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Magnon supersolid and anomalous hysteresis in spin dimers on a triangular lattice
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We study the magnetic phase diagram and hysteresis behavior of weakly coupled spin dimers on a triangular
lattice using the cluster mean-field method with cluster-size scaling. We find that the magnetization curve has
plateaus at 1/3 and 2/3 of the total magnetization, in which local singlet and triplet states form a superlattice
pattern. Moreover, if increasing (decreasing) the magnetic field from the 1/3 (2/3) plateau, the Bose-Einstein
condensation (BEC) of triplons occurs on the superlattice background, leading to the transition into “magnon
supersolid” phase. We also find that the first-order transition between these solid states and the standard magnon
BEC state exhibits an anomalous hysteresis upon cycling the magnetic field; the transition can occur only from
solid to BEC, and the system cannot return to the initial solid state in the reverse process.
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I. INTRODUCTION

The physics of bosonic elementary excitations in coupled
spin-dimer systems has been attracting considerable attention
since the observation of magnon Bose-Einstein condensation
(BEC) in TlCuCl3.1–3 The strong intradimer antiferromagnetic
interaction in spin-dimer systems4–8 provides a quantum-
disordered (QD) singlet state, and the system undergoes
a phase transition to a magnetically ordered state when
applying a sufficiently strong magnetic field. This quantum
phase transition is now well established as a BEC of spin-
triplet states with Sz = +1, called “triplons,” moving in the
nonmagnetic singlet background.2,3 Moreover, some materials
exhibit magnetization plateaus at fractional values of the total
magnetization,9,10 where the triplons are crystallized in a
superstructure pattern and form an incompressible “solid”
state. As a next step, it is naturally expected that one could
observe a more exotic state, namely “the magnon supersolid”
(SS),11–18 in which the diagonal (solid) and off-diagonal
(magnon BEC) long-range orders coexist.19

The possibility of SS states has been discussed also in the
contexts of solid helium-420–23 and ultracold Bose gases in
optical lattices.24–31 In the former case, although Kim and
Chan’s torsional oscillator experiments observed superficial
nonclassical rotational inertia in 2004,20 it is now interpreted
as shear modulus stiffening rather than superfluidity in the
latest experiments with an improved oscillator.23 In the
latter case, previous theoretical studies have established that
sufficiently strong dipole-dipole interactions between atoms or
molecules, which are long-ranged, allow for the emergence of
SS phases.24–31 However, the strength of dipolar interactions
available with current technology is still significantly smaller
than experimentally achievable temperatures, and SS has not
been realized yet. Given the presence of a rich variety of
materials and the large spin-exchange interactions, possibly
allowing SS states to be realized at achievable temperatures,
spin-dimer systems are advantageous over the other candidate
SS systems.

Nevertheless, no clear SS behavior has been observed in any
spin-dimer materials so far. This may be because the parameter
window for SS is very small. Previous theoretical analyses with

square-lattice models11–16 have indeed shown that the magnon
SS state can emerge only in a very narrow range of parameters
(e.g., magnetic field) even when it exists. In this paper, we
study the ground-state properties and hysteresis behaviors of
weakly coupled spin-dimers on a triangular lattice. Taking into
consideration that in the case of lattice-boson systems the SS
states on a triangular lattice are fairly robust against a domain-
wall formation unlike in the square-lattice case,25,26,30 it is
speculated that triangular-lattice geometry is more suitable for
exploring SS states also in spin-dimer systems. Furthermore,
a novel anomalous hysteresis, in which the transition between
two phases occurs only unidirectionally, has been predicted
in lattice-boson systems.31 Such a unidirectional behavior
without forming a “hysteresis loop” has not been observed in
experiments and has not even been predicted theoretically for
magnetic hysteresis in any materials. Therefore, it is imperative
to examine whether spin dimers can exhibit such anomalous
hysteresis.

We quantitatively determine the ground-state phase dia-
gram of the triangular-lattice spin-dimer model even far away
from the strongly dimerized limit as shown in Fig. 1. The
frustration coming from the competition of two interdimer
interactions makes numerical analyses such as quantum Monte
Carlo simulations rather difficult and time consuming for
frustrated spin-dimer systems. Because of this problem, there
has been no theoretical (quantitatively reliable) prediction of
the complete phase diagram for frustrated spin-dimer models
even in the square-lattice case as far as we know.11–13 To
overcome this difficulty, we use a large-size cluster mean-field
theory with a scaling scheme (CMF + S).32 As shown in Fig. 1,
the magnon SS state emerges in a wide region of the phase
diagram [in between the two magnetization plateaus of the
triplon “normal” solid (NS) states]. The transition between the
solid (NS or SS) and BEC states is of first order (thick lines).
We show that the phase transition process upon cycling the
magnetic field exhibits an anomalous magnetic hysteresis (see
the schematic illustration in Fig. 1) analogous to the melting
transition in a triangular-lattice system of Bose gases.31 In the
anomalous hysteresis, although the transition from NS to BEC
can occur (left panel), in the reverse process the NS and SS
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FIG. 1. (Color online) Ground-state phase diagram of spin-1/2
dimers on the triangular lattice obtained by the CMF-9 calculations.
We set J0 = 2(J2 + J3) = 1. The dashed green lines are the phase
boundaries determined by the cluster-size scaling (CMF + S). Lower
panels: Schema of the anomalous hysteresis process when decreasing
and then increasing the magnetic field from an initial NS state along
the route marked by the purple arrow in the phase diagram.

states are ignored and no reverse transition occurs (right panel).
This phenomenon is completely different from a conventional
first-order transition with a hysteresis loop.

II. SPIN DIMERS ON A TRIANGULAR LATTICE

Below we will give a detailed description of the
above-mentioned physics. The triangular-lattice spin-dimer
compounds such as Ba3Mn2O8,5–7 Sr3Cr2O8,33,34 and
Ba3Cr2O8

35,36 have a stacked bilayer structure shown in the
inset of Fig. 1. In usual compounds, the coupling J1 between
the dimer planes is relatively weak compared to the in-plane
interactions J0, J2, and J3,6,34,36 and the number of J1 bonds
is only 1/6 of the J2 or J3 one. Thus, we capture the essential
physics of coupled spin dimers using the following frustrated
S = 1/2 spin-dimer model11–13 on a single triangular-lattice
plane:

Ĥ = J0

∑

i

Ŝi,1 · Ŝi,2 + J2

∑

〈i,j〉
(Ŝi,1 · Ŝj,1 + Ŝi,2 · Ŝj,2)

+ J3

∑

〈i,j〉
(Ŝi,1 · Ŝj,2 + Ŝi,2 · Ŝj,1) − H

∑

i,α

Ŝz
i,α, (1)

where Ŝi,α = (Ŝx
i,α,Ŝ

y

i,α,Ŝz
i,α) is the spin-1/2 operator attached

to the site i, the two spins within a dimer are labeled
by the subscript α = 1,2, and the second and third sums
run over nearest-neighbor (NN) sites. Here J0, J2, and J3

are the intradimer, direct interdimer, and crossed interdimer
interactions, respectively (see the inset of Fig. 1). We assume
that the dimers form a regular triangular lattice and all the

in-plane couplings J0, J2, and J3 are antiferromagnetic and
isotropic in spin space as in a typical spin-dimer compound
Ba3Mn2O8.5–7 The last term is the Zeeman coupling with a
magnetic field H = gμBh (in energy units).

In the limit of J0,H � J2,J3, the above model is mapped
onto the hard-core Bose-Hubbard model with NN hopping t =
−(J2 − J3)/2 and NN repulsion V = (J2 + J3)/2,37 which
describes hard-core triplons moving in the singlet sea. We
focus here on the case of t � 0 (J2 � J3) as in the usual
bosonic models in order to extract the Bose-Hubbard physics
in the isotropic spin system given in Eq. (1). However, the value
of J0 in the usual spin-dimer compounds is just one digit larger
than J2 or J3,6,34,36 and thereby one cannot regard the situation
as the limit of J0 � J2,J3 while also giving consideration to
the difference of coordination numbers between the inter- and
intradimer couplings. Therefore, we study the ground-state
properties of the spin-dimer model in the original form
[Eq. (1)] for a realistic strength of the intradimer interaction,
J2 + J3 = 0.5J0, away from the strongly dimerized limit.
We set J0 = 1 hereafter. Our CMF method32 can take into
account the effects of quantum and thermal fluctuations by
exactly diagonalizing the cluster Hamiltonian with a mean-
field boundary condition. Here we use the triangular-shaped
clusters of NC = 1, 3, 6, and 9 dimers (2, 6, 12, and 18
spins) and then perform the cluster-size scaling. The CMF + S
approach can treat quantitatively frustrated systems avoiding
the notorious minus-sign problem.

III. MAGNETIZATION PROCESS

In Fig. 1, we already presented the ground-state phase
diagram in the (|J2 − J3|,H ) plane obtained by the CMF
calculation with the nine-site cluster (CMF-9). To explain each
phase in the phase diagram, we plot in Fig. 2 the magnetization
curve mz(H ) = ∑

i〈Ŝz
i,1 + Ŝz

i,2〉/M at J2 − J3 = −0.075 with
the BEC (�) and solid (m̄z) order parameters. Here M

denotes the number of dimers. At zero magnetic field, the
antiferromagnetic intradimer interaction J0 produces a gapped
QD state with mz = 0, in which the spins in each dimer form
a singlet state. This state cannot be described by a classical
spin picture (or by the single-spin mean-field approximation).
As the magnetic field H increases, the energy of the triplet
excitations with Sz = +1 gets lower and the system undergoes
a transition into a magnetic state with closing the spin gap at
the critical field Hc. This phase transition can be understood
as the BEC of magnetic quasiparticles (triplons).2,3 The
order parameter of the magnon BEC phase can be written
as � = ∑

i〈b̂i〉/M using the semi-hard-core boson operator
b̂i = (Ŝ+

i,1 − Ŝ+
i,2)/

√
2. In the original spin language, the BEC

of triplons is translated as the canted antiferromagnetic state
shown schematically in Fig. 2. When the magnetic field
increases further, the density of triplons gets closer to the
commensurate filling of the triangular lattice, leading to the
transition into the NS phase. The NS state at the magnetization
plateau with mz = 1/3 has a

√
3 × √

3 solid order with the
“singlet-singlet-triplet” (s-s-t) superlattice pattern (Fig. 2, up-
per middle panel), in which the original translational symmetry
of the triangular lattice is broken. This state is characterized
by the order parameter m̄z = ∑

i〈Ŝz
i,1 + Ŝz

i,2〉 exp(iQ · ri)/M
with Q = (4π/3,0). Additionally, we can see another plateau
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FIG. 2. (Color online) The magnetization process at J2 − J3 =
−0.075 with the illustrations of each phase. � and m̄z are the order
parameters of BEC and NS phases, respectively.

at mz = 2/3, in which the NS state has the triplet-triplet-singlet
(t-t-s) pattern (Fig. 2, lower middle panel). At higher fields,
the system enters into the BEC phase again and eventually all
the spins are aligned parallel to the field direction.

In the region sandwiched between the two plateaus, both
the BEC and solid order parameters can have a finite value.
When applying a magnetic field (or doping triplons) on the
mz = 1/3 NS state, the BEC of triplons occurs in the s-s-t
background and the magnon SS state emerges. The spins on
both sublattice sites cant slightly away from the field direction
(Fig. 2, upper right panel). Similarly, another magnon SS state
also emerges by doping holes of triplons on the mz = 2/3 NS
state. As seen in the phase diagram of Fig. 1, the magnon SS
states can emerge over a reasonably large region in between the
two NS states in contrast to the case of the square lattice.11–14

We also apply a cluster-size scaling (CMF + S) of the phase
boundaries with the scaling factor λ = NB

3NC
,32 where NB is the

number of interdimer bonds treated exactly within the cluster.
The denominator 3NC is the number of interdimer bonds per
NC sites in the original lattice. The parameter λ, which depends
on both the number of cluster sites and the shape of the
cluster, provides an indication of how much the correlation
effects between the dimers are taken into account in the CMF
calculation. Cluster approximations with mean-field boundary
condition take into account the effects of the remaining spins
on the infinite-size lattice via mean fields acting on the cluster
spins. Thus the results usually converge much faster as the
cluster size increases than finite-size calculations.32,38,39 In
fact, the cluster-size scaling with λ has successfully produced

FIG. 3. Examples of the cluster-size scalings of the phase bound-
aries between BEC-SS (triangle, H = 1.7), BEC-NS (open circle,
H = 1.4; filled circle, H = 2.2), and BEC-QD (square, H = 0).

quantitatively reliable phase diagrams for related hard-core
boson models.32,38 We perform a linear fit of the data for the
phase boundaries obtained with NC = 3, 6, and 9 (λ = 1/3,
1/2, and 5/9), which shows a good fit as shown in Fig. 3.
The scaled result denoted by the dashed green lines in Fig. 1
indicates that the SS region survives in the limit of NC → ∞
(λ → 1).

For the square lattice, the emergence of the magnon SS
phase in the spin-dimer model [Eq. (1)] has been discussed
with a numerical approach based on the tensor product states.11

The parameter region treated in Ref. 11 is J2 + J3 ≈ 0.5J0

as in the present work. The big difference from our result
is that the SS phase is found only in a narrow region just
below the mz = 1/2 plateau for spin dimers on the square
lattice. On the other hand, the SS phase occupies a much wider
region between the two magnetization plateaus in the present
case of the triangular-lattice system. From the CMF + S phase
boundaries in Fig. 1, the maximum width of the supersolid
region in the magnetic-field axis, δHSS, is evaluated to be
about 15% of the saturation field Hs, which is approximately
four times larger than the one for the square-lattice case.11–13

The typical value of Hs
5–7,33,34 gives δHSS ∼ 8 T, which can

be clearly detectable in current experimental techniques.

IV. ANOMALOUS HYSTERESIS

Now we present a detailed description of the anomalous
hysteresis behavior already mentioned earlier (Fig. 1, lower
panels). We see in the phase diagram that reentrant (two-step)
first-order transitions from BEC to solids (SS and NS) and
back to BEC can be induced by a magnetic field near the
tips of the NS phases. However, since the actual transition
process in first-order phase transitions is determined not only
by the ground states, we need to take into account also the
metastable states. Figure 4 shows the CMF-9 data of the
magnetization curve mz(H ), including metastable and unstable
solutions, around the mz = 2/3 plateau at J2 − J3 = −0.101.
The stable (solid curve) and unstable (dashed curve) states
correspond to the minima and maxima (or saddle points) of
the energy landscape, respectively. When starting from an
initial NS state, e.g., at point i, and decreasing the magnetic
field, a transition to BEC occurs at the metastability limit
of SS phase through the path i → a → x → x ′ → e. In the
usual hysteresis, if we perform the reverse process (increase
the field strength) starting from the BEC state, the system
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FIG. 4. (Color online) Anomalous hysteresis behavior at J2 −
J3 = −0.101. The solid and dashed lines correspond to the
(meta)stable and unstable states, respectively. The inset is the
schematic illustration of the characteristic structure of the energy.

returns to the initial NS state through a different path, and
a hysteresis loop is formed. However, surprisingly, the BEC
state keeps the metastability even if increasing H as clearly
seen in the figure (e → f ). This unidirectional behavior is
due to the absence of the metastability limit of the magnon
BEC state. In this hysteresis cycle, obviously, a standard
hysteresis loop is not formed and the Maxwell equal-area
rule is not applicable. Although the energy of the system
cannot be calculated directly in the large-size CMF,32 the shape
of the energy curve can be predicted by the magnetization
curve mz(H ). The curve of the energy should form the
unconventional structure shown schematically in the inset of
Fig. 4, in which the line of BEC state passes through the loop
consisting of NS and SS, instead of the usual “swallowtail”
one.40 Note that the same unidirectional behavior can be also
obtained by increasing first and then decreasing H (through
the pass i → b → y → y ′ → f and then f → e) around the
NS plateau with mz = 1/3.

The unidirectional behavior in the anomalous hysteresis
stems from only the characteristic geometry of the phase
diagram. In order to generalize the discussion, let us first
consider a simpler situation where a certain system has a
phase diagram with the geometry shown in Fig. 5(a). There is
a first-order phase transition between phases A and B in the
parameter α versus β plane. The essential point is that phase
A of lobe shape is completely surrounded by the first-order
transition boundary. In this case, the metastability limit of

(a)

(b)

FIG. 5. (Color online) (a) Typical phase diagram of a system
which exhibits the anomalous hysteresis. The solid line is the first-
order transition line. The dashed (dash-dotted) line corresponds to the
metastability limit of phase B (phase A). (b) The range of parameter α

for observing the anomalous hysteresis upon sweeping parameter β.

phase B (dashed curve) is necessarily located inside the lobe,
while the one of phase A (dash-dotted curve) is outside. As a
result, there must be a finite region where phase B is always
stable for any value of parameter β [see the region indicated
by the double-headed arrow in Fig. 5(b)]. Therefore, when
sweeping the value of β at a fixed α in the region, one never
encounters the metastability limit (spinodal) of phase B. Thus,
the geometrical feature of the phase diagram leads to the
unidirectional behavior in the anomalous hysteresis; whereas
the transition occurs from phase A to B at the metastability
limit of phase A (dash-dotted curve), a state in phase B is not
dynamically destabilized due to the absence of spinodals of
phase B along the sweeping path.

As shown in Fig. 6, the ground-state phase diagram of
the present spin-dimer model is more complicated but has
the same geometry; the NS lobes are surrounded by first-
order boundary and the metastability-limit curve of BEC phase
(green dotted lines) is located inside the lobes. As a result, one
never encounters the metastability limit of the BEC phase when
sweeping the magnetic field in the region sandwiched between
the two vertical red lines, which leads to the unidirectional
transition process. In this case, there are two NS lobes at
mz = 1/3 and 2/3 and we have an opportunity to observe
the anomalous hysteresis around the tip of either NS lobe. The
required range of |J2 − J3| is different for each lobe (see the
double-headed arrows in Fig. 6). The blank (uncolored) regions
of SS and NS are ignored upon sweeping the magnetic field
from a BEC state. We have to use thermal cycling in order to
reach these solid states. This means, at the same time, that the
SS and NS states could be missed in experiments varying only
the field strength at a fixed low temperature. For observing the
anomalous hysteresis, the initial NS state could be prepared,
e.g., by cooling the sample in a high magnetic field.
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FIG. 6. (Color online) The emergence region of the anomalous
hysteresis behavior. The left and right panels show the CMF-9 and
CMF + S data, respectively. The green dotted curves indicate the
metastability limits of the BEC phase. The value of |J2 − J3| is
required to lie within the range sandwiched between the two vertical
red lines for the anomalous hysteresis.

V. SUMMARY

In summary, we have used a large-size cluster mean-field
theory in combination with a scaling scheme to study the

ground-state phase diagram and the hysteresis of the frustrated
S = 1/2 spin-dimer model on a triangular lattice away from
the strongly dimerized limit for J3 � J2. The magnetization
curve exhibits two plateaus at mz = 1/3 and 2/3, in which
the singlet and triplet states form a

√
3 × √

3 solid order with
ordering vector Q = (4π/3,0) (the NS state of triplons). We
found that more exotic magnon SS states emerge in between
the two plateaus of the NS states. Since the SS phases occupy
a broad region of the phase diagram in contrast to the square-
lattice case, it should be easier to experimentally discover
these phases in triangular spin-dimer materials. Moreover, we
found that the metastability of the system yields an anomalous
hysteresis behavior without forming a standard hysteresis-loop
structure upon cycling the magnetic field. In the anomalous
hysteresis cycle, the actual transition can occur only unidi-
rectionally from the solid (SS or NS) phase to the uniform
magnon BEC phase. The Ginzburg-Landau description of the
anomalous hysteresis will be reported elsewhere.38
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