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Microwave-assisted switching of a nanomagnet:
Analytical determination of the optimal microwave field
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We analytically determine the optimal microwave field that allows for the magnetization reversal of a
nanomagnet modeled as a macrospin. This is done by minimizing the total injected energy. The results are
in good agreement with the fields obtained numerically using the optimal control theory. For typical values of
the damping parameter, a weak microwave field is sufficient to induce switching through a resonant process.
The optimal field is orthogonal to the magnetization direction at any time and modulated in both amplitude and
frequency. The dependence of the pulse shape on the applied field and damping parameter is interpreted. The
total injected energy is found to be proportionnal to the energy barrier between the initial state and the saddle
point and to the damping parameter. This result may be used as a means for probing the damping parameter in
real nanoparticles.
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I. INTRODUCTION

Magnetic recording is a key technology in the field of high
density information storage. In order to increase thermal sta-
bility, small nanoparticles with high anisotropy may be used.
However, high fields are then needed to reverse the magneti-
zation but these are difficult to achieve in current devices. To
overcome this so-called magnetic recording trilemma, several
solutions are being proposed. The most investigated route,
and the one that already leads to industrial applications, is the
heat-assisted magnetic recording.1 It consists of heating the
particles by a laser which decreases the energy barrier between
the two energy minima and thereby the switching fields. How-
ever, to avoid a loss of information, the heating must be very
localized and followed by a very fast cooling, and as such these
devices must be coupled to powerful heat dissipation systems.

An alternative solution is to assist the switching by a
microwave (MW) field. In 2003 Thirion et al.2 showed that
the combination of a dc applied field (static field) well
below the switching field with a small MW field pulse can
reverse ;the magnetization of a nanoparticle. Indeed, in the
presence of a MW field with appropriate amplitude and
frequency, the magnetization precession synchronizes with
this field.3–5 Then, energy is pumped into the system thus
allowing the magnetization to climb up the energy barrier and
cross the saddle point.6–10 Further experimental and theoretical
studies have proven that this process is more efficient if
the frequency of the MW field is sligthly lower than the
ferromagnetic resonance frequency of the nanoelements.11–13

Moreover, the use of chirped MW fields has been shown to
be more efficient to achieve switching.7,11,14–16 This result is
related to the anharmonicity of the energy well. Similar results
have been obtained in other areas of physics and chemistry,
like atomic or molecular spectroscopy.17,18

In a previous work19 we developed a numerical method
based on optimal control theory which renders an exact
solution for the MW field that is necessary for the switching of
a nanomagnet within a given potential energy. The formulation
of this method consists of defining a cost functional and
minimizing it using the conjugate gradient technique. Our
results confirmed that a weak MW field, modulated in both

amplitude and frequency, can induce the switching of the
magnetization. Furthermore, the injected energy was found
to increase with damping.

The aim of the present study is to provide analytical
expressions and to compare them with our numerical re-
sults by using simple energy considerations. Moreover, the
analytical developments presented here confirm the effects
observed numerically and provide clear interpretations for the
underlying physical processes. In this work, our investigations
are restricted to zero temperature, and as such the Landau-
Lifshitz-Gilbert equation is used to describe the magnetization
trajectory. The additional effects of thermal fluctuations will
be the subject of a future study.

In the first part, we analytically determine the optimal MW
field and demonstrate its dependence on the energy landscape
(anisotropy, applied field) and on the damping parameter. We
then investigate the trajectory of the magnetization in the
presence of the optimal field and show that it can be described
by the Landau-Lifshitz-Gilbert equation with a negative
damping parameter. In the second part, the analytical results
are compared directly with the results obtained numerically
using the optimal control theory.

II. ANALYTICAL CALCULATION OF THE
OPTIMAL MICROWAVE FIELD

We consider a nanomagnet with spatially uniform mag-
netization which can be modeled by the vector M = MSm,
where MS is the saturation magnetization and ‖m‖ = 1. This
nanomagnet is characterized by a given anisotropy (uniaxial,
biaxial, cubic...) and the damping parameter α. In the presence
of a static magnetic field, H0, lower than the Stoner-Wohlfarth
switching field, the potential energy surface presents several
minima separated by saddle points.

At the initial time ti , we assume that the magnetization is
in a minimum Mi = MSmi . Adding a microwave (MW) field,
H(t), can then induce switching to another (target) minimum,
Mf = MSmf . Our aim is to find the optimal field Hopt(t)
that achieves switching in a given time, tf , while minimizing
the energy injected into the system. This criterion is relevant
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for experimental devices since it amounts to reducing both
the intensity and the duration of the applied fields and the
subsequent heating of the system, which can be of interest for
magnetic recording or biomedical applications. This approach
is thus complementary to other theoretical studies which have
focused on the reduction of the switching time.9,20

For the sake of simplicity, we introduce the normal-
ized fields h0 ≡ H0/Han and h(t) ≡ H(t)/Han, where Han ≡
2K/μ0Ms is the anisotropy field and K the anisotropy constant
of the nanomagnet. We also define the normalized time τ ≡
γHant , where γ = 1.76 × 1011 (T−1 s−1) is the gyromagnetic
factor. For instance, for a cobalt particle of 3 nm in diameter
with K ≈ 2.2 × 105 J m−3 and Ms ≈ 1.44 × 106 A m−1, we
have μ0 Han ≈ 305 mT and t/τ ≈ 1.86 × 10−11 s.

A. Energy and time trajectory in the presence
of a microwave field

If only the static field is applied, the energy density of the
system (divided by 2K) reads E0(m,h0) = Ean(m) − m · h0,
where Ean is the anisotropy energy density. The normalized
effective field is then defined by heff ≡ −∂E0/∂m. If we add a
MW field, the energy density becomes

E[m,h0,h(τ )] = Ean(m) − m · [h0 + h(τ )] (1)

and the normalized total effective field now reads

ζ (τ ) ≡ − ∂E
∂m

= heff + h(τ ). (2)

The time trajectory of the magnetization can be described
by the driven Landau-Lifshitz-Gilbert equation:

(1 + α2)
dm
dτ

= −m × ζ (τ ) − αm × [m × ζ (τ )] . (3)

This allows us to express the energy variation of the system
as follows

dE
dτ

= −ζ (τ ) · dm
dτ

− m · dh(τ )

dτ

= −heff · dm
dτ

− d

dτ
[m · h(τ )] . (4)

Next, we define the mobile frame (m,u,v) attached to
the magnetization with u ≡ T/T and v ≡ m × T/T , where
T ≡ m × heff and T = ‖m × heff‖. The MW field can then
be decomposed as h(τ ) = hm(τ )m + hu(τ )u + hv(τ )v. In this
frame, Eqs. (3) and (4), respectively, become

(1 + α2)
dm
dτ

=
(

−1 + α hu(τ ) + hv(τ )

T

)
T

−
(

α + hu(τ ) − αhv(τ )

T

)
(m × T), (5)

dE
dτ

= −αT − hu(τ ) + αhv(τ )

1 + α2
T − dhm(τ )

dτ
. (6)

We note that the parallel component of the MW field, hm(τ ),
has no direct effect on the magnetization trajectory and that
only its time derivative appears in the energy variation.

B. Optimization of the MW field

In order to find the optimal MW field fulfilling the
requirements described earlier we proceed in two steps. First,

we define the critical MW field which allows us to maintain the
precession of the magnetization by compensating the effects
of damping (Sec. II B1). This field represents the lower limit
for the optimal field sought. Using this result, we find the
optimal MW field minimizing the injected energy (Sec. II B2)
and check that it can induce switching of the magnetization
(Sec. II B3).

1. MW field maintaining the precession: Critical field

In order to induce switching the MW field must at least
compensate for the effect of damping, which tends to take the
magnetization back to the initial equilibrium position. If the
compensation is complete the energy variation of the system,
dE/dt , vanishes at any time, thus reflecting the conservation
of energy. According to Eq. (6) an infinity of MW fields leads
to a full compensation of damping. For instance, any field
that is orthogonal to the magnetization so that hm(τ ) = 0 and
satisfying the equation −hu(τ ) + αhv(τ ) = −αT will do.

Among these MW fields the critical field can be defined
as the one that minimizes the power injected in the system.
The latter is proportional to the squared intensity of the MW
field, i.e., pi(τ ) = h2(τ ) = h2

m(τ ) + h2
u(τ ) + h2

v(τ ). Using the
method of Lagrange multipliers we define the functional

L [hm(τ ), hu(τ ), hv(τ ), λ(τ )] = p2
i (τ ) − λ(τ )

dE
dτ

. (7)

Assuming that dhm(τ )/dτ does not depend explicitly on
hm(τ ), the minimization of this functional leads to

hm(τ ) = 0, hu(τ ) = − α

1 + α2
T , hv(τ ) = α2

1 + α2
T .

(8)

The critical MW field thus reads

hcrit(τ ) = α

1 + α2
[−T + α m × T] (9)

and the injected power is then

pcrit
i (τ ) = α2

1 + α2
T 2. (10)

In the presence of this MW field the magnetization
precesses around the equilibrium position with a constant
angle. This critical field represents a lower limit. Indeed, if
the injected power is smaller than pcrit

i (τ ), the magnetization
goes back to the initial equilibrium position.

2. MW field minimizing the total injected energy: Optimal field

In order to minimize the total injected energy we have to
make a few preliminary assumptions concerning the shape of
the MW field. Considering the result of the previous section
we limit our search to the family of MW fields defined by

hm(τ ) = βmT , hu(τ ) = βuT , hv(τ ) = βvT ,

where βm, βu, and βv are constant parameters. In the presence
of such a MW field the energy variation reads

dE
dτ

= −α − βu + αβv

1 + α2
T 2 − dhm(τ )

dτ
. (11)
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The total energy injected to the system can be defined as E = ∫ τf

τi
h2(τ )dt . Therefore,

E =
∫ τf

τi

(
β2

m + β2
u + β2

v

)
T 2dτ =

∫ τf

τi

(
β2

m + β2
u + β2

v

) [
1 + α2

−α − βu + αβv

(
dE
dτ

+ dhm(τ )

dτ

)]
dτ

= (1 + α2)
(
β2

m + β2
u + β2

v

)
−α − βu + αβv

[E(τf ) − E(τi) + hm(τf ) − hm(τi)]. (12)

Hence, the energy is minimal if βm = 0, βu =
−2α/

(
1 + α2

)
, and βv = 2α2/

(
1 + α2

)
. Consequently, the

optimal MW field is

hopt(τ ) = 2α

1 + α2
[−T + αm × T] = 2hcrit(τ ). (13)

The optimal field is twice the critical field determined
previously, see Eq. (9). It is orthogonal to the magnetization at
any time and its magnitude reads

‖hopt(τ )‖ = 2α√
1 + α2

T . (14)

The total injected energy is then

E = 4α [E(τf ) − E(τi)]. (15)

According to these results, both the optimal field magnitude
and the total injected energy increase with damping. This
confirms the fact that the MW field must compensate for the
effects of damping so as to induce switching.

3. Trajectory of the magnetization in the presence
of the optimal MW field

In order to check whether the optimal MW field obtained in
the previous section induces switching of the magnetization
as required, we now investigate the time trajectory of the
magnetization. In the presence of this field, Eqs. (5) and (6),
respectively, become

(1 + α2)
dm
dτ

= −T + αm × T, (16)

dE
dτ

= α

1 + α2
T 2. (17)

The first equation is similar to the Landau-Lifshitz-Gilbert
equation but with a negative damping parameter: it describes
an amplified precession. The precession frequency is equal
to the proper frequency of the magnetization. At any time the
MW field is proportional to the derivative of the magnetization:
hopt(τ ) = 2αdm/dτ . This is in agreement with the results of
Sun and Wang.7

At the minima and saddle points the effective field heff

is parallel to the magnetization so that T = 0. Therefore,
both the derivative of the magnetization and the MW field
vanish. Consequently, the optimal MW field can only induce
the motion of the magnetization from an initial state, mi ,
close to an energy minimum, to a final state, mf , close to
a saddle point. A small amount of energy must thus be added
(i) before the MW field pulse, to drag the magnetization away
from the minimum, and (ii) after the pulse, to cross the saddle
point. The nature of this additional energy will be further
discussed later on. Beyond the saddle point, the damping takes

up to lead the magnetization down to the second energy mini-
mum. If the energy landscape is complex with several barriers,
successive pulses might then be necessary to induce switching.

At both the initial and the final states the MW field is close
to zero. The difference E(τf ) − E(τi) is thus close to the static
energy barrier between the saddle point and the initial state
�E0 ≡ E0(τf ) − E0(τi) and Eq. (15) becomes

E = 4α �E0. (18)

The total injected energy is therefore proportional to the
energy barrier to be overcome. Hence, if the static field is
close to the switching field, a very weak MW field can induce
switching.

C. Uniaxial anisotropy and longitudinal static field

In this section we study the trajectory of the magnetization
in the presence of the optimal MW field for a nanoparticle with
uniaxial anisotropy and a longitudinal static field.

We consider a nanomagnet with uniaxial anisotropy with
easy axis in the z direction. The anisotropy energy density is
then Ean(mz) = −m2

z/2. The static field is applied in the (−z)
direction with a magnitude 0 � h0 < 1. The magnetization is
initially close to the metastable minimum and its z component
is thus m0 ≡ mz(τi = 0) ≈ 1. The static energy of the system
is

E0(mz) = −m2
z

2
+ h0 mz. (19)

The saddle point then corresponds to mz = h0, so the static
energy barrier between the latter and the initial metastable
state is �E0 = (1 − h0)2 /2. For this system, the effective field
reads heff = −h0 + mzez. Projecting Eq. (16) onto the z axis
then yields

dmz

dτ
= α

1 + α2
(m × T) · ez

= − α

1 + α2
(−h0 + mz)

(
1 − m2

z

)
. (20)

In order to simplify the expressions we introduce the
integral

I (mz) =
∫ mz

0

−du

(−h0 + u)(1 − u2)

= 1

2(1 − x2)
ln

[
(1 + mz)1−h0 (1 − mz)1+h0

(−h0 + mz)2

]
+ Cte.

(21)

Solving Eq. (20) with the initial condition mz(t = 0) = m0

leads to the equation

I (mz) − I (m0) = α

1 + α2
τ. (22)
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FIG. 1. (Color online) Optimal MW field intensity ‖hopt(τ )‖
(upper panel) and trajectory of the magnetization mz(τ ) (lower panel)
for a longitudinal static field with magnitude h0. Parameters: α = 0.05
and m0 = 0.99998.

This equation can be analytically solved for mz only if
h0 = 0 (no static field). Otherwise, the evolution of mz with
time can be obtained numerically (see Fig. 1). As predicted
previously, for long times the magnetization goes towards to
the saddle point but never reaches it since I (mz) diverges for
mz = h0.

From Eq. (14) we can express the optimal MW field
intensity in terms of mz as follows:

‖hopt(mz)‖ = 2α√
1 + α2

(−h0 + mz)
√

1 − m2
z. (23)

The time evolution of the MW field intensity is plotted
in Fig. 1. We note that the pulses follow neither a Gaussian
nor a Lorentzian function. The peak intensity is reached for
mz = 1

4 (h0 +
√

8 + h2
0) and is given by

hopt
max = α

2
√

1 + α2

(−3h0 +
√

8 + h2
0

)

×

√√√√
1 −

(
h0 +

√
8 + h2

0

)2

16
. (24)

From this, we can see that the peak intensity h
opt
max decreases

with h0 (see Fig. 2). Indeed, for higher magnitudes of the static
field, the energy barrier �E0 between the metastable state and
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FIG. 2. (Color online) Maximal peak intensity and peak duration
of the optimal MW field for varying magnitude of the static field h0.

the saddle point is lower, so that a lower energy is needed to
reach the saddle point. Since 0 � h0 < 1 the peak intensity is
limited as follows:

hopt
max <

√
2α√

1 + α2
. (25)

Hence, for low values of the damping parameter α, the
intensity of the optimal MW field is small. This fully confirms
the results of our numerical study.19 Using Eqs. (21) and (23),
we can also obtain analytically the pulse duration �τ , defined
as the full width at half maximum,

�τ = 1 + α2

α
g (h0) , (26)

where g (h0) is a cumbersome function of h0. This character-
istic time increases with h0 (see Fig. 2). For high values of h0,
the switching will thus require a very low field but a very long
time, as can be seen in Fig. 1. Moreover, the characteristic time
decreases with damping.

The area below the curves ‖hopt(τ )‖ is

A =
∫ t=∞

t=0
‖hopt(τ )‖dτ =

∫ mz=h0

mz=m0

‖hopt(mz)‖ dτ

dmz

dmz

= 2
√

1 + α2 [arccos (h0) − arccos (m0)]

= 2
√

1 + α2(θf − θi), (27)

where θi and θf are the polar angles of the magnetization at
the initial state and saddle point, respectively. This area is thus
proportional to the “angular distance” that the magnetization
must cross to reach the saddle point. For increasing values
of the static field magnitude h0, this area decreases since the
saddle point comes closer to the initial state.

The z component of hopt, given by Eq. (13), is

hopt
z (mz) = − 2α2

1 + α2
(−h0 + mz)

(
1 − m2

z

)
. (28)

From Eq. (23) we can see that the ratio
|hopt

z (mz)|/‖hopt(mz)‖ is α√
1+α2

√
(1 − m2

z), whose upper
limit is α√

1+α2 . Consequently, for small values of the damping
parameter α, the component of the time-dependent field along
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the anisotropy easy axis can be neglected and the optimal
field lies in the xy plane.

We now define the precession phase of the magnetization
as ϕ(τ ) = arctan

[
my(τ )/mx(τ )

]
. Projecting Eq. (16) on the x

and y axes leads to the relation

ω(τ ) = dϕ

dτ
= ‖heff‖

1 + α2
= −h0 + mz(τ )

1 + α2
. (29)

This precession frequency is equal to the proper frequency
of the magnetization, obtained by solving Eq. (3) in the absence
of a MW field. At the initial state, the precession frequency
is close to the ferromagnetic resonance (FMR) frequency
ωFMR = (1 − h0)/(1 + α2). It then decreases towards zero,
following the curvature of the energy well.

For small values of α, since the optimal field lies in the
xy plane as shown previously, its phase can be defined by
ϕ̃(t) = arctan[hopt

y (t)/h
opt
x (t)]. It can be shown that

tan ϕ̃(τ ) = mx(τ ) + αmy(τ ) mz(τ )

−my(τ ) + αmx(τ ) mz(τ )
≈ −mx(τ )

my(τ )
= cot ϕ(τ ).

(30)

This implies that the time-dependent field and the magneti-
zation are synchronized with ϕ̃(τ ) ≈ ϕ(τ ) + π/2. Hence, the
frequency of the time-dependent field is equal to the proper
precession frequency of the magnetization.

Finally, using Eqs. (20) and (23), the total injected energy
can be computed. As shown previously in Eq. (18), it is
proportional to the damping parameter and to the energy
barrier �E0:

E =
∫ +∞

0
‖hopt(τ )‖2dτ = 2α (h0 − 1)2 = 4α�E0. (31)

III. COMPARISON WITH THE NUMERICAL RESULTS

As mentioned earlier, in Ref. 19 we developed a numerical
method based on the theory of optimal control to determine
the shape of the optimal MW field. It renders an exact solution
for the MW field that triggers the switching of a nanomagnet
with a given anisotropy and applied field. The method consists
of minimizing the cost functional

F [m(τ ),h(τ )] = 1

2
‖m(τf )−mf ‖2 + η

2

∫ τf

0
dτ h2(τ )

along the trajectory given by the Landau-Lifshitz-Gilbert
equation, Eq. (3), where mf is the target magnetization (stable
minimum), m(τf ) is the magnetization reached at time τf , and
η is a numerical control parameter. The numerical problem is
then solved using the modified conjugate gradient technique
supplemented by a Metropolis algorithm.

In Ref. 19 we restricted the MW field along a polarization
axis to comply with the experimental setup. In the present
study, for a better comparison with the analytical results, the
MW field is allowed to move in three dimensions during the
optimization.

Our model system is a particle with uniaxial anisotropy
along the z axis. Unless otherwise specified, the numerical
parameters used in the current study are as follows: initial
normalized time τi = 0; final normalized time τf = 800
(corresponding to a few ns in real time); number of points
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FIG. 3. (Color online) Numerical results for the reference cal-
culation: optimal MW field (upper panel) and magnetization time
trajectory (lower panel). The purple and green dotted vertical lines,
respectively, indicate the crossing of the saddle point and the end of
the microwave pulse.

N = 15 000, so the sampling time (τf − τi)/(N − 1) is about
0.05; damping parameter α = 0.05; and control parameter
η = 0.01.

A. Reference calculation

A first numerical optimization was carried out for a
static field with magnitude h0 = 0.5 applied in the (−z)
direction. The results are in good agreement with the analytical
calculations of Sec. II. As can be seen in Fig. 3, the optimal
MW field is modulated in both amplitude and frequency. It is
mainly in the xy plane and its magnitude is small (less than
0.03, corresponding to a few mT in the real field) as expected
since the damping parameter is small. The pulse starts at about
τ = 350 and progressively drives the magnetization away from
the initial equilibrium position. The saddle point is reached at
about τ = 650 (purple dotted line) but the MW field pulse
continues until τ = 700 (green dotted line), which allows the
magnetization to cross the saddle point. Next, the damping
takes up to lead the magnetization to the more stable energy
minimum, which is reached at about τ = 800.

Figure 4 shows that the MW field intensity obtained
numerically is in good agreement with the analytical result
in Eq. (23). From τ ≈ 570, the MW field intensity is slightly
higher numerically, which induces mz to decrease faster and
the magnetization to finally cross the saddle point. The total
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injected energy obtained numerically, Enum = ∫ τf

τi
h2(τ )dt ≈

0.025 48, is slightly higher than the value predicted ana-
lytically, Ean = 4α �E0 = 0.025 00. This confirms that the
optimal MW field determined analytically represents a lower
boundary and that a small additional energy must be injected
to achieve switching, as noticed previously. Nevertheless, the
discrepancy between the numerical and analytical MW fields is
very small, which corroborates the relevance of the analytical
model.

Figure 5 confirms that the magnetization precession and the
MW field are synchronized, the initial frequency being close
to the FMR frequency. The time evolution of the frequency is
similar to the evolution of mz (Fig. 4), since both values are
related by Eq. (29). Consequently, after τ ≈ 570 the numerical
frequency is lower than the analytical frequency.
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numerical results for the reference calculation: precession frequencies
of the magnetization and MW field.
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FIG. 6. (Color online) Total injected energy E with respect to the
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the static field h0. ψ is the angle between the z axis (anisotropy axis)
and the static field.

B. Effect of the static field magnitude and direction

The MW field h(τ ) has been optimized numerically for
several magnitudes and orientations of the static field h0.
For each configuration, the energy barrier �E0 and the total
injected energy E = ∫ τf

τi
‖hopt(τ )‖2dτ have been computed

numerically and are reported in Fig. 6. As shown in Eq. (18),
the injected energy is found to be proportional to the energy
barrier and to 4α.

In the case of a static field applied along (−z), the shape
of the pulse can be directly compared with the analytical
results of Sec. II C (see Fig. 2) . The numerical and analytical
results are in good agreement. As predicted analytically, the
maximal peak intensity h

opt
max decreases and the pulse duration

�τ increases rapidly when the magnitude of the static field h0

increases.
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FIG. 7. (Color online) Total injected energy E with respect to the
damping parameter α.
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FIG. 8. (Color online) Optimal MW field pulse for several values
of the damping parameter α. For α = 0.015, the final time has been
increased (τf = 1600) without changing the sampling time.

C. Effect of damping

As predicted by Eqs. (18) and (31), for a given static energy
barrier, �E0, the injected energy is proportional to the damping
parameter α. This has been checked numerically by varying
the damping parameter from 0.015 to 0.30 (Fig. 7). In these
calculations, the static field h0 is applied in the (−z) direction
with the magnitude h0 = 0.5.

Figure 8 shows that for low values of α, the pulses’
heights decrease but their durations increase, in agreement with
Eqs. (24) and (26). For an undamped system, the switching
should thus be infinitely long, so our analytical and numerical
methods are not adapted to describe such a system.

As can be observed, for very low values of the damping
parameter α, a discrepancy between the analytical calculations
and the numerical optimization is observed. Indeed, since
the optimal peak duration becomes very long, the number
of numerical points N must be increased, so the conjugate
gradient algorithm becomes less efficient. However, as can be
seen in Fig. 7, this discrepancy has a negligible effect on the
injected energy.

IV. CONCLUSION

We analytically determined the optimal microwave field
that allows for the switching of the magnetization of a
monodomain nanoparticle with uniaxial anisotropy while
minimizing the injected energy. This study provides a clear
interpretation of the results obtained numerically using the
optimal control theory,19 especially the simple dependence of
the pulse on the damping parameter.

Our results confirm that the optimal MW field is mod-
ulated in both amplitude and frequency, since it is directly
proportional to the derivative of the magnetization. It drives the
magnetization from an initial state close to the initial minimum
to a final state close to a saddle point. The time trajectory can
then be described as an amplified precession.

In order to cross the saddle point, a small additional energy
must be injected into the system. Our numerical results show
that this energy can be added by slightly increasing the MW
field intensity. In reality any source of noise, such as thermal
fluctuations, may suffice to induce the saddle point crossing.
Subsequently, the damping induces the relaxation to the final
state. We find that the injected energy is proportional to the
damping parameter and to the energy barrier between the initial
state and the saddle point. For typical values of the damping
parameter (α < 1), a weak MW field of a few millitesla is thus
sufficient to induce switching.

For a nanomagnet with uniaxial anisotropy placed in a
longitudinal static field, the shape of the MW field pulse has
been obtained analytically. We have shown that the optimal
MW field pulse becomes lower but more spread when the
damping decreases.

In the case of more complex energy landscapes (with biaxial
or cubic anisotropies) the switching is likely to be triggered
by a succession of MW field pulses. This hypothesis will be
later tested numerically. This study could then be extended to
small nanomagnets where surface effects cannot be neglected
using the effective one-spin model (EOSP).21–23 Moreover,
the influence of temperature on the optimization could be
investigated numerically using the Langevin approach which
introduces the temperature dependence through an additional
stochastic field.24,25 In particular, we intend to investigate the
conditions under which the thermal fluctuations can favor the
switching by assisting the magnetization in crossing the saddle
point.

The optimal MW fields that we have found have an
amplitude and a frequency which vary slowly and can
be reproduced experimentally using a function generator.
Consequently, our theoretical results could be used to probe
the damping parameter and to assess the role of surface effects
in real nanoparticles. The dependence of the MW field on the
energy landscape might be used to address directly a given
nanoparticle in a polydisperse assembly.
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