simplest
model which allows us to describe a rich variety of different
regimes of vortex polarity dynamics, including the resonant
behavior, the weakly nonlinear regimes, the reversal dynamics,
and the chaotic regime.

We consider the anisotropic classical Heisenberg disk-
shaped system with thickness Lz and the radius L, assuming
that the magnetization of the magnet is uniform along the

thickness. In terms of the normalized magnetic moment

mn = (√
1 − m2

n cos φn,

√
1 − m2

n sin φn,mn
)
, (3)

the energy of such a magnet with the account of the interaction
with magnetic field reads as

E = −ALz

2

∑
(n,δ)

[
mn · mn+δ − (1 − λ)mz

nm
z
n+δ

]

− a2
0MsLz

∑
n

mn · B(t), (4)

where the vector δ connects nearest neighbors of the three-
dimensional cubic lattice with the lattice constant a0, A is
the exchange constant, the parameter λ ∈ (0,1) is the effective
anisotropy constant, and Ms is the saturation magnetization.
According to this model, the planar vortex is stable when λ <

λc, where λc ≈ 0.72 for the square lattice.28 In a cylindrical
frame of reference (r,χ,z), the planar vortex distribution is
described by

mv = 0, φv = χ + C, (5a)

where C = ±π/2 is a vortex chirality (we use here the positive
sign in calculations below). When λ > λc, the nonplanar
vortex appears, which is characterized by the well-localized
out-of-plane magnetization mv �= 0.28

In the reduced core approach, we suppose that only the
four magnetic moments of the first coordinate shell can vary,
forming the vortex core; all the other moments are fixed in
the sample plane in a vortex configuration [Eq. (5a)] (see
Fig. 7). By symmetry, all four moments are characterized by
the same out-of-plane magnetization μ and equal in-plane
phase ψ , which is determined as a deviation from the vortex
configuration. Therefore, the magnetization distribution of the
first coordinate shell is described as follows:

mz
i = μ, φi = χ + C + ψ, i = 1,4. (5b)

4 1

23

12 5

6

7

89

10

11

Ψ

FIG. 7. (Color online) Schematic of the reduced core model:
Thick red arrows (numbers 1,4) indicate free magnetic moments
and thin black ones (numbers 5,12) indicate fixed magnetic moments
with mz

n = 0. The turning phase ψ describes the deviation of the
magnetization angle from the equilibrium (see Appendix A for
details).
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We consider the core magnetization μ, which has the meaning
of the dynamical vortex polarity, and the in-plane turning
phase ψ as two collective variables.

The energy of the model, normalized by ε = 8ALzλ, has
the form (see Appendix A for details)

E = −μ2

2
− 


√
1 − μ2 cos ψ − μh sin ωτ, (6)

where we introduced the reduced anisotropy parameter 
 =
2/(λ

√
5), the reduced field intensity h = a2

0MsB0/(2Aλ), the
reduced field frequency ω = 2πf Ms/(εγ ), and the rescaled
time τ = εγ t/Ms . We use 
 = 0.9415 (λ = 0.95) and η =
0.002 in a majority of numerical calculations below. Note
that such a value of the 
 parameter is chosen for illustrative
purposes: it does not fit to the correct material parameters from
simulations.

The magnetization dynamics in the reduced core model can
be described by the following equations (see Appendix A for
details):

μ̇ = 

√

1 − μ2 sin ψ + η[μ(1 − μ2) − 
μ
√

1 − μ2 cos ψ

+h(1 − μ2) sin ωτ ], (7)

ψ̇ = μ − 
μ cos ψ√
1 − μ2

+ h sin ωτ − η
 sin ψ√
1 − m2

,

where the overdot means the derivative with respect to τ and η

is a Gilbert damping coefficient. The ground state of the model
corresponds to

μ0 = ±
√

1 − 
2, ψ0 = 0. (8)

In terms of the core model, two opposite values of μ0 describe
vortices with opposite polarities μ0.

Let us start our analysis with a system without damping,
η = 0. Supposing that the turning phase is small enough,
|ψ | 
 1, one can easily exclude ψ from the consideration. In
this case, the Eqs. (7) correspond to the effective Lagrangian

L = M μ̇2

2
− U (μ) + μh sin ωτ,

(9)

M = 1



√

1 − μ2
, U (μ) = −μ2

2
− 


√
1 − μ2.

This simplification allows us to interpret the complicated
dynamics as the motion of a particle with variable mass M
in the double-well potential U (μ) under a periodic pumping
(see the inset in Fig. 8). The linear oscillations near the
equilibrium state correspond to the harmonic oscillations of
the effective particle in one of the wells; the eigenfrequency
of such oscillations is

ω0 =
√

1 − 
2. (10)

Let us describe the nonlinear regime of the dynamics.
In spite of the small damping in the system, its value can
be comparable with the pumping intensity. Therefore, we
consider below the full set of the model equations (7). To
analyze the weakly nonlinear regime, we use the multiscale
perturbation method.29–31 When the field intensity is much
less than the frequency detuning (h 
 |ω − ω0|), we can limit
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FIG. 8. (Color online) Nonlinear resonance curve: The numerical
solution of Eqs. (7) (the dashed line) and the analytical solution (12)
(the solid line) for the following parameters: 
 = 0.9415, h =
0.0002, η = 0.01, μ(0) = 0.337, ψ(0) = 0. The effective double-
well potential U [see Eq. (9)] is plotted in the inset.

ourselves to a three-scale expansion in the form

μ = μ0 +
3∑

n=1

εnμn(T0,T1,T2), Tn = εnτ,

ψ =
3∑

n=1

εnψn(T0,T1,T2), ω = ω0 + ω±, (11)

ω± = ε2ω2, η = ε2η2, h = ε3h3.

Using such expansion, one can derive from Eqs. (7) the
resonance curve ω±(h) as the solution of the equation

h2
4 = a2

(
2
√

1 − 
2ω± + 2 + 
2

2
2
a2

)2

+ η2(1 − 
2)(2 − 
2)2a2, (12)

with |a| being the amplitude of oscillations (see Appendix B
for details). The typical nonlinear resonance curve is shown in
Fig. 8 (cf. Fig. 2).

We analyze the strongly nonlinear regimes solving numer-
ically Eqs. (7) in a wide range of parameters (ω,h) (see the
diagram of switching events in Fig. 9). The absolute minimum
in the diagram corresponds to the switching in the range near
the resonance frequency ω0. Other local minima correspond to
resonances at double frequency 2ω0 and subharmonics ω0/2
and ω0/3. Note that all resonance frequencies are shifted in
the low-frequency direction due to the nonlinear resonance.

We classified the dynamical regimes by using the method
of Poincaré maps (15 × 103 points per map). We constructed
such maps for each pair (ω, h) where the switching takes
place. One can separate four oscillation regimes related to the
corresponding regimes in the OOMMF simulations (Sec. II) with
vortex dynamics in the center of the sample: (i) the absence of
switching, (ii) the chaotic dynamics, (iii) the regular polarity
oscillations between two polarities ±μ0, (iv) the switching
with final oscillations around one of the points (±μ0,0) in the
coordinates (μ,ψ).

(i) The border between the switching region and the
region, where field or frequency are not enough for jumps
between (±μ0,0), shows a few well-defined resonance minima
corresponding to resonances at ω0/3, ω0/2, ω0, and 2ω0.
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FIG. 9. (Color online) Map of dynamical regimes in the coordinates ω/ω0 − h/η. η = 0.002, other parameters are the same as in Fig. 8.
The red region corresponds to the chaotic dynamics. Three scales of gray indicate (in order of growing intensity) the switching process with
one stable focus on the Poincaré diagram and the final dynamics near the upward or downward polarity. The blue region corresponds to the
dynamics with more than one stable focus on the Poincaré diagram. (a) The phase diagram (projection) for the regular dynamics. The black
circles indicate the equilibrium polarities ±μ0. (b) Example of the regular dynamics, including the f/3 peak in FFT spectrum. (c) Example of
the chaotic oscillations. τ1 = 186 × 103. (d) The same as (a) for the chaotic dynamics. (e) The same as (b) for the dynamics with five stable
focuses on the Poincaré map. (f) Example of a process with the final state near −μ0.

(ii) The chaotic dynamics occurs for the low-frequency part
of Fig. 9 and in the stretched region between resonances at ω0

and 2ω0. An example of the temporal evolution is shown in
Fig. 9(c). The projection of the phase diagram on the (μ,ψ)
plane [see Fig. 9(d)] looks similar to the pseudophase diagram
in Fig. 5(a): the projection of trajectory is not closed and
representation point makes a lot of windings around both
±μ0. The shape of the chaotic Poincaré maps depends on
the frequency. They show the shape of strange attractors (see
Fig. 10). Their Cantor structure is ill defined due to using low
damping. Note that they are similar to strange attractors for the
Duffing oscillator26 (nonlinear oscillator with quadratic and
cubic nonlinearities in the double-well potential). However,
the reduced core model has a more complicated nonlinearity
term; using the mechanical analogy one can speak about the
motion of a particle with a variable mass (9) in a double-well
potential.

(iii) The main part of the diagram of switching events
(Fig. 9) is occupied by the region of regular dynamics. The

most frequently observed Poincaré maps for this case contain
some number of stable focuses. The observed numbers are
1,12, 15, 16, 18, 21, 24, 30, and 96. The most frequently
observed ones are 1 (the gray region in Fig. 9) and 3
(included into the blue region in Fig. 9). Some of the points
with a higher number of focuses demonstrate a complicated
regular dynamics in phase space [see Fig. 9(e)]. The analog
of quasirectangular regular polarity oscillations in OOMMF

simulations is found in the ω0/3 region {see phase diagram
in Fig. 9(a) and temporal evolution in Fig. 9(b) [compare with
the pseudophase diagram shown in Fig. 5(b) and the temporal
evolution in Fig. 1(d)]}.

(iv) The analog of the intermittent switching linked with
perturbation by the applying of the external field are shown by
two dark gray color intensities in Fig. 9. The final dynamics is
an oscillation around upward or downward polarity [points
(μ0,0) and (−μ0,0) in the phase-space projection, respec-
tively]. An example of the temporal evolution is shown in
Fig. 9(f). As in OOMMF simulations, such oscillations typically
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FIG. 10. (Color online) Evolution of strange attractors with change of pumping frequency. h/η = 10.5, other parameters are the same as
in Fig. 9. The number P means number of points on the corresponding Poincaré map.

occur near the border of the switching region. As in case of the
chaotic dynamics, the resulting polarity is highly dependent
on field, frequency, and integration conditions.

IV. CONTROLLED SWITCHING

As it is shown by analysis of the diagram of switchings
events (Fig. 1), the vortex polarity switching under the action of
the perpendicular resonant field produces multiple switchings
during a short time comparable with one period of the acting
field. Such a situation is not unique among different polarity
switching methods. So, for the axially asymmetric scenario,
sufficient strength of Gaussian pulse in the sample’s plane
produces more than one sequential vortex-antivortex pair
creation and annihilations.23 Using an in-plane rotating field
with frequency ωr codirectional with the vortex polarity p

(ωrp > 0) stabilizes the vortex in the center of the sample.
But, when ωrp < 0 the reversal occurs in a specific range
of the field intensities and frequencies, above which multiple
switching was observed.32 A similar picture was reported in
Ref. 33 for the current-induced switching.

However, for the further application in contrast to multiple
switching, a unidirectional vortex polarity reversal is needed.
Because the pumping (1) does not select any direction of the
vortex polarity, the most natural way to avoid the multiple
reversal consists in limiting the pulse duration. We test an
influence of a short-wave train in the form

B =
{
B0ez sin (2πf t) , t ∈ [

0,N
f

]
0, otherwise

(13)

where N ∈ N is the number of periods of the sinusoidal
magnetic field in the wave train. We investigate the vortex
dynamics under the action of the field (13) on the resonant
frequency f = f0. The vortex polarity is observed during a
long time 10N/f in order to damp magnons.

The response of the magnetization to the field (13) shows
the nonlinear dependency on B0 and N [see Fig. 11(a)]. When
field intensity and period numbers are small, there are only
small oscillations of the magnetization inside the vortex core.
When N becomes larger than some critical value, a typical
system behavior looks like a few switchings, which also
occurs when the field is already turned off. A unidirectional
switching from upward polarity to downward is observed
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FIG. 11. (Color online) (a) Number of switchings as function of number of oscillations in the wave train (N ) and the field intensity (B0).
Symbols correspond to values N and B0, where unidirectional switching is observed. (b) Controlled unidirectional switching by sequence of
short-wave trains (contained N = 6 periods on frequency 14 GHz, duration 0.43 ns) with period 3.2 ns. Gray regions show time of applying
external magnetic field. (c) The same for the core model. Separate pulse contains N = 3 periods (duration 58.9 in arb. units), interval between
pulses 589 arb. units.
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for B0 = 30 mT and N = 6,7 and some higher fields. We
check the controllability of the discussed switching method
by applying of series of wave trains. The series of wave trains
is applied to the relaxed vortex. The time interval between
trains is varied with steps of 0.5/f0 in different series. For
B0 = 30 mT and N = 6 the first switching occurs in 627 ps
and the vortex starts to relax (field is turned off at the time
429 ps). The sequence containing three wave trains allows us
to get controllable unidirectional vortex polarity reversal with
minimal interval between wave trains of 3.2 ns [see Fig. 11(b)].
These time intervals correspond to speed of changing state of
such memory cell about 250 MHz. The core model also gives
the same qualitative result [see Fig. 11(c)].

V. DISCUSSION

The axially symmetric switching of the vortex core under
the action of periodic pumping was very recenltly predicted
in Refs. 16 and 17. Wang and Dong16 were concerned with
switching events: for the typical nanodot size, the switching
at the resonant frequency occurs during 600 ps. Yoo et al.17

computed the diagram of switching events where they noticed
the existence of resonances on double and triple harmonics
and showed that the exchange energy becomes higher than the
threshold value for the vortex core reversal. In this work, we
study the long- and short-time vortex dynamics and propose an
analytical model which describes the phenomena of full-scale
simulations.

In order to explain the complicated vortex dynamics, we
use here the reduced core model.6,7,19,28 It should be noted
that this model does not pretend a quantitative agreement
with simulations. In particular, it does not provide even the
eigenfrequencies of the radially symmetric magnon modes,
which is a rather complicated task.34,35 Nevertheless, the
model we use is the simplest one which allows us to
describe a rich variety of different regimes of vortex polarity
dynamics. This model provides a simple physical picture of the
switching phenomenon in terms of the nonlinear resonance in a
double-well potential. Such a potential arises mainly from the
exchange interaction: the presence of two wells corresponds
to the energy degeneracy with respect to the direction of
the vortex polarity (up or down); the energy barrier between
the wells becomes higher as the discreteness effects become
less important. One has to stress that the switching process
is forbidden in the continuum theory. In a real magnet the
magnetization reversal is possible due to the discreteness of the
lattice. That is why to describe the switching analytically we
use the discrete core model: the switching can be considered
as the motion of an effective mechanical particle with a
variable mass in the double-well potential. Under the action
of periodical pumping, the particle starts to oscillate near the
bottom of one of the wells. When the pumping increases, there
appear nonlinear oscillations of the particle; under a further
forcing the particle overcomes the barrier, which corresponds
to the magnetization reversal process.

The chaotic dynamics of the magnetization is studied
for domain walls36 and current-induced phenomena in mon-
odomain nanoparticles.37–39 Very recently, the existence of
incommensurate chaotic vortex dynamics in spin valves was
reported.40 In our case, the chaos enters in the vortex polarity

switching process due to the periodical pumping of the system
with two equivalent equilibrium states as it happens in a
Duffing oscillator.26

The periodic pumping does not select the preferable vortex
polarity direction which causes multiple switchings under the
action of sufficiently high fields and frequencies. However,
accurate fitting of the pulse duration and the time interval
between sequential pulses allows us to obtain a controlled
unidirectional core reversal. Thus, the chaotic, regular, and
controlled vortex polarity dynamics could find applications in
physical layer data encryption41,42 and memory devices.4,5

In this study, we do not consider thermal effects on the
vortex dynamics. The influence of the temperature was found
to be not essential for the current-induced motion of an
individual vortex in Py nanodisks.43 Nevertheless, it should
be noted while magnetic vortices are stable up to very high
temperature,44 the heating can influence the gyroscopical
vortex dynamics.45,46 The heat can induce the vortex dynamics
in the system.47 The temperature-induced vortex dynamics
also can influence the critical fields for vortex nucleation and
annihilation.48 We expect that the physical picture discussed
in the paper with a variety of different dynamical regimes
survives with the temperature. The thermal effects will cause
the shift of boundaries between different regimes.
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APPENDIX A: REDUCED CORE MODEL

Taking into account the explicit form of the magnetic
field (1), the energy (4) reads as19

E = −ALz

2

∑
(n,δ)

[√(
1 − m2

n

)(
1 − m2

n+δ

)
cos(φn− φn+δ)

+ λmnmn+δ

] − a2
0MsLzB0 sin (2πf t)

∑
n

mn. (A1)

Now, we incorporate here the reduced core ansatz (5). Then,
the energy (A1) reads as

E = −4a2
0MsLzμB0 sin(2πf t) − 4ALzλμ2

− 16√
5
ALz

√
1 − μ2 cos ψ. (A2)

After the renormalization, Eq. (A2) takes the form (6), where
E = E/ε, ε = 8ALzλ.
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The magnetization dynamics follows the Landau-Lifshitz-
Gilbert equations

dmn

dτ
= mn × ∂E

∂mn
+ ηmn × dmn

dτ
, (A3)

with η being a Gilbert damping coefficient and the rescaled
time τ = εγ t/Ms . Substituting Eqs. (5b) into Eq. (A3), we
obtain the equations for the (μ,ψ):

dμ

dτ
= ∂E

∂ψ
− η(1 − μ2)

∂E

∂μ
,

dψ

dτ
= −∂E

∂μ
− η

1 − μ2

∂E

∂ψ
.

(A4)

By substituting Eq. (6) into (A4) we get Eq. (7).

APPENDIX B: WEAKLY NONLINEAR ANALYSIS

Let us consider the weakly nonlinear case for Eqs. (7).
Using the series expansion (11), the time derivative reads as

d

dt
=

2∑
n=0

εnDn, Dn = d

dTn

, (B1)

and the equations of motion (7) break into three pairs of
equations for the different orders in ε:

D0μ1 = 
2ψ1, (B2)

D0ψ1 =
(

1 − 1


2

)
μ1, (B3)

D1μ1 + D0μ2 = −
√

1 − 
2μ1ψ1 + 
2ψ2, (B4)

D1ψ1 + D0ψ2 =
(

1 − 1


2

)
μ2 − 3

√
1 − 
2

2
4
μ2

1

+
√

1 − 
2

2
ψ2

1 , (B5)

D2μ1 + D1μ2 + D0μ3

= 
2ψ3 − 1

2
2
μ2

1ψ1 −
√

1 − 
2(μ2ψ1 + μ1ψ2)

− 
2

6
ψ3

1 − (1 − 
2)η2μ1, (B6)

D2ψ1 + D1ψ2 + D0ψ3

=
(

1 − 1


2

)
μ3 − 5 − 4
2

2
6
μ3

1 − 3
√

1 − 
2


4
μ1μ2

+ 1

2
2
μ1ψ

2
1 +

√
1 − 
2ψ1ψ2 + h3 sin ωt − η2ψ1.

(B7)

The solution of Eqs. (B2) and (B3) reads as

μ1(T0,T1,T2) = A(T1,T2)eiω0T0 + A∗(T1,T2)e−iω0T0 .

Following the Floquet theory,30 one needs to omit all secular
terms. Thus, Eqs. (B4) and (B5) show A(T1,T2) ≡ A(T2) and
Eqs. (B6) and (B7) give the equation for A(T2):

2i
√

1 − 
2D2A + iη2

√
1 − 
2(2 − 
2)A − 2

2 + 
2


2
A2A∗

= 
2 h3

2i
eiω2T2 . (B8)

By solving Eq. (B8) one obtains Eq. (12).
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