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Topological floating phase in a spatially anisotropic frustrated Ising model
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We present results for the ordering process of a two-dimensional Ising model with anisotropic frustrating
next-nearest-neighbor interactions. We concentrate on a specific wide temperature and parameter region to
confirm the existence of two particular phases of the model. The first phase is an incommensurate algebraically
ordered (floating) phase emerging at the transition from the paramagnetic high-temperature phase. Then the
model undergoes a transition to an antiferromagnetically ordered second phase with diagonal ferromagnetic stripes
[ordering wave vector q = (π/2,π/2)]. We analyze the unconventional features appearing in several observables,
e.g., energy, structure factors, and correlation functions, by means of extensive Monte Carlo simulations and
examine carefully the influence of the lattice sizes. For the analytical study of the intermediate phase the
Villain-Bak theory is adapted for the present model. Combining both the numerical and analytical work we
present the quantitative phase diagram of the model, and, in particular, argue in favor of an intermediate
topological floating phase.
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I. INTRODUCTION

One of the most studied classical frustrated spin models is
the axial next-nearest-neighbor Ising (ANNNI) model.1–6 The
interplay of the frustrating interactions of the model on a square
lattice yields new physics in two aspects: new phases emerge
and the ordering processes are influenced by the competition
of the different states. In particular Fisher and Selke1 reported
on the emergence of infinitely many commensurate phases in
a certain parameter region and Rastelli et al.6 demonstrated
similar features of the ANNNI model very nicely by applying
Monte Carlo (MC) simulations on finite lattices.

In the present work we examine another classical model
which has frustrating spin interactions through the diagonal
next-nearest-neighbor (NNN) bonds on the square lattice. This
model was first studied by Fan and Wu.7 They found, along
the conventional ferromagnetic (FM) and antiferromagnetic
(AFM) phases, a new phase due to frustrating interactions
which they called superantiferromagnetic (SAF), and it is
also more often referred to as columnar in current literature.
This model was extensively studied in the recent past,8

mainly due to the interest in the predicted nonuniversality
of the transition into the SAF phase. Even now the model
could harbor some surprises, such as, e.g., the recently found
phase-transition change from the second to the first order at
strong NNN coupling.9,10 We note however that the earlier
work on this model was done almost exclusively for the case
of equal diagonal couplings. Motivated by some real material
applications11 one can generalize the above model for the
anisotropic case of the diagonal couplings of different strength
or even of different signs. It turns out that the anisotropic
NN and NNN Ising model has a quite rich phase diagram.12

In particular, it possesses the superferro-antiferromagnetic
(SFAF) or 4 × 4 ground-state phase with ordering wave vector
q44 = (π/2,π/2). After a π

4 rotation the ordering pattern of
the 4 × 4 state becomes equivalent to the antiphase of the
ANNNI model, as one can see from Fig. 1. From the mean-field
analysis and Kosterlitz-Thouless-type arguments4,5 Chitov and
Gros12 also predicted the incommensurate (floating) phase

to be stable within a finite intermediate temperature range
above the low-temperature 4 × 4 phase. The same floating
phase also occurs in the two-dimensional (2D) ANNNI
model.3–5 It is characterized by a lack of local order parameter
and algebraic decay of correlation functions, modulated by
plane-wave oscillations with an incommensurate wave vector
q depending on couplings and temperature. Upon cooling
and reaching the boundary of the 4 × 4 phase, the wave
vector smoothly evolves towards its commensurate value.
The incommensurate (symmetric) wave vector qx,y = πκ is
determined by the density of domain walls (κ) in the direction
of the ferromagnetic diagonals (cf. Fig. 1). The transition
from the floating to disordered phase occurs via proliferation
of dislocations (melting) of those walls.4,5 It is analogous
to the Kosterlitz-Thouless transition in the classical XY

model undergoing through decoupling of topological defects
(vortices).

The concept of incommensurate phases and phase transi-
tions from incommensurate to commensurate ordered states
was already discussed in many versions of the Ising model in
two and three dimensions; see for example Refs. 13–16. We
should stress two qualitative differences between 2D and 3D
cases. The 2D floating phase is characterized by the algebraic
order/decay of the correlation functions and continuous vari-
ation of the ordering wave vector with temperature and/or
couplings. There exists a local order parameter in the 3D
case. Also, as the ANNNI model reveals, the variation of the
ordering wave vector has discreteness (which survives even
the thermodynamic limit) referred to as the devil’s staircase.3,5

The number of steps depends on the internal parameters, and
thus the staircase reflects the intrinsic properties of the system.
Such devil’s staircases have also been observed experimentally
(see, e.g., Refs. 17 and 18). Of course a pure numerical
analysis of finite systems is often not enough to reveal the
true discreteness of devil’s staircase, and some complimentary
analytical work is highly desirable. In this context it is worth
noting that the 3D generalization of the present model has quite
interesting properties. In particular, competing interactions
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SFAF
FIG. 1. (Color online) The superferro-antiferromagnetic (SFAF)

or 4 × 4 ground state of the NN and NNN Ising model for −|J2| <

J1 < |J2|.

between stacked Ising planes can result in the devil’s staircase
with respect to the ordering wave vector in the stacking
direction,19 observed in the experimental work of Ohwada
et al.18

Here we will present Monte Carlo (MC) results of the
spatially anisotropic J1–J2 Ising model. In particular energies,
specific heats, correlation functions, and their Fourier trans-
form, the structure factor will be discussed. Strong numerical
evidence for a floating phase within a finite-temperature region
is given which has not been observed before. We show that the
Villain-Bak theory4 can be straightforwardly extended for the
present Ising model, giving predictions consistent with the MC
results.

The paper is structured as follows: In Sec. II the model
and its known properties are introduced before we present in
Sec. III the MC and analytical results which focus mainly on
the description and characterization of an intermediate floating
phase. In the concluding Sec. IV we discuss our findings in
the context of frustrated Ising models.

II. MODEL

The model is given by summing over all interactions
between nearest neighbors (NNs) and next-nearest neighbors
(NNNs) of Ising-spin variables Si = ±1 on a two-dimensional
square lattice (N = L × L, periodic boundary conditions):

H = J1

∑
nn

Si Sj + J a
2

∑
nnnx

Si Sj + J b
2

∑
nnny

Si Sj . (1)

The interaction J1 for nearest neighbors can be chosen negative
or positive which favors a ferromagnetic or antiferromagnetic
Néel state as configuration of total minimal energy, i.e., as
a ground state. The J2 are chosen to be of opposite sign
sgn(J a

2 ) = −sgn(J b
2 ) for the two perpendicular directions. In

the following numerical analysis we will set always J a
2 = −J b

2
and will choose |J2| as the energy unit, i.e., temperatures and
the NN coupling are given mostly in units of |J2|.

A. Ground states

For the given parameter set we expect the system to order
in three different ground states depending on the strength of
the NN coupling J1.12 For large antiferromagnetic coupling
J1 > |J2| the Néel ordered (AFM) state is the ground state with
a total energy of EAFM = −2 N J1 with all NNN bonds parallel
aligned and all NN bonds antiparallel aligned. On the other
side of the phase diagram a ferromagnetically ordered (FM)
ground state with EFM = 2 N J1 for J1 < −|J2| is realized.
In the intermediate region the SFAF order yields the lowest
energy where all NNN bonds are satisfied energetically, i.e.,
antiparallel aligned in one direction and parallel aligned in
the perpendicular direction, and NN bonds are parallel and
antiparallel aligned alternating in both directions, thus, the
total energy of the NN sum is zero (see also Fig. 1) and
the ground-state energy is given by ESFAF = −2 N |J2|. The
degeneracy of these ground states is twofold (FM, AFM)
or fourfold (SFAF). At the transition points J1 = ±|J2| the
ground state is degenerate of order L since every state which
is constituted out of 4 × 4 plaquettes with a total spin S = 0
yields the same energy. So, the ground states have long-ranged
orders, except at the points of quantum criticality.

B. Phase diagram

The phase diagram for the model was introduced in Ref. 12
for varying parameters J1, J a

2 , and J b
2 . The result is a three-

dimensional qualitative phase diagram including ferromag-
netic and various antiferromagnetic phases (Fig. 2 of Ref. 12).
In the present work the focus lies on a one-dimensional cut
through this phase diagram with a varying NN coupling J1

and a fixed value J a
2 = −J b

2 . The finite-temperature phase
diagram Tc(J1/|J2|) was qualitatively sketched in Fig. 6 of
Ref. 12. Here we present a quantitative diagram in Fig. 2,
obtained by the direct MC simulations along with analytical
work. Note that the transition temperatures are invariant under
the change of the sign J1 → −J1; this was double-checked
in particular for |J1| < |J2|. For the interactions |J1| > |J2|
the numerical critical temperatures were determined using
the Binder cumulants for different lattice sizes.20,21 From the
intersection point of these cumulants the critical point can be
estimated.22,23

On the other hand for |J1| < |J2|, the extraction of critical
temperatures is more complicated since the order parameter
for the 4 × 4 state and its Binder cumulant show a strong
finite-size dependence. Thus, for the estimation of the critical
temperatures in Fig. 2 energies and specific heats were also
taken into account.

The nature of the phase transitions for J1 > |J2| and J1 <

−|J2| is of second order and belongs to the Ising universality
class. However, according to the prediction of Ref. 12, the
transition from the high-temperature paramagnetic phase to
the SFAF state is not direct but rather involves an intermediate
floating phase which will be the main topic of the following
sections.

III. MONTE CARLO AND ANALYTICAL RESULTS

The MC simulations allow us to calculate the energy, spe-
cific heat, and various order parameters for a wide temperature
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FIG. 2. (Color online) Phase diagram of the anisotropic Ising
model for varying NN interactions J1/|J2|. Three different ground-
state configurations: Néel order (AFM) for J1 > |J2|, superferro-
antiferromagnetic order (SFAF) for −|J2| < J1 < |J2|, and ferromag-
netic order (FM) for J1 < −|J2| are separated by the quantum critical
points at J1 = ±|J2|. The three phases (disordered, floating, and
4 × 4) meet at the (exactly solvable) Lifshitz point at J1 = 0. Critical
temperatures are determined using Binder cumulants for |J1| > |J2|
(energy scale is set to |J1| here) and estimated from energies, specific
heats, and order-parameter behavior for |J1| < |J2| (energy scale is
set to |J2|). The transition temperatures in this regime strongly depend
on the system size—here L � 200 (see text for more details). The
red solid line for T SFAF

c is obtained from Eq. (10). The dashed blue
line for T FP

c is given by the low-temperature Eq. (6) and Eq. (11) at
0.782(5) � J1/|J2| � 1 and connects T FP

c at J1/|J2| ≈ 0.782(5) with
the Lifshitz point as a guide to the eye. Note also the agreement with
a qualitative sketch in Ref. 12.

range and different parameters J1 for finite lattice systems.
Especially the analysis of the finite-size behavior and the
extraction of the values for the thermodynamic limit is crucial
in the investigation of incommensurate phases.

For the simulations we used a Metropolis-single-spin
update24 with an additional exchange MC step.25–27 As a
starting configuration for several independent runs we selected
the 4 × 4 state in the appropriate parameter region for all
temperatures and performed 106 thermalization steps. This
choice was reasoned in the large energy steps between different
states in the incommensurate region (see below) and already
proved itself very successful in a similar work on a frustrated
Ising model.6

A. Energy and specific heat

The behavior of the energy already indicates that the
ordering processes for the two phase transitions—to the
AFM/FM phase and to the 4 × 4 state—differ significantly. In
Fig. 3 the temperature dependence of the energy and specific
heat is shown for three cases: For J1 = 0.2 |J2|, 0.8 |J2|
transitions to the 4 × 4 state are compared with an Ising-phase
transition at J1 = 1.5 |J2|.

The multiple steps in the energies [Figs. 3(a) and 3(c)],
which in addition are shifted for different system sizes L,
hint towards an unusual ordering in the model that involves

different size-dependent intermediate states. This strong size
dependence suggests already incommensurate ordering.

Even more prominent than the steps in the energy are
the peaks in the corresponding specific heat [Figs. 3(b) and
3(d)]. They coincide with the steps in the energy and prove
the existence of several intermediate states. The number of
these states obviously depends on the system size; in partic-
ular in Fig. 3(d) for each system size (L = 16, 32, 64, 128)
more peaks are distinguishable. However, another feature is
observed: The position of the last peak, i.e., for the lowest
temperature (T ≈ 1.23 |J2|), converges with increasing system
size. A comparison with the energy curve above [Fig. 3(b)]
shows that below this temperature the system is ordered in
the 4 × 4 state according to the energy value. Thus the final
transition to the ground state is locked at a finite temperature
similarly to the conventional transitions into the AFM or FM
states [compare, e.g., Fig. 3(f)].

For a first characterization of the variety of transitions
we recorded energy histograms. In Fig. 4 we show energy
distributions at J1 = 0.8 |J2| for system sizes L = 64, L =
128, and L = 256 at different temperatures. As expected by
the stepwise behavior of the energy, the histograms show
double peaks for selected temperatures (at the size-dependent
transition temperatures between intermediate states and to the
ground state). The position of the ground-state transition is
locked for the three histograms shown in Fig. 4(a) but the
peak-to-peak distance varies drastically with the systems size:
Essentially the gap between the prominent peaks in the energy
distribution shrinks by a factor 2 while the linear system
size is doubled. The same behavior can be extracted for the
intermediate transitions. In Figs. 4(b) and 4(c) histograms
are shown which are recorded at higher temperatures for (b)
L = 128 and (c) L = 256. The multiple-peaked features are
again very prominent but the peak-to-peak distances shrink
(note the different energy scales for both figures) and the
temperatures are shifted as well.

Thus, according to the analysis of energy distributions
all finite-size transitions show strong first-order behavior.28

However, this seems not to hold in the thermodynamic limit
since the energy gaps tend towards zero. Similar behavior
was observed in the 2D ANNNI model6 and for the isotropic
version of the present model.29

B. Order parameters and correlation functions

To gain further insight into the ordering process of the
system it is useful to define order parameters and analyze their
behavior around the phase transitions. The order parameters for
the FM and AFM phases are readily defined as magnetization
and staggered magnetization which can also be expressed via
the spin-structure factors

S(q) =
∑
i,j

eiq(ri−rj )〈SiSj 〉 (2)

with ordering wave vectors qFM = (0,0) and qAFM = (π,π ).
The wave vector for the SFAF phase is given by q44 =
(π/2,π/2); the (square) unit cell has four lattice spacings in
each direction (see Fig. 1). The square root of the normalized
structure factor at this wave vector yields a good order
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FIG. 3. (Color online) Energies and specific heats for some values of NN coupling J1 > 0. In (a) and (c) multiple steps appear which differ
for different system sizes before reaching the ground-state energy ESFAF = −2 |J2|. As a comparison a converged energy development for the
phase transition to the AFM state is shown in (e)—EAFM = −2 J1. The specific heats in (b) and (d) show multiple peaks which coincide with
the steps in the energies shown above whereas in (f) only a single peak is observed which converges at the single transition temperature Tc,AFM.

parameter. The calculation of this order parameter can be
implemented also using a staggered magnetization,

m4×4,k =
√

S(π/2,π/2)

N
= 1

N

∑
i

(−1)fk (rx
i ,r

y

i )Si, (3)

f0(rx,ry) = [(rx + ry)/2]% 2,

∧f1(rx,ry) = [(rx + ry + 1)/2]% 2 . (4)

The modulo operation “% 2” yields values 0 and 1, and the two
versions f0,1 account for the degeneracy of the ground state,
i.e., a shift of all spins by one lattice spacing. In addition both
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FIG. 4. (Color online) Energy histograms for some transitions
at J1 = 0.8 |J2|: Double-peak features are very prominent for the
ground-state transition (a) and intermediate transitions at L = 128
(b) and at L = 256 (c) as well. However, the energy gaps are not
stable and seem to vanish for all histograms in the thermodynamic
limit. Note also the different energy scales in panels (b) and (c).

states can be flipped completely. In Fig. 5 this order parameter
and its Binder cumulant20,21

UB = 3

2

(
1 − 〈m4〉

3〈m2〉2

)
(5)

are shown for increasing lattice sizes and NN couplings
J1 = 0.2 |J2| [Figs. 5(a) and 5(b)] and J1 = 0.8 |J2| [Figs. 5(c)
and 5(d)]. As a comparison in panels [Figs. 5(e) and 5(f)]
we show the behavior of the AFM order parameter and its
Binder cumulant; from the intersection point the transition
temperature can be extracted. However, for |J1| < |J2|, i.e., for
the transitions to the 4 × 4 state, such an analysis is hampered
by strong finite-site effects which cause an unusual behavior
at the transition: The cumulants do not intersect in a single
point and exhibit several dips for intermediate temperatures.
To properly understand the numerical results we must recall
that the paramagnetic and the 4 × 4 phases are separated by
the intermediate floating phase12 which, in particular, does not
have a conventional local order parameter.

C. Floating phase (analytical)

The key to the analytical treatment of the floating phase
comes from the observation that the 4 × 4 phase in the ground
state has exactly the same pattern (2 rows of “up” spins,
then 2 rows of “down” spins, or (+ + −−) for brevity) as
the antiphase of the 2D ANNNI model (cf. Fig. 1) when
viewed along the ferromagnetic diagonals. So the Villain-Bak
theory,4 developed for that model, can be adapted here with
minor modifications. In the vicinity of the QCP (J1 = |J2|) at
low temperature our model can be mapped onto an effective
free-fermionic model which accounts for the dynamics of the
domain walls. In the floating phase these walls are not straight
anymore. The number density of domain walls κ is determined
via minimization from the following equation valid at low
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FIG. 5. (Color online) Order parameters and Binder cumulants for the 4 × 4 phase, i.e., moments of the structure factor S(π/2,π/2) for
the same parameters as in Fig. 3. Although in panels (a)–(d) a strong finite-size dependence is visible the convergence of the observables is
evident. However, an extraction of the exact transition temperature to the ground state from the intersection of the different Binder cumulants
is only possible for the AFM case in panel (f).

temperature:

s(κ) = −2β(J2 − J1) exp(2βJ2), (6)

where

s(κ) ≡ 1

1 − κ
cos

πκ

1 − κ
− 1

π
sin

πκ

1 − κ
, (7)

and from the physical meaning of κ , it is bound 0 < κ <

1/2. The correlation function in the direction perpendicular to
ferromagnetic diagonals decays algebraically in the floating
phase,

〈S(r′ + r)S(r′)〉 ∼ r−η cos(q · r), (8)

with the power-law index

η = 1
2 (1 − κ)2, (9)

and the wave vector of oscillations q = πκ determined by the
density of walls κ . This floating phase is bound by the low-
temperature SFAF phase and the disordered (paramagnetic)
phase at higher temperatures. The critical temperature of the
phase transition from the floating into the 4 × 4 phase is given
by the Müller-Hartmann–Zittartz method in the framework of
the free fermionic approximation:4,30

sinh 2βJ2 · sinh 2β(J2 − J1) = 1, (10)

written here for J1,J2 > 0. As one can see from Fig. 2,
this equation agrees nicely with the numerical MC results,
reproducing even the exactly known Ising value of Tc at J1 = 0
(the Lifshitz critical point). Qualitatively, the phase transition
from the floating into the 4 × 4 phase can be understood
as the freezing of the domain walls into the (+ + −−)
structure.

On the other part of the diagram, with the increase
of temperature the floating phase becomes unstable and
undergoes a phase transition into the disordered phase when

the dislocations start to proliferate in the network of the domain
walls. In this sense the phase transition from the (gapless)
floating to the (gapped) disordered phase is topological, not
accompanied by the appearance/disappearance of any local
order parameter. It is analogous to the vortex unbinding
transition in the classical 2D XY model, and the results within
the approach due to Villain and Bak can be traced to their
counterparts in the Kosterlitz-Thouless theory. The floating
phase becomes unstable at the critical value of the wall density
κc (or at the wave vector qc = πκc). It is determined from the
following ansatz:

κ = 1 − 1√
2[1 + exp(−4βJ1)]1/2

. (11)

The critical temperature Tc and density κc are found from
the solution of the system of equations (6) and (11). The
result of the numerical solution of these equations for κc

(and thus for the critical wave vector qc = πκc) is given in
Fig. 6. T FP

c of the transition from the floating to the disordered
phase is shown in Fig. 2 by a dashed blue line. The low-
temperature equation (6) does not work well at J � |J2|, since
the curve for Tc “overshoots” the exactly solvable Lifshitz
point J1 = 0. Contrary to Eq. (10), Eq. (6) does not cross over
smoothly to the exact result at J1 = 0 [note that s(1/2) = −2].
This indicates the need for a better theory, taking into account,
e.g., fermionic interactions at arbitrary temperature, which we
relegate for future work.

In the vicinity of the QCP the system of equations (6) and
(11) can be solved analytically. An interesting feature of the
equations is a small reentrance effect, when the floating phase
enters slightly into the FM and AFM domains |J1| > |J2|. The
reentrance boundary is given by κc = κ0, where κ0 ≈ 0.3008
is the root of s(κ0) = 0. The critical temperature at the point
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of reentrance can be evaluated as

Tc

J2

∣∣∣∣
|J1|=|J2|

≈ −4/ ln[23/2(κ0 − κm)] ≈ 1.05, (12)

where κm = 1 − 1/
√

2 = 0.2929 is the lower bound of κ . The
bound follows from the stability condition for the floating
(Kosterlitz-Thouless) phase:

η < 1/4 ⇐⇒ κ > κm. (13)

One can also find that the critical temperature vanishes at the
QCP as

Tc

J2
≈ 2/ ln

(
A

|J1/J2| − 1

)
, (14)

where

A ≡ 1
2 s ′(κ0)(κ0 − κm) ≈ 0.04. (15)

At the QCP κ → κm and the correlation function index tends
to the free fermionic (Ising) value η → 1/4, while in the
whole region of the floating phase 1/8 � η � 1/4. The effect
of reentrance does not contradict the earlier prediction12

that the floating phase can be adjacent only to the SFAF
phase (commensurability parameter p = 4) of the present NN
and NNN Ising model, since there are no commensurate-
incommensurate transitions with small p2 < 8, because then
η = 2/p2 would violate the condition (13).3,5,8 Numerically,
the reentrance is very small, and the reentrant regions do not
overlap with the FM or AMF phases. It could well be an
artefact of the low-temperature approximation (6), however,
for a reliable test by MC simulations the parameter region is
too small.
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FIG. 7. (Color online) Structure factors S(qx,qx) for a series of
momenta 0 < qx � π/2 vs temperature. The transitions between the
intermediate states are clearly visible. Note also the stepwise behavior
of the signals which is only recognizable in the logarithmic scale.

D. Floating phase (Monte Carlo)

To verify the predictions for the floating phase, we
calculated the structure factors for symmetric momenta on
the line qFM = (0,0) → q44 → qAFM = (π,π ). We observed
finite signals for some structure factors depending on the sign
and value of J1 and more important also depending on the
lattice size. Exemplary we show several structure factors at
J1 = −0.8 |J2| in Fig. 7 in a logarithmic scale for a broad
temperature range. Due to the computational effort here only
L = 64 is chosen, but nevertheless a cascade of signals can be
seen which starts at a critical momentum qx

c < π/2 and ends
up in the ground-state order parameter with qx

44 = π/2. As
we show above, the Villain-Bak theory for this model predicts
that the intermediate floating phase is characterized by a single
wave vector q while in the MC results for all momenta

qinc. = (
qx

inc.,q
x
inc.

)
and

{
qx

c � qx
inc. < π/2 for J1 < 0,

π/2 < qx
inc. � qx

c for J1 > 0,

(16)

a nonzero contribution can be observed. The left-hand side
of Fig. 8 shows the structure factors for several q’s also in
a color-coded plot for L = 32 at J1 = −0.5|J2| (upper left
panel) and L = 64 at J1 = +0.8|J2| (lower left panel). The
behavior described in Eq. (16) can be seen very nicely in these
plots. In conclusion in the intermediate phase the structure
factor shows finite signals for certain momenta which depend
(i) on the sign and magnitude of the NN interaction and (ii) on
the lattice size. This can be explained by the simple fact that for
a discrete lattice the number of moments qinc. between qc(J1)
and q44 = π/2 increases with the system size. Furthermore
in Fig. 6, the stepwise behavior of the structure factor at
the transitions between different momenta is very prominent.
However, this feature is also due to the discrete spectrum
of the momenta on a finite lattice. As already observed in
the energy histogram finite-size effects play a crucial role
in the intermediate phase. In the thermodynamic limit the
temperature-dependent momentum q(T ) locks smoothly into
the ground-state value q44.
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(a) L = 32; J1 = −0.5 |J2 |

(b) L = 64; J1 = +0.8 |J2 |

FIG. 8. (Color online) Structure factors (left) and correlation functions (right) calculated from two different systems shown in color code.
The stepwise behavior of the structure factors coincides with the distinguished temperature regions in the correlation functions, and the features
clearly depend on J1 and L. The critical momentum qc is determined numerically as described above and shown in Fig. 6.

The size dependence of the signals in the structure factors
show already strong indications for unconventional ordering in
the system before the actual ground state is reached. A further
analysis relies on the evaluation of correlation functions.
On the right-hand side of Fig. 8 we present correlation
functions calculated in one row or column of the lattice for
L = 32 at J1 = −0.5|J2| (upper right panel) and L = 64 at
J1 = +0.8|J2| (lower right panel). These correlation functions
clearly show nonfitting oscillatory behavior in the region of
higher temperatures before the system orders in the ground
state with its four-site period. An analysis of these oscillations
by fitting Eq. (8) at each temperature step yields a good
agreement in a wide temperature range. The resulting decay
exponent η and the wave number q can be extracted. Since
the correlations are calculated in one dimension only, the
wave vector is reduced to one component here. Furthermore,

this wave number obviously coincides with the symmetric
entries of the wave vector of the corresponding structure
factor which are shown on the left-hand side of Fig. 8. The
results for q (upper panel) and η (lower panel) are given
in Fig. 9.

In the plot fitting parameters in the vicinity of transitions
and for high temperatures are left out since at these points the
fit fails and does not yield meaningful results. The upper panel
(wave numbers) only reproduces the results from the structure
factors but the lower panels shows that in the intermediate
phase the behavior of a floating phase is recovered. The fits of
the decay exponent give reasonable (taking into account the
strong finite-size effects) results in the floating phase. At low
temperatures the exponent saturates at η ∼ 0.2, while below
Tc into the 4 × 4 phase with the long-range order parameter it
adopts the value η = 0.
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FIG. 9. (Color online) Results for the fit parameters of Eq. (8)
when applied to the finite systems for L = 32 at J1 = −0.5 |J2| and
for L = 64 at J1 = +0.8 |J2|. In the upper panel the development of
the wave number is shown which reflects the behavior of the structure
factors given in the left-hand side of Fig. 8. In the lower panel the
algebraic decay exponent is shown: For the intermediate phase a
saturation at different levels can be observed before it holds η = 0
in the ground state. (Values in the vicinity of transitions are left out
since there the fitting fails.)

IV. CONCLUSION

An anisotropic version of the frustrated J1–J2 Ising model
was investigated using mainly MC simulations, supplemented
by analytical treatments. In particular the phase transition
into an antiferromagnetic ground state constituted of two
sublattices in collinear order (4 × 4 phase) was analyzed. It
was predicted earlier by Chitov and Gros12 along with an
unconventional floating phase which appears for intermediate
temperatures before the ground state is reached. For analysis
of the floating phase the Villain-Bak theory4,5 with some
small modifications was utilized for the present model. In
the floating phase the theory predicts no local order parameter,
algebraically decaying correlation functions with the power-
law exponent η, modulated by a plane wave with a (single)
incommensurate wave vector q depending on couplings and
temperature. The theory also allows us to quantitatively
describe the smooth evolution of the wave vector from its
critical value qc at the critical temperature between the
disordered and floating phases towards its commensurate value
at the boundary of the 4 × 4 phase. The critical temperatures
between these phases are also evaluated. Qualitatively, the
theory gives the picture of the transition from the floating to
disordered phase via proliferation of dislocations of the domain

walls, which is analogous to the Kosterlitz-Thouless transition
of vortices in the classical XY model, while the transition into
the commensurate phase occurs via freezing of the domain
walls into the 4 × 4 structure.

The nature of the intermediate phase was also analyzed
using correlation functions and the corresponding structure
factors in the MC simulations. It appears in the simulations
of the finite-size system that the phase is not described by
a single wave vector but rather a set of neighboring wave
vectors. The transitions in finite lattices between states with
different momenta are sharp, however, in the thermodynamic
limit energy gaps seem to vanish. Thus the phase is best
described by a temperature-dependent wave vector whose
discrete spectrum is smeared out in the thermodynamic limit.
The momentum varies from a starting vector qc(J1/|J2|) and
locks smoothly into (π/2,π/2). The nature of this phase
was further analyzed by fitting the correlation functions by
a combination of algebraic decay and oscillatory behavior.
The agreement in the intermediate phase is very good and we
conclude from this result that the state is best described by a
floating phase consistently with the analytical predictions. The
model’s phase diagram in Fig. 2 summarizes most of our MC
and analytical results.

As for the further work, we expect a very interesting
behavior of the present model when the transverse field
is included, especially near quantum criticality.12 Another
interesting direction is the 3D generalization of the model,
where the devil’s staircase, similar to the one in the 3D ANNNI
model,3,5 is expected.19 It appears that the devil’s staircase in
the 3D extension of the present model was already observed
experimentally.18
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