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Domain-wall flexing instability and propagation in thin ferromagnetic films
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We investigate field-driven domain-wall dynamics in thin ferromagnetic layers in the precessional regime
using an analytical model that goes beyond the rigid wall approximation and takes into account the flexing modes
of domain walls. This model allows us to turn on and off the stray field from domains adjacent to the domain
wall in order to elucidate its role. We determine the eigenfrequencies of the flexing modes. The domain-wall
flexing instabilities are shown to exist even without the stray field. The amplitude of the flexing modes shows a
maximum when the magnetization precession frequency is equal to their eigenfrequency. At maximum amplitude
of the flexing modes, the domain-wall velocity exhibits bumps even without the stray field. The stray field further
enhances the velocity and broadens the bumps. This study is completed by micromagnetic simulations that show
excellent agreement with the analytical model. The role of the various spatial modes in the velocity enhancement
is clarified. Additional fractional frequencies appear in the time-dependent amplitude of the flexing modes, in
analogy with the behavior of parametric oscillators.
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I. INTRODUCTION

Propagation of magnetic domain walls (DW) attracts a
lot of interest in view of potential applications in novel
magnetic devices.1,2 In magnetic films or stripes, following
the well-known one-dimensional (1D) model developed in
the 70’s,3–5 the DW velocity is expected to rise with the
applied magnetic field (stationary regime). After the Walker
breakdown, at the Walker field HW , the velocity shows a
nonmonotonous behavior originating from the precession of
the magnetization inside the wall (precessional regime). The
observation of these intrinsic flow regimes is most often
hindered by DW pinning resulting in creep and depinning
regimes.6–9 In some cases (high field, low density of pinning
defects), there is clear experimental evidence that the flow
regimes can be reached,7,10–12 thereby allowing for compar-
ison with theory. However experimental results often show
deviations from the predicted behavior. An increase of the
velocity at certain fields is observed.10,12–16 A change of the
domain-wall structure14 and the appearance of excitations
of internal degrees of freedom on the typical timescale of
magnetization precession (e.g., DW width oscillations17,18 or
DW flexing15) have been proposed to explain strong velocity
enhancements, on the basis of numerical simulations. For
in-plane magnetized materials,17,18 no mechanism has been
put forward to relate these two observations. In perpendicularly
magnetized materials, a toy model has been suggested using
a simple analytical description of the flexing DW structure.15

For large Gilbert damping, it identified some of the velocity
bumps as the resonance of the first flexural mode and its
coupling to the stray field from the domains adjacent to the
wall. Exploring smaller values of this damping constant might
lead to novel features in the DW dynamics because of the
intrinsic nonlinearity in the Landau-Lifshitz-Gilbert equation
at the basis of DW propagation equations. In particular one
expects the appearance of higher order flexing modes but also

of additional frequencies in the spectrum of magnetization
precession, typical of a parametric oscillator behavior.19

Efficient excitation of new internal degrees of freedom be-
comes possible at the onset of DW instabilities. Theoretically,
DW instabilities in ferromagnetic films were investigated in
special cases: orthorhombic anisotropy,20,21 with an applied
field in the film plane,22 or close to the anisotropy field.23,24

However their contribution to DW dynamics was not studied
in detail. A clear understanding of the role of instabilities in
more standard geometries and in the entire field range currently
investigated in DW propagation experiments (precessional
regime) is still lacking. Actually, several types of instabilities
may be considered: flexing modes in the thickness of the film,
corrugation, or buckling along the DW plane.22,25

In this paper we concentrate on the first type of in-
stabilities: flexing modes and the associated magnetization
twist in the film thickness. We consider perpendicularly
magnetized layers. Within the general framework of collective
coordinates,3,17,18 we develop an analytical model that takes
into account the spatial and temporal dependencies of the DW
profile and precession angle, thereby extending the approach
beyond the 1D model that described a rigid wall with uniform
precession. Within this model the stray field of the domains
can be turned on and off in order to get a deeper insight into
its precise role. We thereby show that the flexing instabilities
of the precession motion of the magnetization in the DW exist
regardless of the action of the stray field even though the mode
amplitudes depend on the stray field. Furthermore this model
shows that a reduced set of parameters is sufficient to describe
the DW dynamics with DW flexing.

From micromagnetic simulations we then obtain velocity
curves which are very similar to the analytical model, showing
the relevance of this model despite an approximate expression
of the stray field. We clarify the respective contribution of
the various oscillation modes to the velocity peaks. With
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decreasing damping constant an additional high velocity
plateau appears in the precessional regime, in agreement
with experimental findings. At velocity peaks novel fre-
quencies, namely subharmonics of the fundamental preces-
sional frequency, appear in the frequency spectrum of the
oscillation modes. This is reminiscent of frequency locking
at a rational multiple of the eigenfrequency for parametric
oscillators.19,26,27

The paper is organized as follows. Section II presents the
analytical model. We first obtain a set of partial differential
equations (PDE) for the coupled variables, DW profile, and
precessional angle. The analysis of the DW flexing instabilities
in the framework of linear theory reduces to the calculation
of the Floquet multipliers.26 Section III describes the results
of micromagnetic simulations. In Sec. IV we summarize the
results and give a few perspectives.

II. ANALYTICAL MODEL

A. Equations of motion for a flexing DW

We consider a ferromagnetic layer in the x-y plane, with
thickness d along the z direction and infinite length along the
x and y directions (Fig. 1). The magnetic field is applied along
z (the magnetic easy axis) and the DW propagates along y.
We assume that the DW z profile is invariant along x. The
analysis of the stability of the DW motion is carried out on the
basis of the equations derived in Ref. 3. The DW magnetization
is represented as �M = M(sin θ cos ϕ, sin θ sin ϕ, cos θ ) using
the reference frame of Fig. 1. The Landau-Lifshitz-Gilbert
equation for the magnetization

�̇M = γ �M × δE

δ �M + α �M × �̇M
M

, (1)

mode 2

mode 3

mode 1

ϕ

Θ

(b)

(a)

FIG. 1. (Color online) (a) Schematic of the sample film (side
view) and definition of the notations used in the text. (b) Profiles of
the three first flexural modes of the DW.

with γ the gyromagnetic factor (γ > 0), is analyzed by
splitting the energy density E of the ferromagnet into two
parts E = E0 + E1. The first one includes the exchange energy
(exchange constant A) and anisotropy energy (anisotropy
constant K)

E0 = A

[(
∂θ

∂y

)2

+ sin2 θ

(
∂ϕ

∂y

)2]
+ K sin2 θ. (2)

The second part E1 accounts for the interaction with the
external field along the z axis that causes DW propagation,
the stray field from adjacent domains, the DW local demag-
netizing field, and the increase of the DW energy due to its
flexing

E1 = −MHz cos θ − M sin θ sin ϕHsf
y (z)

+ 2πM2 sin2 θ sin2 ϕ

+A

[(
∂θ

∂z

)2

+ sin2 θ

(
∂ϕ

∂z

)2]
, (3)

where28 H
sf
y (z) = Mhsf (z) and

hsf (z) = 2 ln

[
z2 + (	/2)2

(d − z)2 + (	/2)2

]
+ 8

	

[
z arctan

(
	

2z

)

− (d − z) arctan

(
	

2(d − z)

)]
, (4)

where 	 = √
A/K is the DW width. Equation (1) in the steady

state at E1 = 0 has a standard solution θ = θ0(y − q) and
ϕ = ϕ0, where q and ϕ0 are collective coordinates.17,18 We
have dθ0/dy = sin θ0/	. Terms in E1 are accounted for as
perturbation. The solutions are sought in the form θ = θ0(y −
q) + θ1 and ϕ = ϕ0 + ϕ1.

In the first order we have

γ

M

δ
(
E0

0 + E1
0 + E1

)
δθ

= −αθ̇0 + ϕ̇0 sin θ0

(5)
γ

M

δ
(
E0

0 + E1
0 + E1

)
δϕ

= −αϕ̇0 sin2 θ0 − θ̇0 sin θ0,

where E1
0 is the correction to the energy E0 due to the first

order terms. Equation (5) gives

γ

M

(
−2A

d2θ1

dy2
+ 2Kθ1 cos 2θ0

)

= γ

M

δE1
0

δθ
= −αθ̇0 + ϕ̇0 sin θ0 − γ

M

δE1

δθ
;

γ

M

[
− 2A

d

dy

(
dϕ1

dy
sin2 θ0

)]

= γ

M

δE1
0

δϕ
= −αϕ̇0 sin2 θ0 − θ̇0 sin θ0 − γ

M

δE1

δϕ
. (6)

Since δE1
0/δθ = 0 and δE1

0/δϕ = 0 have the solutions ϕ1

independent on y and θ1 ∝ dθ0/dy, then similarly to the
method developed in Ref. 29, the solvability condition of
the set of linear equations (6) for θ1 and ϕ1 with the natural
boundary conditions θ1,z|z=0,d = ϕ1,z|0,d = 0 reads∫ ∞

−∞

dθ0

dy

δE1
0

δθ
dy = 0;

∫ ∞

−∞

δE1
0

δϕ
dy = 0. (7)
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As a result, the equations for the center line of the domain wall
q(z,t) and the precession angle ϕ(z,t) are as follows:

ϕ̇ = hw − sin 2ϕ + hsf (z)

4
cos ϕ + 2
2ϕzz + 2
2

α2
q̃zz; (8)

˙̃q = α2hw + sin 2ϕ − hsf (z)

4
cos ϕ + 2
2q̃zz − 2
2ϕzz,

(9)

where q̃ is equal to αq/	, the subscript zz denotes the second
spatial derivative, 
 =

√
A/2πM2 is the exchange length, hw

stands for Hz/HW where HW = α2πM is the Walker field,
and time is in units of (1 + α2)/γHW . We can see that the
most important parameters are the ratio of the layer thickness
to the exchange length d/
 and the damping α. The DW
width 	 simply renormalizes the DW displacement and the
magnetization M gives the field unit, for the applied and stray
fields.

In the spatially homogeneous case when the stray field is
neglected (rigid wall, 1D model) and hw > 1, Eq. (8) has a
periodic solution ϕ0 that reads

tan ϕ0 = 1

hw

+
√

1 − 1

h2
w

tan
(√

h2
w − 1t

)
. (10)

The fundamental frequency in the Fourier spectrum of ϕ0

is f0 = √
h2

w − 1/π , the precession frequency is fp = f0/2.
The oscillatory behavior entirely results from the DW local
demagnetizing field [the sin 2ϕ term in Eq. (8)]. The stability of
this precession regime with respect to DW flexing is considered
in the next section.

B. Flexing instability

The equations for the small flexing perturbations δϕ, δq̃

read

˙δϕ = −2δϕ cos 2ϕ0(t) + 2
2δϕzz + 2
2

α2
δq̃zz (11)

δ̇q̃ = 2δϕ cos 2ϕ0(t) − 2
2δϕzz + 2
2δq̃zz. (12)

The most simple approach to analyze the evolution of the
small flexing perturbations is to develop them into series δϕ =∑∞

n=1 ϕn(t) cos (nπz/d) and δq̃ = ∑∞
n=1 q̃n(t) cos (nπz/d)

that satisfy the natural boundary conditions and to study
the time evolution of the amplitudes of modes [ϕn(t), q̃n(t)].
The set of equations for the amplitudes ϕn and q̃n reads
(kn = nπ/d):

ϕ̇n + 2
2k2
n

(
ϕn + q̃n

α2

)
= −2ϕn cos 2ϕ0(t), (13)

˙̃qn − 2
2k2
n (ϕn − q̃n) = 2ϕn cos 2ϕ0(t). (14)

When dropping the cos (2ϕ0(t)) driving term one obtains
the complex angular eigenfrequencies of the spatial modes
(±1 + iα)ωn with ωn = 2π2n2 (
/d)2 /α in reduced units.
The modes eigenfrequencies are then

fn = n2(
/d)2π (γ 2πM)/(1 + α2). (15)

Note that, when setting the damping term to zero, this
expression represents the thin film limit of the DW free-
oscillation frequency obtained by Slonczewski.5,25
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FIG. 2. (Color online) Field dependence of the Floquet multiplier
for mode 1 (hn = Hz/2πM). Long dashed line α = 0.1, solid line
α = 0.2, and short dashed line α = 0.3. The layer thickness is d/
 =
4. The arrows indicate the fields at which the precession frequency is
equal to f1 or f1/2, f1 being the eigenfrequency of the first flexural
and precessional modes [Eq. (15)]. The inset shows the growth rate
of mode 1 calculated from the parametric oscillator model [Eq. (19)]
for α = 0.2 and d/λ = 4.

The existence of increasing-in-time solutions of Eqs. (13)
and (14) is analyzed by the calculation of the Floquet
multipliers.26 For the vector of dynamic variables Y = (ϕn,q̃n)
the equation in matrix form is obtained as

Ẏ (t) = A(t) · Y (t). (16)

Its solution at t = T0 = π/
√

h2
w − 1 may be written as

Y (T0) = B · Y0, where B is a monodromy matrix

B =
k∏

i=1

exp

[
A

(
ti + ti+1

2

)
	t

]
,

and Y (0) = Y0; t0 = 0, tk+1 = T0 and 	t is the time step.
The eigenvalues λ of the 2 × 2 matrix B give the Floquet
multipliers. If |λ| > 1 the perturbations in the form of the
corresponding eigenfunction of the matrix B grow. The
Floquet multipliers for mode n = 1 for several values of
the dissipative parameter α at d/
 = 4 are shown in Fig. 2
(k = 400). The values of α are chosen in a range which is
relevant for ferromagnetic semiconductors.10 We find that
there is a range of field hn = Hz/2πM between 1 and 1.6,
weakly depending on α, where the flexing instability occurs.
The field value at which the precession frequency fp is equal
to the eigenfrequency f1 of mode 1 is indicated by an arrow
in Fig. 2. It falls well inside the instability region. We also
see in Fig. 2 that a narrower instability range develops around
fp = f1/2.

The system described by Eqs. (13) and (14) is similar to the
parametrically excited oscillator as we explain below. Putting
ϕn = exp (−αωnt)a, q̃n = exp (−αωnt)b and introducing a
small parameter ε we can consider a model system:

ȧ = −ωn

α
b − 2ε cos [2ϕ0(t)]a,

(17)
ḃ = αωnb + 2ε cos [2ϕ0(t)]a.
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The time-dependent term in Eqs. (17) is given by its Fourier
series (ω = √

h2
w − 1):

cos [2ϕ0(t)] =
∞∑

n=1

[cn cos (2nωt) + dn sin (2nωt)].

For the case of small values of the parameter ε Eqs. (17) may
be solved by the method of multiple time scales. Looking
for the solution for variable a as a(t) = A(T ) cos (ωt) +
B(T ) sin (ωt) with T = εt and introducing a small detuning
	ω

(ωn)2 � ω2 + 2εω	ω,

the condition of the absence of the secular terms in the equation
for the first order in ε gives

dA

dT
= 	ωB + 1

2

(
1

α
d1 − c1

)
A − 1

2

(
1

α
c1 + d1

)
B,

(18)
dB

dT
= −	ωA − 1

2

(
1

α
c1 + d1

)
A − 1

2

(
1

α
d1 − c1

)
B.

As a result for the largest growth rate σn of the flexing modes
(ϕn, q̃n) we have

σn = −αωn + ε

√
1

4

(
1

α2
+ 1

)(
c2

1 + d2
1

) − (	ω)2. (19)

The growth rate given by relation (19) for mode 1 (n = 1)
is shown in the inset of Fig. 2. It is positive (unstable mode
with growing amplitude) in the same range of field strength
as the instability obtained by the calculation of the Floquet
multipliers.

Returning to the Floquet multipliers, the dependence of the
instability range on the layer thickness is illustrated in Fig. 3.
With the decrease of the film thickness the instability regions
shift to larger magnetic field and are less expressed since the
Floquet multipliers have smaller values. This is fully consistent
with our previous results from micromagnetic simulations.15
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FIG. 3. (Color online) Field dependence of the Floquet multiplier
for mode 1 for different thicknesses of the film. Long dashed line
d/
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 = 4, and solid line d/
 = 3. α =
0.2. The arrows indicate the fields at which the precession frequency
is equal to f1 or f1/2, f1 being the eigenfrequency of the first flexural
and precessional modes [Eq. (15)].
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FIG. 4. The Floquet multiplier for the second flexing mode. α =
0.1, d/
 = 4.

Interestingly, besides the instability with respect to the
first mode there is also an instability with respect to the
second mode in a narrow range of field strength at small
values of the dissipative parameter. This instability occurs
when the precession frequency is equal to the second mode
eigenfrequency f2. The corresponding values of the Floquet
multipliers are shown in Fig. 4 (α = 0.1). The rate of growth is
small therefore many periods are necessary for this instability
to grow. This instability corresponds very well to the abrupt
onset of a large mode amplitude and enhanced velocity at
hn = 5 that sets up after several tens of nanoseconds, as found
from simulations (see Sec. III).

The flexing instability of the DW in the precession regime
causes bumps in the DW velocity curve. This is illustrated in
Fig. 5 where the thickness and time-averaged DW velocity is
shown as a function of the field strength. The average velocity
is calculated by discretization of Eqs. (8) with finite differences
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FIG. 5. (Color online) DW velocity v (averaged over film thick-
ness and precession period) as a function of field strength. Calculation
according to PDE [Eqs. (8)] with the stray field (solid circles) and
without (open circles), calculation by the reduced set of equations
[Eqs. (22)–(25)] (triangles), 1D model (full curve). The dashed areas
represent the instability regions. The arrows indicate the fields at
which the precession frequency is equal to f1 or f1/2, f1 being the
eigenfrequency of the first flexural and precessional modes [Eq. (15)].
The parameters are α = 0.2, d/
 = 4, 	/
 = 0.3.
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and solving for the variables ϕzi
, qzi

; (i = 1, . . . ,n + 1) on
the uniform grid with n = 200 mesh points by an implicit
algorithm with the reduced time step 10−2. The positions of
the bumps correlate quite well with the range of field strength
where flexing instabilities take place. The velocity bumps
develop even in the absence of the stray field (open circles
in Fig. 5). However the bumps appear in a narrow field range
and the velocity curve remains quite close to the 1D model.
The action of the stray field further enhances the velocity over
a broader field range (solid circles in Fig. 5).

The largest velocity bump develops when the precession
frequency is equal to the eigenfrequency of the first mode.
A similar correlation is observed for other values of the
dissipative parameter α (not shown). The excitation of the
first flexing mode allows us to propose a reduced description
of the DW propagation based on the series for ϕ and q where
only the first flexing mode is taken into account

ϕ(t,z) = ϕ0(t) + ϕ1(t) cos (πz/d), (20)

αq(t,z)/	 = q̃0(t) + q̃1(t) cos (πz/d). (21)

The reduced set of equations reads

ϕ̇0 = hw − sin (2ϕ0)J0(2ϕ1) − sin (ϕ0)f (ϕ1); (22)

ϕ̇1 = −2 cos (2ϕ0)J1(2ϕ1) − ω1

α
q̃1 − αω1ϕ1

+ 2 cos (ϕ0)g(ϕ1); (23)

˙̃q0 = α2hw + sin (2ϕ0)J0(2ϕ1) + sin (ϕ0)f (ϕ1); (24)

˙̃q1 = 2 cos (2ϕ0)J1(2ϕ1) − αω1q̃1 + αω1ϕ1

− 2 cos (ϕ0)g(ϕ1), (25)

where

f (ϕ1) = 1

d

∫ d

0

hsf (z)

4
sin [ϕ1 cos (πz/d)]dz;

g(ϕ1) = 1

d

∫ d

0
cos (πz/d)

hsf (z)

4
cos [ϕ1 cos (πz/d)]dz.

(26)

The DW velocity v averaged over the film thickness and the
precession period is calculated according to Eqs. (22)–(25)
and displayed in Fig. 5 (triangles) as a function of the field
strength. The results agree quite well with those obtained
from the solution of the PDE [Eq. (8)] (solid circles). This
justifies the analysis of the DW propagation obtained in
Ref. 15 considering only the first flexing mode. The velocity
enhancement arises to a large extent from the sin ϕ0f (ϕ1) term
in Eq. (24). Since the stray field function hsf (z) is odd with
respect to the mid-plane of the layer, the function f defined
by Eq. (26) takes nonzero values only for odd spatial modes
(modes 1 and 3 but mode 3 has a negligible amplitude). This is
the reason why, although mode 2 might have a large amplitude
or may trigger a new regime by its instability (as found from the
analysis of the Floquet multiplier around hn = 5), the velocity
is enhanced only if mode 1 has a large amplitude. Actually
from Fig. 5 one can see the contribution of higher order modes
as the difference between the two curves (solid circles and
triangles) in the range hn = 1–3.

One important result of this section is that the instabilities
of the flexing modes are found to exist even without the stray
field from the domains. These instabilities are driven by the
DW demagnetization field [the sin (2ϕ) term in Eq. (8) or
correspondingly the cos (2ϕ0(t)) term in Eqs. (11) and (12)].
A large amplitude of flexing modes gives rise to bumps in the
velocity curve when the precession frequency matches their
eigenfrequency. The action of the stray field on magnetization
precession inside the wall further enhances the velocity.

It is interesting to note the similarities between our results
and the propagation of a vortex wall in a ferromagnetic track
with in-plane magnetization.17,18 The periodic movement of
the vortex core in the transverse direction, bouncing between
the track edges is analogous to the ϕ precession. Velocity
enhancement is also found when additional modes are excited,
in that case oscillations of the vortex wall width.

C. Fractional frequencies

The parametric instability of the DW propagation consid-
ered above allows one to understand the rather complicated
DW dynamics observed in experiments and found hereafter
from numerical simulations (Sec. III). One such peculiarity
is the appearance of the fractional frequencies nfp/p (with n

and p integers) in the spectrum of dynamic variables. There
are ranges of field strength where these fractional frequencies
are observed. For instance frequencies 2fp/3 and 4fp/3
appear in the Fourier spectrum of the second flexing mode
for α = 0.1 and d/
 = 4, in the same field range where
these frequencies are observed in micromagnetic simulations,
hn = 1.5–2. The development of fractional frequencies is
characteristic of synchronization phenomena where nonlinear
oscillators synchronize the period of their oscillations to an
external forcing.19,30 For the above example the fractional
frequencies appear in the field range where the precession
frequency is equal to 3f1/2, i.e., three periods of precession
equal to two periods of the first eigenmode. A similar situ-
ation was recently encountered in magnetic vortex dynamics
when the vortex gyration frequency is commensurate with the
vortex core reversal frequency.31

III. DOMAIN-WALL DYNAMICS FROM
MICROMAGNETIC SIMULATIONS

A. Parameters

In order to assess the validity of the above model given
the approximate description of the stray field we performed
micromagnetic simulations to obtain a full record of the
domain-wall profile, magnetization, and velocity. The simula-
tions are performed using the open source OOMMF package.32

The geometry of the layer is the one depicted in Fig. 1.
A mesh with 2 × 2 nm2 cells is used. Magnetic images
containing the magnetization unit vector (mx,my,mz) in each
cell are generated at every time step and field step. For each
image, from the mi values averaged over the DW width we
obtain the depth-dependent position of the DW q(z) and
the azimuthal angle ϕ(z). For most of the following results
the sample parameters are chosen in order to investigate
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the case where at least two flexural modes are excited. The
sample thickness d, the exchange length 
, and the DW
thickness 	 are chosen such that d/
 = 4 and 	/
 = 0.3.
This choice leads to the following parameters: magnetization
M = 39.9 kA m−1, exchange constant A = 10−13 J m−1,
anisotropy constant (along z) K = 1.1 × 104 J m−3, and
thickness d = 40 nm. These parameters are typical for, e.g.,
a ferromagnetic semiconductor like GaMnAs.33 The sample
length L along the y direction is 2 μm (4 μm when a long
propagation time is needed). Two values have been used for the
damping parameter: α = 0.2 and 0.1, in agreement with typical
values obtained from DW propagation experiments.10,15 For
the sake of comparison with the analytical model the magnetic
field strength will be normalized as hn = αH/HW = 2H/M

(H/2πM in cgs units).
The simulation starts with the z-averaged value of mz,

〈mz〉z, equal to 0, the DW being centered at L/2. 〈mz〉z is equal
to 1 when the DW reaches the end of the sample. Therefore, the
DW velocity v is obtained as (L/2) d

dt
〈mz〉z in the stationary

regime or as the time average of this quantity over several tens
of periods in the precessional regime.

B. Velocity curve and flexural modes

Figure 6(a) displays the DW velocity resulting from
simulation as a function of the applied field. The red line
represents the 1D model. After the Walker peak at 5 mT
(hn = 0.2) the velocity decreases but not as much as expected
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FIG. 6. (Color online) (a) DW velocity as a function of the applied
magnetic field, 1D-model (red line), micromagnetic simulation
(squares) using d/
 = 4, 	/
 = 0.3, and α = 0.2. (b) Amplitudes
(rms values) of the first three flexural modes q1, q2, and q3 of the DW.
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FIG. 7. (a) DW velocity as a function of the applied magnetic
field, micromagnetic simulations (squares), calculation according
to PDE [Eqs. (8)] with the stray field (solid circles), and without
(open circles). The parameters are d/
 = 4, 	/
 = 0.3, and
α = 0.2.

within the 1D model then it rises again, showing two bumps at
hn = 1.2 and 2 and finally meets the 1D curve above hn = 4.
It was shown in a previous work that for a large damping (0.3)
only one velocity bump remains and shifts to higher fields as
the film thickness is decreased.15

Figure 7 shows the velocity curve obtained from the
micromagnetic simulations together with the velocity curves
obtained from the model [Eqs. (8)] with and without the stray
field from the domains (solid and open circles, respectively).
Without the stray field the velocity is underestimated. With
the stray field it is overestimated, which likely comes from
the approximate expression of the stray field in the analytical
model [Eq. (4)] and from the expression of the DW local
demagnetization film that neglects volume magnetic charges
appearing from DW flexing.5

The DW profile q(z,t) and precession angle ϕ(z,t) obtained
from micromagnetic simulations are excellently fitted with a
sum of four spatial modes: q(z,t) = ∑4

n=0 qn(t) cos (nπz/d)
and ϕ(z,t) = ∑4

n=0 ϕn(t) cos (nπz/d). Since the qn(t) and
ϕn(t) generally contain several frequency components it is
convenient to characterize their amplitude by the root-mean-
square (rms) value. Figure 6(b) displays the amplitude of the
flexural modes q1, q2, and q3 as a function of the applied
field. The amplitudes of the precessional modes ϕ1, ϕ2, ϕ3

behave similarly. The amplitude of mode 1 rises exactly in
the field range where an instability has been predicted from
the analysis of the Floquet multipliers. At the first velocity
bump, mode 1 has a large amplitude (3.5 nm) comparable
to the DW width 	 = 3 nm. Mode 2 has a maximum
amplitude (0.7 nm) at the position of the second velocity
bump but this amplitude is only 30% of mode 1. Modes
3 and mode 4 (not shown) have much smaller amplitudes.
It is tempting to associate the velocity bumps at hn = 1.2
and at hn = 2 to the first and second modes, respectively.
More information will be obtained from the dependence of the
modes amplitudes on the damping parameter (see Sec. III D
below).
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FIG. 8. (Color online) (a) Field dependence of the main frequen-
cies in the Fourier spectrum of the amplitude of the first flexural mode
q1(t) for α = 0.2 and d/
 = 4. The precession frequency fp = f0/2
and its overtones are represented by black symbols (the full and dotted
lines represent the frequencies calculated within the 1D model). The
subharmonic frequency fp/3 and its overtones are represented by
blue empty squares. (b) Amplitude of the two main frequencies fp

and fp/3 (in gray, the velocity curve) in the Fourier spectrum of q1(t).

C. Fractional frequencies

Similarly to the results from the analytical model, the
analysis of the Fourier spectrum of the qn(t) and ϕn(t)
components reveals the appearance of unexpected frequencies,
namely subharmonics of the main frequency, in the field range
of the velocity bumps hn = 1–2. Figure 8(a) shows the field
dependence of the main frequencies of the Fourier spectrum
of q1(t). The fundamental frequency of q1(t) (and ϕ1(t)) is the
precessional frequency fp which approaches γH/2π (1 + α2)
at high field (H 	 HW ). Many overtones of fp are observed
at low field as expected from Eq. (10). For the q1 mode it is
seen that the new frequencies can be expressed as 2nfp ± fp/3
with n = 0, 1, 2.

The amplitudes of the frequency components are obtained
from the discrete Fourier transform of qn(t). As shown in
Fig. 8(b) the amplitude of the fp/3 component of q1 reaches
as much as 30% of the fp component. The other components
of the DW profile and precession q0, ϕ1, q2, ϕ2 also show
fractional frequencies: 2nfp/3 (n an integer) for q0, q2, ϕ2,
and nfp/3 for ϕ1.

To summarize the results for α = 0.2, one obtains velocity
bumps above the Walker field. These bumps come with a large
amplitude of the flexural and precessional modes (particularly
the first ones) and fractional frequencies indicating a highly
nonlinear behavior. The velocity bumps are consistent with
experimental results in ferromagnetic semiconductors where

either a bump or a velocity plateau is observed in this field
range.10,15 The velocity plateau could probably be better
understood by taking into account additional DW flexural
modes propagating along the plane of the DW and described
by a k‖ wave vector. The dispersion curves calculated for the
static regime in Ref. 25 seem to suggest that the resonance
frequency slightly increases with k‖ starting from the k‖ = 0
value (calculated here). This would likely give a slightly more
spread-out feature extending to higher fields.

Bumps at still higher fields (100 mT in GaMnAs, 50 mT in
GaMnAsP) are also observed experimentally. As we shall see
in the next section the study of the influence of the damping
parameter will provide keys to understand these experimental
findings.

D. Influence of the damping parameter

In order to investigate the effect of the damping, the mi-
cromagnetic simulations are performed for a smaller damping
parameter α = 0.1. Figure 9(a) shows the field dependence
of the velocity for α = 0.1. In addition to the two velocity
bumps in the range hn = 1–2, a new bump appears abruptly
in the range hn = 5–6. In this range the mi components of
the magnetization show a transient regime for several tens
of nanoseconds before their oscillation amplitude stabilizes
and the average velocity becomes time independent. The
duration of the transient regime diverges at the onset of this
high velocity regime hn = 5. This is in very good agreement
with the weak instability found for the second mode from the
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 = 4, micromagnetic simulation (squares), 1D model (red line).
(b) Amplitudes (rms values) of the first three flexural modes of the
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coefficient α = 0.1 and d/λ = 4 (in gray, the velocity curve).

Floquet multiplier precisely at hn = 5 (Fig. 4). In order to know
which flexural and precessional modes are involved in this high
velocity regime we plot the amplitudes of the three first flexural
modes in Fig. 9(b). Both the first and second modes have large
amplitudes, q1 being nevertheless larger than q2 by a factor
of about 2. Interestingly one can notice that the amplitude of
the second mode also has a peak around hn = 4, whereas the
first mode amplitude decreases monotonously. However, in
this range only a very small velocity enhancement is observed
[Fig. 9(a)]. Therefore, in agreement with the considerations
derived from the analytical model, we conclude that velocity
enhancement is mainly related to the amplitude of the first
mode.

In the field range of the velocity bumps fractional frequen-
cies also clearly appear in the Fourier spectrum of the flexural
and precessional modes. In the range hn = 1–2, the results
are similar to the case α = 0.2: One observes the frequency
fp/3 and its overtones. As seen in Fig. 10 the amplitude of
this frequency component in the q1 mode reached about 30%
of the fp component. In the range hn = 5–6 new fractional
frequencies pfp/5 with p up to 11 are observed. For the q1

mode, the largest amplitude is now at fp/5 (Fig. 10). The
fractional frequencies fp/3 and fp/5 appear close to the field
values where fp = 3f1/2 and fp = 5f1, respectively, which,
as in the previous case with α = 0.2, may explain the presence
of such frequencies in the Fourier spectrum of the flexural
modes.

To summarize we see that decreasing the damping param-
eter leads to an additional region of enhanced velocity, in
agreement with experimental results, e.g., on ferromagnetic
GaMnAs and GaMnAsP.15 In our previous work only one
velocity bump was found in the simulations. It was related to
a large amplitude of the first flexural and precessional modes.
We attributed this behavior to a resonant excitation of the first
free-oscillation mode of the DW at the field corresponding
to enhanced velocity. However the extension of simulations
to smaller damping parameter in the present work shows a
more complex situation with a large amplitude of the q1 and
ϕ1 modes occurring in not one but several field ranges, as well
as a large amplitude for the q2 and ϕ2 modes. Moreover we

observe the appearance of fractional frequencies in the Fourier
spectrum of the flexural and precessional modes.

IV. CONCLUSION

DW propagation has been studied in ferromagnetic layers
with thickness larger than the exchange length where complex
DW dynamics arises from the excitation of flexural modes.
We have developed an analytical model for DW propagation
taking into account DW flexing. The results of this model
have been compared to DW dynamics obtained from the
detailed analysis of time-resolved magnetic images from
micromagnetic simulations. From the model we see that the
most important parameters are the ratio of the layer thickness
over the exchange length and the damping constant. We have
determined the eigenfrequencies of the flexural modes. We
have shown that the precessional regime of the DW motion
is unstable with respect to flexing. This instability was found
even when neglecting the action on the DW magnetization of
the stray field from adjacent domains. The range of the field
strength of the flexing instabilities is found by calculating the
Floquet multipliers. The most important is the first flexing
mode compatible with the natural boundary conditions. The
instability range corresponds well to the field range where the
precession frequency is close to the mode eigenfrequency and
where large mode amplitudes are obtained by simulations. In
some limited range of field strength the instability with respect
to the second mode is possible. However the velocity bumps
that arise from the effect of the stray field on the magnetization
precession occur only for a large amplitude of the first mode for
symmetry reasons. Decreasing the damping parameter yields
additional regions of enhanced velocity.

At large mode amplitudes, due to the nonlinearity of
the system, fractional frequencies appear as in parametric
oscillators. It should be noted that here the forcing of the
oscillators is not provided by an external periodic source but
by the magnetization precession under constant applied field.

The analytical model and the micromagnetic simulations
developed in this paper explain the main features of experi-
mental velocity curves. The remaining discrepancies between
some experimental curves and the calculated or simulated ones
would probably be solved by taking into account flexural
modes propagating in the DW plane. This would require a
further extension of this (q,ϕ,dq/dz,dϕ/dz) dynamical model

into a three-dimensional (q,ϕ,
→
∇ q,

→
∇ ϕ) model. Besides, the

extension of this model to the case of in-plane magnetization
for which a number of experimental results exists for ferro-
magnetic semiconductor layers as well as metallic layers or
stripes would also give insight into deviations from the simple
1D model.
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